1
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
2
|
Manabe S, Haga Y, Tsujino H, Ikuno Y, Asahara H, Higashisaka K, Tsutsumi Y. Treatment of polyethylene microplastics degraded by ultraviolet light irradiation causes lysosome-deregulated cell death. Sci Rep 2024; 14:24008. [PMID: 39402130 PMCID: PMC11473831 DOI: 10.1038/s41598-024-74800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Microplastics (MPs), plastic particles < 5 mm in size, are prevalent in the environment, and human exposure to them is inevitable. To assess the potential risk of MPs on human health, it is essential to consider the physicochemical properties of environmental MPs, including polymer types, size, shape, and surface chemical modifications. Notably, environmental MPs undergo degradation due to external factors such as ultraviolet (UV) rays and waves, leading to changes in their surface characteristics. However, limited knowledge exists regarding the health effects of MPs, with a specific focus on their surface degradation. This study concentrates on cytotoxic MPs with surface degradation through UV irradiation, aiming to identify the mechanisms underlying their cell toxicity. RESULTS Polyethylene (PE) and surface-degraded PE achieved through UV light irradiation were employed as model MPs in this study. We explored the impact of PE and degraded PE on cell death in murine macrophage cell line RAW264.7 cells and human monocyte cell line THP-1 cells. Flow cytometric analysis revealed that degraded PE induced programmed cell death without activating caspase 3, while non-degraded PE did not trigger programmed cell death. These findings suggest that degraded PE might induce programmed cell death through mechanisms other than caspase-driven apoptosis. To understand the mechanisms of cell death, we investigated how cells responded to degraded PE-induced cellular stress. Immunofluorescence and western blotting analyses demonstrated that degraded PE induced autophagosome formation and increased p62 expression, indicating inhibited autophagy flux after exposure to degraded PE. Furthermore, degraded PE exposure led to a decrease in acidic lysosomes, indicating lysosomal dysregulation. These results imply that degraded PE induces lysosomal dysfunction, subsequently causing autophagy dysregulation and cell death. CONCLUSIONS This study unveils that UV-induced degradation of PE results in cell death attributed to lysosomal dysfunction. The findings presented herein provide novel insights into the effects of surface-degraded MPs on biological responses.
Collapse
Affiliation(s)
- Sota Manabe
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Museum Links, Osaka University, 1-13 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yudai Ikuno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Wu J, Yin Q, Wang Y, Wang R, Gong W, Chen Y, Zhang M, Liu Y, Ji Y. Integrated transcriptome and metabolomic analyses uncover the mechanism of cadmium-caused mouse spermatogonia apoptosis via inducing endoplasmic reticulum stress. Reprod Toxicol 2024; 129:108664. [PMID: 39038763 DOI: 10.1016/j.reprotox.2024.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
Cadmium (Cd) is a well-recognized male reproductive toxicant that can cause testicular germ cell apoptosis. However, the underlying mechanism needs investigation. CG-1 mouse spermatogonia (spg) cells were treated with 20 μM cadmium chloride (CdCl2) for 24 h. Cell apoptosis was measured, and the expressions of key genes and protein biomarkers involved in endoplasmic reticulum (ER) stress were detected, respectively. Untargeted metabolomics was performed to identify different metabolites, and transcriptome analysis was conducted to screen differentially expressed genes (DEGs). Our results indicated that CdCl2 exposure caused cell apoptosis, and DEGs were involved in several apoptosis-related pathways. Moreover, CdCl2 exposure apparently increased the mRNA and protein expressions levels of both GRP78 and ATF6α, disrupting the expression of various metabolites, particularly amino acids. Conclusively, our study reveals the pathway of CdCl2 toxicity on mouse spg, providing a deep understanding of CdCl2-induced testicular toxicity.
Collapse
Affiliation(s)
- Jie Wu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qizi Yin
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yi Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Rong Wang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenjing Gong
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yihang Chen
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yehao Liu
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Yanli Ji
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Parashar S, Raj S, Srivastava P, Singh AK. Comparative toxicity assessment of selected nanoparticles using different experimental model organisms. J Pharmacol Toxicol Methods 2024; 130:107563. [PMID: 39357804 DOI: 10.1016/j.vascn.2024.107563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Nanoparticles are microscopic particles ranging in size from one to one hundred nanometers. Due to their extensive features, nanoparticles find widespread use in various fields worldwide, including cosmetics, medical diagnosis, pharmaceuticals, food products, drug delivery, electronic devices, artificial implants, and skincare. However, their unique characteristics have led to high demand and large-scale manufacturing, resulting in adverse impacts on the environment and bioaccumulation. Researchers have been exploring issues related to the environmental toxicity resulting from the high production of selected nanoparticles. This review discusses and addresses the adverse impacts of highly produced nanoparticles such as Carbon Nanotubes, Silica, Titanium dioxide, Zinc Oxide, Copper oxide, and Silver nanoparticles on different in vivo, in vitro, alternate invertebrate models, and plant models. Summarizing in vivo research on rats, rabbits, and earthworms, the review reveals that nanoparticles induce cytotoxicity, embryotoxicity, and DNA damage, primarily targeting organs like the brain, liver, kidney, and lungs, leading to nephron, neuro, and hepatotoxicity. Studying the effects on alternative models like zebrafish, Caenorhabditis elegans, Drosophila, sea urchins, and Saccharomyces cerevisiae demonstrates genotoxicity, apoptosis, and cell damage, affecting reproduction, locomotion, and behavior. Additionally, research on various cell lines such as HepG2, BALB/c 3 T3, and NCL-H292 during in vitro studies reveals apoptosis, increased production of reactive oxygen species (ROS), halted cell growth, and reduced cell metabolism. The review highlights the potentially adverse impacts of nanoparticles on the environment and living organisms if not used sustainably and with caution. The widespread use of nanoparticles poses hazards to both the environment and human health, necessitating appropriate actions and measures for their beneficial use. Therefore, this review focuses on widely used nanoparticles like zinc, titanium, copper, silica, carbon nanotubes, and silver, chosen due to their environmental toxicity when excessively used. Environmental toxicity of air, water, and soil is evaluated using environmentally relevant alternative animal models such as Drosophila, zebrafish, earthworms, etc., alongside in vivo and in vitro models, as depicted in the graphical abstract.
Collapse
Affiliation(s)
- Srishti Parashar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Sheetal Raj
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| |
Collapse
|
5
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak Lal Pathak
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Ashoub MH, Amiri M, Fatemi A, Farsinejad A. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells (Nalm-6 and REH). Heliyon 2024; 10:e36608. [PMID: 39263164 PMCID: PMC11387337 DOI: 10.1016/j.heliyon.2024.e36608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 μg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 μg/ml for Nalm-6 and 101.31 μg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Amiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Alireza Farsinejad
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Fernández-Bertólez N, Alba-González A, Touzani A, Ramos-Pan L, Méndez J, Reis AT, Quelle-Regaldie A, Sánchez L, Folgueira M, Laffon B, Valdiglesias V. Toxicity of zinc oxide nanoparticles: Cellular and behavioural effects. CHEMOSPHERE 2024; 363:142993. [PMID: 39097108 DOI: 10.1016/j.chemosphere.2024.142993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Due to their extensive use, the release of zinc oxide nanoparticles (ZnO NP) into the environment is increasing and may lead to unintended risk to both human health and ecosystems. Access of ZnO NP to the brain has been demonstrated, so their potential toxicity on the nervous system is a matter of particular concern. Although evaluation of ZnO NP toxicity has been reported in several previous studies, the specific effects on the nervous system are not completely understood and, particularly, effects on genetic material and on organism behaviour are poorly addressed. We evaluated the potential toxic effects of ZnO NP in vitro and in vivo, and the role of zinc ions (Zn2+) in these effects. In vitro, the ability of ZnO NP to be internalized by A172 glial cells was verified, and the cytotoxic and genotoxic effects of ZnO NP or the released Zn2+ ions were addressed by means of vital dye exclusion and comet assay, respectively. In vivo, behavioural alterations were evaluated in zebrafish embryos using a total locomotion assay. ZnO NP induced decreases in viability of A172 cells after 24 h of exposure and genetic damage after 3 and 24 h. The involvement of the Zn2+ ions released from the NP in genotoxicity was confirmed. ZnO NP exposure also resulted in decreased locomotor activity of zebrafish embryos, with a clear role of released Zn2+ ions in this effect. These findings support the toxic potential of ZnO NP showing, for the first time, genetic effects on glial cells and proving the intervention of Zn2+ ions.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía-CICA, Rúa As Carballeiras, 15071, A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| | - Josefina Méndez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600, Porto, Portugal; Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain; Translational Research for Neurological Diseases, Institut Imagine, INSERM UMR 1163, Université Paris Cité, F-75015, Paris, France
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía-CICA, Rúa As Carballeiras, 15071, A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain.
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía-CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, As Xubias, 15006, A Coruña, Spain
| |
Collapse
|
8
|
Zhang Y, Xie J. Ferroptosis implication in environmental-induced neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172618. [PMID: 38663589 DOI: 10.1016/j.scitotenv.2024.172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Neurotoxicity, stemming from exposure to various chemical, biological, and physical agents, poses a substantial threat to the intricate network of the human nervous system. This article explores the implications of ferroptosis, a regulated form of programmed cell death characterized by iron-dependent lipid peroxidation, in environmental-induced neurotoxicity. While apoptosis has historically been recognized as a primary mechanism in neurotoxic events, recent evidence suggests the involvement of additional pathways, including ferroptosis. The study aims to conduct a comprehensive review of the existing literature on ferroptosis induced by environmental neurotoxicity across diverse agents such as natural toxins, insecticides, particulate matter, acrylamide, nanoparticles, plastic materials, metal overload, viral infections, anesthetics, chemotherapy, and radiation. The primary objective is to elucidate the diverse mechanisms through which these agents trigger ferroptosis, leading to neuronal cell death. Furthermore, the article explores potential preventive or therapeutic strategies that could mitigate ferroptosis, offering insights into protective measures against neurological damage induced by environmental stressors. This comprehensive review contributes to our evolving understanding of neurotoxicological processes, highlighting ferroptosis as a significant contributor to neuronal cell demise induced by environmental exposures. The insights gained from this study may pave the way for the development of targeted interventions to protect against ferroptosis-mediated neurotoxicity and ultimately safeguard public health.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
9
|
Yan Y, Huang W, Lu X, Chen X, Shan Y, Luo X, Li Y, Yang X, Li C. Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis. Cell Biol Toxicol 2024; 40:51. [PMID: 38958792 PMCID: PMC11222284 DOI: 10.1007/s10565-024-09894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.
Collapse
Affiliation(s)
- Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Xin Luo
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuesong Yang
- Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
10
|
Chen M, Wu T. Nanoparticles and neurodegeneration: Insights on multiple pathways of programmed cell death regulated by nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168739. [PMID: 38008311 DOI: 10.1016/j.scitotenv.2023.168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Currently, nanoparticles (NPs) are extensively applied in the diagnosis and treatment of neurodegenerative diseases (NDs). With the rapid development and increasing exposure to the public, the potential neurotoxicity associated with NDs caused by NPs has attracted the researchers' attentions but their biosafety assessments are still far behind relevant application studies. Based on recent research, this review aims to conduct a comprehensive and systematic analysis of neurotoxicity induced by NPs. The 191 studies selected according to inclusion and exclusion criteria were imported into the software, and the co-citations and keywords of the included literatures were analyzed to find the breakthrough point of previous studies. According to the available studies, the routes of NPs entering into the normal and injured brain were various, and then to be distributed and accumulated in living bodies. When analyzing the adverse effects induced by NPs, we focused on multiple programmed cell deaths (PCDs), especially ferroptosis triggered by NPs and their tight connection and crosstalk that have been found playing critical roles in the pathogenesis of NDs and their underlying toxic mechanisms. The activation of multiple PCD pathways by NPs provides a scientific basis for the occurrence and development of NDs. Furthermore, the adoption of new methodologies for evaluating the biosafety of NPs would benefit the next generation risk assessment (NGRA) of NPs and their toxic interventions. This would help ensure their safe application and sustainable development in the field of medical neurobiology.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
12
|
Geng S, Hao P, Wang D, Zhong P, Tian F, Zhang R, Qiao J, Qiu X, Bao P. Zinc oxide nanoparticles have biphasic roles on Mycobacterium-induced inflammation by activating autophagy and ferroptosis mechanisms in infected macrophages. Microb Pathog 2023; 180:106132. [PMID: 37201638 DOI: 10.1016/j.micpath.2023.106132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
The ability of zinc oxide nanoparticles (ZnONPs) to induce bacteriostasis in Mycobacterium tuberculosis (M. tb) and their roles in regulating the pathogenic activities of immune cells have been reported previously, but the specific mechanisms underlying these regulatory functions remain unclear. This work aimed to determine how ZnONPs play the antibacterial role against M. tb. In vitro activity assays were employed to determine the minimum inhibitory concentrations (MICs) of the ZnONPs against various strains of M. tb (BCG, H37Rv, and clinical susceptible MDR and XDR strains). The ZnONPs had MICs of 0.5-2 mg/L against all tested isolates. In addition, changes in the expression levels of autophagy and ferroptosis-related markers in BCG-infected macrophages exposed to ZnONPs were measured. BCG-infected mice that were administered ZnONPs were used to determine the ZnONPs functions in vivo. ZnONPs decreased the number of bacteria engulfed by the macrophages in a dose-dependent manner, while different doses of ZnONPs also affected inflammation in different directions. Although ZnONPs enhanced the BCG-induced autophagy of macrophages in a dose-dependent manner, only low doses of ZnONPs activated autophagy mechanisms by increasing the levels of pro-inflammatory factors. The ZnONPs also enhanced BCG-induced ferroptosis of macrophages at high doses. Co-administration of a ferroptosis inhibitor with the ZnONPs improved the anti-Mycobacterium activity of ZnONPs in an in vivo mouse model and alleviated acute lung injury caused by ZnONPs. Based on the above findings, we conclude that ZnONPs may act as potential antibacterial agents in future animal and clinical studies.
Collapse
Affiliation(s)
- SiJia Geng
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - PengFei Hao
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Di Wang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Pengfei Zhong
- Graduate School, Hebei North University, Zhangjiakou, Hebei Province, 075000, PR China
| | - Fangfang Tian
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Rui Zhang
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China
| | - Juan Qiao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Xiaochen Qiu
- Department of General Surgery, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, 100093, PR China.
| | - Pengtao Bao
- The Eighth Medical Center of Chinese PLA General Hospital, Pulmonary and Critical Care Medicine Faculty of Chinese PLA General Hospital, Beijing, 100093, PR China.
| |
Collapse
|
13
|
Tkachenko A, Onishchenko A, Myasoedov V, Yefimova S, Havranek O. Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 2023; 17:218-248. [PMID: 37083543 DOI: 10.1080/17435390.2023.2203239] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Ondrej Havranek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
14
|
Chen H, Li T, Liu Z, Tang S, Tong J, Tao Y, Zhao Z, Li N, Mao C, Shen J, Wan M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 2023; 14:941. [PMID: 36804924 PMCID: PMC9941476 DOI: 10.1038/s41467-022-35709-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/20/2022] [Indexed: 02/22/2023] Open
Abstract
The major challenges of immunotherapy for glioblastoma are that drugs cannot target tumor sites accurately and properly activate complex immune responses. Herein, we design and prepare a kind of chemotactic nanomotor loaded with brain endothelial cell targeting agent angiopep-2 and anti-tumor drug (Lonidamine modified with mitochondrial targeting agent triphenylphosphine, TLND). Reactive oxygen species and inducible nitric oxide synthase (ROS/iNOS), which are specifically highly expressed in glioblastoma microenvironment, are used as chemoattractants to induce the chemotactic behavior of the nanomotors. We propose a precise targeting strategy of brain endothelial cells-tumor cells-mitochondria. Results verified that the released NO and TLND can regulate the immune circulation through multiple steps to enhance the effect of immunotherapy, including triggering the immunogenic cell death of tumor, inducing dendritic cells to mature, promoting cytotoxic T cells infiltration, and regulating tumor microenvironment. Moreover, this treatment strategy can form an effective immune memory effect to prevent tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zhiyong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Jintao Tong
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yingfang Tao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Zinan Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
15
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
16
|
Zhang L, Zhang Y, Jiang X, Mao L, Xia Y, Fan Y, Li N, Jiang Z, Qin X, Jiang Y, Liu G, Qiu F, Zhang J, Zou Z, Chen C. Disruption of the lung-gut-brain axis is responsible for cortex damage induced by pulmonary exposure to zinc oxide nanoparticles. Toxicology 2023; 485:153390. [PMID: 36535435 DOI: 10.1016/j.tox.2022.153390] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Increasing evidence shows that gut microbiota is important for host health in response to metal nanomaterials exposure. However, the effect of gut microbiota on the cortex damage caused by pulmonary exposure to zinc oxide nanoparticles (ZnONPs) remains mainly unknown. In this study, a total of 48 adult C57BL/6J mice were intratracheally instilled with 0.6 mg/kg ZnONPs in the presence or absence of antibiotics (ABX) treatment. Besides, 24 mice were treated with or without fecal microbiota transplantation (FMT) after the intraperitoneal administration of ABX. Our results demonstrated for the first time that dysbiosis induced by ABX treatment significantly aggravated cortex damage induced by pulmonary exposure to ZnONPs. Such damage might highly occur through the induction of oxidative stress, manifested by the enhancement of antioxidative enzymes and products of lipid peroxidation. However, ferroptosis was not involved in this process. Interestingly, our data revealed that ABX treatment exacerbated the alterations of gut-brain peptides (including Sst, Sstr2, and Htr4) induced by ZnONPs in both gut and cortex tissues. Moreover, fecal microbiota transplantation (FMT) was able to alleviate cerebral cortex damage, oxidative stress, and alterations of gut-brain peptides induced by pulmonary exposure to ZnONPs. The results together indicate that pulmonary exposure to ZnONPs causes cerebral cortex damage possibly via the disruption of the lung-gut-brain axis. These findings not only propose valuable insights into the mechanism of ZnONPs neurotoxicity but also provide a potential therapeutic method against brain disorders induced by pulmonary exposure to ZnONPs. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the The corresponding author on reasonable request.
Collapse
Affiliation(s)
- Lingbing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yandan Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yinzhen Fan
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Na Li
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Ziqi Jiang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yu Jiang
- Department of Respiratory Medicine, The University‑Town Affiliated Hospital of Chongqing Medical University, Chongqing 401331, PR China
| | - Gang Liu
- Department of Emergency, The University‑Town Affiliated Hospital of Chongqing Medical University, Chongqing 401331, PR China
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, PR China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, PR China; Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
17
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
18
|
Dong L, Wang S, Zhang L, Liu D, You H. DBDPE and ZnO NPs synergistically induce neurotoxicity of SK-N-SH cells and activate mitochondrial apoptosis signaling pathway and Nrf2-mediated antioxidant pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129872. [PMID: 36084461 DOI: 10.1016/j.jhazmat.2022.129872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a new brominated flame retardant, could negatively affect neurobehavior and pose health risks to humans. Humans are also exposed to widely used nanomaterials. This study investigated the combined toxic effects and action types of DBDPE and Zinc oxide nanoparticles (ZnO NPs) on human neuroblastoma SK-N-SH cells and the toxicity mechanisms. DBDPE inhibited the viability of SK-N-SH cells by 21.87% at 25 mg/L. ZnO NPs synergistically exacerbated the toxic effects of DBDPE. DBDPE and ZnO NPs caused excessive ROS production and inhibition of antioxidant enzyme (SOD and GSH) activity in cells, thus causing oxidative cellular damage. Moreover, DBDPE and ZnO NPs caused apoptosis by disrupting mitochondrial kinetic homeostasis, reducing mitochondrial membrane potential (MMP), increasing cytochrome C release and regulating Bax/Bcl-2 and Caspase-3 mRNA and protein expression. DBDPE and ZnO NPs increased the mRNA expression of nuclear factor erythroid 2- related factor (Nrf2) and its downstream genes. The molecular mechanisms revealed that oxidative stress, apoptosis and mitochondrial dysfunction were the critical factors in combined cytotoxicity. The bioinformatics analysis further indicated that co-exposure affected Nrf2 activation, apoptotic factors expression and mitochondrial fusion. The findings enrich the risk perception of neurotoxicity caused by DBDPE and ZnO NPs.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Lin Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| |
Collapse
|
19
|
Zhang X, Li M, Wu H, Fan W, Zhang J, Su W, Wang Y, Li P. Naringenin attenuates inflammation, apoptosis, and ferroptosis in silver nanoparticle-induced lung injury through a mechanism associated with Nrf2/HO-1 axis: In vitro and in vivo studies. Life Sci 2022; 311:121127. [PMID: 36306867 DOI: 10.1016/j.lfs.2022.121127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
With the wide application of silver nanoparticles (AgNPs), their potential damage to human health needs to be investigated. Lung is one of the main target organs after inhalation of AgNPs. Naringenin has been reported to have anti-inflammatory and anti-oxidative properties. This study aims to evaluate the protective effects of naringenin against AgNPs-induced lung injury and determine the underlying mechanism. In in vivo experiments, AgNPs were intratracheally instilled into ICR mice (l mg/kg) to establish a lung injury model. These mice were then treated with naringenin by oral gavage (25, 50, 100 mg/kg) for three days. Naringenin treatment decreased the levels of white blood cells, neutrophils, and lymphocytes in the blood, ameliorated lung injury, suppressed the release of pro-inflammatory cytokines, normalized ferroptotic markers and prevented oxidative stress with elevating Nrf2 and HO-1 protein expressions in lung. In in vitro experiments, BEAS-2B cells were firstly treated with AgNPs (320 μg/mL) and then naringenin (25, 50, and 100 μM), respectively. Naringenin attenuated AgNPs-induced oxidative stress and inflammatory response. Moreover, naringenin attenuated AgNPs-induced apoptosis with modulated low BAX, CytC, cleaved Caspase9, cleaved Caspase3 but high Bcl2. Furthermore, naringenin effectively decreased ferroptotic markers and increased the protein expressions of Nrf2 and HO-1, as well as increased the nuclear translocation of Nrf2. Importantly, the anti-apoptotic and anti-ferroptotic effects of naringenin in BEAS-2B cells were found to be at least partially Nrf2-dependent. These results indicated that naringenin exerted anti-inflammation, anti-apoptosis, and anti-ferroptosis effects and protected against AgNPs-induced lung injury at least partly via activating Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xinxu Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Min Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Marketed TCM, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
20
|
Li Y, Xiao D, Wang X. The emerging roles of ferroptosis in cells of the central nervous system. Front Neurosci 2022; 16:1032140. [PMID: 36590286 PMCID: PMC9797129 DOI: 10.3389/fnins.2022.1032140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is morphologically characterized by shrunken mitochondria and biochemically characterized by iron overload, lipid peroxidation and lipid reactive oxygen species (ROS) accumulation; these phenomena are suppressed by iron chelation, genetic inhibition of cellular iron uptake, and intervention on other pathways such as lipid metabolism. The induction of ferroptosis may be related to pathological cellular conditions in the central nervous system (CNS); thus, ferroptosis may cause disability via CNS damage. Here, we review the role of ferroptosis in the main cells of the CNS, including glial cells, neurons, and pericytes; in various diseases of the CNS; and in the interaction of glia and neurons in CNS diseases. Some small molecules and traditional Chinese drugs which inhibit ferroptosis in cells of the CNS are shown as potential therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Yuyao Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China,West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China,Dongqiong Xiao,
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaodong Wang,
| |
Collapse
|
21
|
Zhang L, Liu J, Dai Z, Wang J, Wu M, Su R, Zhang D. Crosstalk between regulated necrosis and micronutrition, bridged by reactive oxygen species. Front Nutr 2022; 9:1003340. [PMID: 36211509 PMCID: PMC9543034 DOI: 10.3389/fnut.2022.1003340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
The discovery of regulated necrosis revitalizes the understanding of necrosis from a passive and accidental cell death to a highly coordinated and genetically regulated cell death routine. Since the emergence of RIPK1 (receptor-interacting protein kinase 1)-RIPK3-MLKL (mixed lineage kinase domain-like) axis-mediated necroptosis, various other forms of regulated necrosis, including ferroptosis and pyroptosis, have been described, which enrich the understanding of pathophysiological nature of diseases and provide novel therapeutics. Micronutrients, vitamins, and minerals, position centrally in metabolism, which are required to maintain cellular homeostasis and functions. A steady supply of micronutrients benefits health, whereas either deficiency or excessive amounts of micronutrients are considered harmful and clinically associated with certain diseases, such as cardiovascular disease and neurodegenerative disease. Recent advance reveals that micronutrients are actively involved in the signaling pathways of regulated necrosis. For example, iron-mediated oxidative stress leads to lipid peroxidation, which triggers ferroptotic cell death in cancer cells. In this review, we illustrate the crosstalk between micronutrients and regulated necrosis, and unravel the important roles of micronutrients in the process of regulated necrosis. Meanwhile, we analyze the perspective mechanism of each micronutrient in regulated necrosis, with a particular focus on reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jinting Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ziyan Dai
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Jia Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Mengyang Wu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Ruicong Su
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- *Correspondence: Di Zhang,
| |
Collapse
|
22
|
Xiong Q, Tian X, Xu C, Ma B, Liu W, Sun B, Ru Q, Shu X. PM 2 .5 exposure-induced ferroptosis in neuronal cells via inhibiting ERK/CREB pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2201-2213. [PMID: 35608139 DOI: 10.1002/tox.23586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/25/2022] [Accepted: 05/06/2022] [Indexed: 05/16/2023]
Abstract
PM2.5 exposure has been demonstrated to correlate with neurological disorders recently. Ferroptosis is recognized as a newly found programmed form of cell death associated with neurodegenerative diseases, while glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis. However, the relationship between PM2.5 -induced neurotoxicity and ferroptosis is still unclear. The current study aims to investigate if ferroptosis is involved in neurotoxicity post PM2.5 exposure and its underlying mechanism. The PM2.5 -treated neuronal Neuro-2a (N2A) and SH-SY5Y cells were applied to the current study. The results showed that PM2.5 significantly increased the neuronal cell death, yet the ferroptosis antagonist Ferrostain-1 (Fer-1) markedly decreased the cell death induced by PM2.5 . Western blot further confirmed that ferroptosis was triggered post PM2.5 treatment in N2A cells by decreasing expressions of GPX4 and ferritin heavy chain (FTH), as well as enhancing expressions of ferritin light chain (FTL) and transferrin receptor protein (TFRC). Meanwhile, PM2.5 treatment augmented neuronal oxidative damage and mitochondrial dysfunction. The bioinformatic analysis indicated that CREB could be the regulator of GPX4, and our results showed that ERK/CREB pathway was down-regulated in N2A cells post PM2.5 treatment. The addition of ERK1/2 agonist post PM2.5 treatment significantly inhibit ferroptosis via increasing the expression of GPX4. Taken together, the present study demonstrated that PM2.5 -induced ferroptosis via inhibiting ERK/CREB pathway, and these findings will advance our knowledge of PM2.5 -induced cytotoxicity in the nervous system.
Collapse
Affiliation(s)
- Qi Xiong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Xiang Tian
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Congyue Xu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Baomiao Ma
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| | - Qin Ru
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
- Wuhan Economic and Technological Development Zone, Jianghan University, Wuhan City, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, People's Republic of China
| |
Collapse
|
23
|
Liu N, Liang Y, Wei T, Zou L, Huang X, Kong L, Tang M, Zhang T. The role of ferroptosis mediated by NRF2/ERK-regulated ferritinophagy in CdTe QDs-induced inflammation in macrophage. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129043. [PMID: 35525219 DOI: 10.1016/j.jhazmat.2022.129043] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Cadmium telluride quantum dots (CdTe QDs) exist in the environment due to the abandonment of products. There is a potential risk to organisms and toxic mechanism is worth exploring. In this study, 12.5 μmol/Kg body weight CdTe QDs triggered systemic and local inflammatory response in mice and activated macrophages, then the mechanism of activating macrophages to overexpress IL-1β and IL-6 was explored. RAW264.7 macrophages were used, and after macrophages exposing to 1 μM CdTe QDs for 24 h, oxidative stress occurred. Further investigation found that CdTe QDs triggered ferroptosis in RAW264.7 cells. And deferoxamine mesylate alleviated the excessive lipid hydroperoxide caused by QDs. Mechanistically, CdTe QDs-provoked decrease of nuclear factor erythroid 2-related factor 2 (NRF2) elicited phosphorylation of extracellular regulated protein kinases1/2 (ERK1/2) and then activated ferritinophagy, which made ferritin heavy chain 1 (FTH1) degraded in lysosome and proteasome to release free iron ions to initiate ferroptosis in macrophages. This paper updates the mechanism of macrophage activation by CdTe QDs with regard to ferritinophagy, and more importantly, identifies the key role of NRF2 and ERK1/2. Our research extends the role of ferroptosis in inflammatory responses triggered by nanoparticles (NPs) in macrophages and provides insightful reference for toxicity assessment of NPs.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China; Testing Center for Medical Device, Yancheng Institute of Measurement and Testing, Yancheng 224007, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lu Kong
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
24
|
Ferroptosis as a mechanism of non-ferrous metal toxicity. Arch Toxicol 2022; 96:2391-2417. [PMID: 35727353 DOI: 10.1007/s00204-022-03317-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Ferroptosis is a recently discovered form of regulated cell death, implicated in multiple pathologies. Given that the toxicity elicited by some metals is linked to alterations in iron metabolism and induction of oxidative stress and lipid peroxidation, ferroptosis might be involved in such toxicity. Although direct evidence is insufficient, certain pioneering studies have demonstrated a crosstalk between metal toxicity and ferroptosis. Specifically, the mechanisms underlying metal-induced ferroptosis include induction of ferritinophagy, increased DMT-1 and TfR cellular iron uptake, mitochondrial dysfunction and mitochondrial reactive oxygen species (mitoROS) generation, inhibition of Xc-system and glutathione peroxidase 4 (GPX4) activity, altogether resulting in oxidative stress and lipid peroxidation. In addition, there is direct evidence of the role of ferroptosis in the toxicity of arsenic, cadmium, zinc, manganese, copper, and aluminum exposure. In contrast, findings on the impact of cobalt and nickel on ferroptosis are scant and nearly lacking altogether for mercury and especially lead. Other gaps in the field include limited studies on the role of metal speciation in ferroptosis and the critical cellular targets. Although further detailed studies are required, it seems reasonable to propose even at this early stage that ferroptosis may play a significant role in metal toxicity, and its modulation may be considered as a potential therapeutic tool for the amelioration of metal toxicity.
Collapse
|
25
|
Kad A, Pundir A, Arya SK, Puri S, Khatri M. Meta-analysis of in-vitro cytotoxicity evaluation studies of zinc oxide nanoparticles: Paving way for safer innovations. Toxicol In Vitro 2022; 83:105418. [PMID: 35724836 DOI: 10.1016/j.tiv.2022.105418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
Nano-based products have shown their daunting presence in several sectors. Among them, Zinc Oxide (ZnO) nanoparticles wangled the reputation of providing "next-generation solutions" and are being utilized in plethora of products. Their widespread application has led to increased exposure of these particles, raising concerns regarding toxicological repercussions to the human health and environment. The diversity, complexity, and heterogeneity in the available literature, along with correlation of befitting attributes, makes it challenging to develop one systematic framework to predict this toxicity. The present study aims at developing predictive modelling framework to tap the prospective features responsible for causing cytotoxicity in-vitro on exposure to ZnO nanoparticles. Rigorous approach was used to mine the information from complete body of evidence published to date. The attributes, features and experimental conditions were systematically extracted to unmask the effect of varied features. 1240 data points from 76 publications were obtained, containing 14 qualitative and quantitative attributes, including physiochemical properties of nanoparticles, cell culture and experimental parameters to perform meta-analysis. For the first time, the efforts were made to investigate the degree of significance of attributes accountable for causing cytotoxicity on exposure to ZnO nanoparticles. We show that in-vitro cytotoxicity is closely related with dose concentration of nanoparticles, followed by exposure time, disease state of the cell line and size of these nanoparticles among other attributes.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160014, India; Wellcome trustTrust/DBT IA Early Career Fellow Panjab University, Chandigarh 160014, India.
| |
Collapse
|
26
|
Zhang L, Zhang Y, Qin X, Jiang X, Zhang J, Mao L, Jiang Z, Jiang Y, Liu G, Qiu J, Chen C, Qiu F, Zou Z. Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein. Crit Care 2022; 26:171. [PMID: 35681221 PMCID: PMC9178547 DOI: 10.1186/s13054-022-04034-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 infection leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Both clinical data and animal experiments suggest that the renin-angiotensin system (RAS) is involved in the pathogenesis of SARS-CoV-2-induced ALI. Angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV-2 and a crucial negative regulator of RAS. Recombinant ACE2 protein (rACE2) has been demonstrated to play protective role against SARS-CoV and avian influenza-induced ALI, and more relevant, rACE2 inhibits SARS-CoV-2 proliferation in vitro. However, whether rACE2 protects against SARS-CoV-2-induced ALI in animal models and the underlying mechanisms have yet to be elucidated. METHODS AND RESULTS Here, we demonstrated that the SARS-CoV-2 spike receptor-binding domain (RBD) protein aggravated lipopolysaccharide (LPS)-induced ALI in mice. SARS-CoV-2 spike RBD protein directly binds and downregulated ACE2, leading to an elevation in angiotensin (Ang) II. AngII further increased the NOX1/2 through AT1R, subsequently causing oxidative stress and uncontrolled inflammation and eventually resulting in ALI/ARDS. Importantly, rACE2 remarkably reversed SARS-CoV-2 spike RBD protein-induced ALI by directly binding SARS-CoV-2 spike RBD protein, cleaving AngI or cleaving AngII. CONCLUSION This study is the first to prove that rACE2 plays a protective role against SARS-CoV-2 spike RBD protein-aggravated LPS-induced ALI in an animal model and illustrate the mechanism by which the ACE2-AngII-AT1R-NOX1/2 axis might contribute to SARS-CoV-2-induced ALI.
Collapse
Affiliation(s)
- Lingbing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yandan Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ziqi Jiang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Jiang
- Department of Respiratory Medicine, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Gang Liu
- Department of Emergency, The University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Jingfu Qiu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
27
|
Assessing the neurotoxicity of airborne nano-scale particulate matter in human iPSC-derived neurons using a transcriptomics benchmark dose model. Toxicol Appl Pharmacol 2022; 449:116109. [DOI: 10.1016/j.taap.2022.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
|
28
|
Wang M, Zhang P, Li Z, Yan Y, Cheng X, Wang G, Yang X. Different cellular mechanisms from low- and high-dose zinc oxide nanoparticles-induced heart tube malformation during embryogenesis. Nanotoxicology 2022; 16:580-596. [PMID: 36137004 DOI: 10.1080/17435390.2022.2124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With the wide application of nanometer materials in daily life, people pay more attention to the potential toxicity of nanoparticles to human fetal development once the nanoparticles are absorbed into the human body during pregnancy. However, there was no directly solid evidence for ZnO NPs-caused congenital heart defects. Hence, we investigated the effect of ZnO NPs exposure on early cardiogenesis using the chicken/mouse embryo models. First, we showed ZnO NPs reduced H9c2 cell viability in a dose- and time-dependent manner, while cell autophagy was significantly activated too on the same pattern. During early cardiogenesis, ZnO NPs exposure increased the chance of heart tube malformation, while precardiac cell apoptosis rises in the phenotype of closure defect and Bifida. The hypertrophy was also observed in late-stage chicken/mouse survival embryos exposed to ZnO NPs. Apart from cell apoptosis, high-dose ZnO NPs exposure led to massive programmed necrosis, and further experiments verified that ferroptosis remained primarily in ZnO NPs-induced programmed necrosis. We also revealed that the toxicology of low-dose ZnO NPs was mainly featured in the changes of expressions of key genes instead of causing precardiac cell death. MYL2 and CSRP3 could work as the downstream molecules of the above key genes in the context of ZnO NPs exposure to early cardiogenesis based on RNA sequencing. Taken together, this study for the first time revealed the potential risk of heart tube malformation induced by ZnO NPs exposure through different cellular mechanisms, which depended on low- or high-dose ZnO NPs.
Collapse
Affiliation(s)
- Mengwei Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Ping Zhang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zeyu Li
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Cheng
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Liu F, Cheng X, Wu S, Hu B, Yang C, Deng S, Shi Q. Nickel oxide nanoparticles induce apoptosis and ferroptosis in airway epithelial cells via ATF3. ENVIRONMENTAL TOXICOLOGY 2022; 37:1093-1103. [PMID: 35061333 DOI: 10.1002/tox.23467] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Exposure to nickel oxide nanoparticles (NiONPs), which have been widely produced and applied in industry, leads to adverse pulmonary and systemic effects. The aim of this study is to investigate the involvement of apoptosis and ferroptosis in NiONPs-induced acute lung injury (ALI). Intratracheal instillation of NiONPs into mice elevated the levels of pro-inflammatory cytokines, neutrophils, and proteins in the bronchoalveolar lavage fluid, and triggered apoptosis and ferroptosis in the lung tissues. Consistently, NiONPs-induced apoptosis and ferroptosis were observed in in vitro experiments using human lung epithelial cells. Activating transcription factor 3 (ATF3), a stress-inducible transcription factor, was upregulated by NiONPs exposure in both murine lung tissues and human lung epithelial cells. Moreover, human lung epithelial cells with ATF3 deficiency exhibited a lower level of apoptosis and ferroptosis when exposed to NiONPs. Collectively, our findings demonstrated that ATF3 was responsive to NiONPs exposure, and promoted NiONPs-induced apoptosis and ferroptosis in lung epithelial cells, indicating that ATF3 is a potential biomarker and therapeutic target for NiONPs-associated ALI.
Collapse
Affiliation(s)
- Fengfan Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiang Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shuang Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bei Hu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chen Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Esculetin and Fucoidan Attenuate Autophagy and Apoptosis Induced by Zinc Oxide Nanoparticles through Modulating Reactive Astrocyte and Proinflammatory Cytokines in the Rat Brain. TOXICS 2022; 10:toxics10040194. [PMID: 35448455 PMCID: PMC9025201 DOI: 10.3390/toxics10040194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022]
Abstract
We examined the protective effects of esculetin and fucoidan against the neurotoxicity of ZnO NPs in rats. Ninety rats were divided into nine groups and pre-treated with esculetin or fucoidan 1 h before ZnO NP administration on a daily basis for 2 weeks. Serum and brain homogenates were examined by enzyme-linked immunosorbent assay (ELISA), and neurons, microglia, and astrocytes in the hippocampal region were examined with immunohistochemical analysis. The serum levels of interleukin-1-beta (IL-1β), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) were altered in the ZnO NP treatment groups. Brain IL-1β and TNF-α levels were elevated after ZnO NP administration, and these effects were inhibited by esculetin and fucoidan. SOD, 8-OHdG, and acetylcholinesterase (AChE) levels in the brain were decreased after ZnO NP administration. The brain levels of beclin-1 and caspase-3 were elevated after ZnO NP treatment, and these effects were significantly ameliorated by esculetin and fucoidan. The number of reactive astrocytes measured by counting glial fibrillary acidic protein (GFAP)-positive cells, but not microglia, increased following ZnO NP treatment, and esculetin and fucoidan ameliorated the changes. Esculetin and fucoidan may be beneficial for preventing ZnO NP-mediated autophagy and apoptosis by the modulation of reactive astrocyte and proinflammatory cytokines in the rat brain.
Collapse
|
31
|
Hyaluronic acid functionalized ZnO nanoparticles co-deliver AS and GOD for synergistic cancer starvation and oxidative damage. Sci Rep 2022; 12:4574. [PMID: 35301389 PMCID: PMC8931118 DOI: 10.1038/s41598-022-08627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Artesunate was reported to have inhibition effect on tumors via amplified oxidative stress while the lack of intratumoral ferrous ions supply greatly hinders its efficacy. Herein, the AS/GOD@HAZnO NPs we proposed could be efficiently taken in by the affinity between hyaluronic acid and the CD44 receptors. DLS and TEM results manifested the nano-size (~ 160 nm) and circular shape of AS/GOD@HAZnO NPs. Due to the acid-responsive degradation, AS/GOD@HAZnO NPs realized responsive release (up to 80%) in acid environment while only 20% was released in neutral medium. The cellular and in vivo experiment showed that co-delivery of AS and GOD via HAZnO NPs could effectively induce the overproduction of ROS and cut the glucose supply of tumor cells, and thus result in efficient cell apoptosis and tumor inhibition.
Collapse
|
32
|
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, is characterized by iron overload, increased reactive oxygen species (ROS) generation, and depletion of glutathione (GSH) and lipid peroxidation. Lipophilic antioxidants and iron chelators can prevent ferroptosis. GSH-dependent glutathione peroxidase 4 (GPX4) prevents lipid ROS accumulation. Ferroptosis is thought to be initiated through GPX4 inactivation. Moreover, mitochondrial iron overload derived from the degradation of ferritin is involved in increasing ROS generation. Ferroptosis has been suggested to explain the mechanism of action of organ toxicity induced by several drugs and chemicals. Inhibition of ferroptosis may provide novel therapeutic opportunities for treatment and even prevention of such organ toxicities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, 27117University of South Florida, Tampa, FL, USA.,Institute for Integrative Toxicology, 27117Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, 37552Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, 37552Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Li X, Wang Q, Yu S, Zhang M, Liu X, Deng G, Liu Y, Wu S. Multifunctional MnO 2-based nanoplatform-induced ferroptosis and apoptosis for synergetic chemoradiotherapy. Nanomedicine (Lond) 2021; 16:2343-2361. [PMID: 34523352 DOI: 10.2217/nnm-2021-0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Radiosensitizers that can effectively consume glutathione provide broad prospects for enhancing the efficacy and reducing the side effects of radiotherapy. Aim: To explore the potential role of CuS@mSiO2@MnO2 nanocomposites in synergetic chemoradiotherapy. Methods: Nanocomposites were characterized by transmission electron microscopy, UV-Vis spectrometry and dynamic light scattering and were loaded with doxorubicin (DOX). The uptake and biodistribution of nanocomposites were observed by CCK8 assay, MRI and confocal laser scanning microscopy. The radiosensitization effect of nanocomposites and nanocomposites/DOX was assessed both in vitro and in vivo. Results: In vitro application of nanocomposites, with an average diameter of 30 nm and ζ-potential of 13.2 ± 0.4 mV, in combination with radiotherapy, depleted glutathione and induced ferroptosis and apoptosis. Nanocomposites/DOX exhibited tumor cell damage in vivo. Conclusion: We propose that this glutathione-depleting nanosystem could be a radiosensitizer as well as a drug transporter.
Collapse
Affiliation(s)
- Xi Li
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Qi Wang
- Department of Orthopedics, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.,Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Sihui Yu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Minyi Zhang
- College of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xijian Liu
- College of Chemistry & Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Yuan Liu
- Reproductive Medicine Center, Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| | - Sufang Wu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 650 Xin Songjiang Road, Shanghai, 201620, China
| |
Collapse
|
34
|
Liu T, Li X, Cui Y, Meng P, Zeng G, Wang Y, Wang Q. Bioinformatics Analysis Identifies Potential Ferroptosis Key Genes in the Pathogenesis of Intracerebral Hemorrhage. Front Neurosci 2021; 15:661663. [PMID: 34163322 PMCID: PMC8215678 DOI: 10.3389/fnins.2021.661663] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a dangerous neurological disease. The mechanism of ferroptosis in ICH remains unclear. Using bioinformatics analysis, we aimed to identify the key molecules involved in ferroptosis and provide treatment targets for ICH to further explore the mechanism of ferroptosis in ICH. GSE24265 was downloaded from the Gene Expression Omnibus (GEO) dataset and intersected with ferroptosis genes. A total of 45 differentially expressed genes (DEGs) were selected, most of which were involved in the TNF signaling pathway and oxidative stress response. Key modules constructed by the protein–protein interaction (PPI) network analysis and screening of genes related to the TNF signaling pathway led to the confirmation of the following genes of interest: MAPK1, MAPK8, TNFAIP3, ATF4, and SLC2A1. Moreover, MAPK1 was one of the key genes related to TNF signaling and oxidative stress, and it may play an important role in ferroptosis after cerebral hemorrhage. The MAPK1-related molecules included hsa-miR-15b-5P, hsa-miR-93-5P, miR-20b-5p, SNHG16, XIST, AC084219.4, RP11-379K17.11, CTC-444N24.11, GS1-358P8.4, CTB-89H12.4, RP4-773N10.5, and FGD5-AS1. We also generated a hemorrhage rat model, which was used to conduct exercise intervention in ICH rats, and qRT-PCR was used to assess the expression levels of our genes of interest. The mRNA levels after cerebral hemorrhage showed that MAPK1, ATF4, SLC2A1, and TNFAIP3 were upregulated, whereas MAPK8 was downregulated. Treadmill training increased the expression of anti-inflammatory molecules TNFAIP3 and SLC2A1 and reduced the expression of MAPK1, ATF4, and MAPK8, indicating that treadmill training may be utilized as antioxidant therapy to decrease neuronal ferroptosis. The results of this study indicated that the MAPK1-related mRNA–miRNA–lncRNA interaction chain could be potentially employed as a biomarker of the inception and progression of ferroptosis after cerebral hemorrhage.
Collapse
Affiliation(s)
- Tongye Liu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinhe Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yiteng Cui
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pingping Meng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guanghui Zeng
- Department of Sports Medicine, Qingdao University Medical College, Qingdao, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Zhang L, Zou L, Jiang X, Cheng S, Zhang J, Qin X, Qin Z, Chen C, Zou Z. Stabilization of Nrf2 leading to HO-1 activation protects against zinc oxide nanoparticles-induced endothelial cell death. Nanotoxicology 2021; 15:779-797. [PMID: 33971103 DOI: 10.1080/17435390.2021.1919330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With the abundant production and wide application of zinc oxide nanoparticles (ZnONPs), the potential health risks of ZnONPs have raised serious concerns. Oxidative stress is recognized as the most important outcome of the toxicity induced by ZnONPs. The Nrf2-Keap1 system and its downstream antioxidative genes are the fundamental protective mechanisms for redox hemeostasis. However, the detailed mechanisms of Nrf2 activation in ZnONPs-treated endothelial cells and murine blood vessels have yet to be elucidated. Herein, we show that Nrf2 was activated and played a negative role in cell death induced by ZnONPs. Moreover, we demonstrate that HO-1 was the most extensively upregulated antioxidative gene-activated by Nrf2. Forced overexpression of HO-1, pharmacological activation of HO-1 with the agonists RTA-408 (omaveloxolone, an FDA-approved drug) and RTA-402 repressed cell death, and treatment with HO-1 antagonist SnPP exacerbated the cell death. Importantly, loss of HO-1 diminished the cytoprotective role induced by Nrf2 in ZnONPs-treated HUVEC cells, indicating that the Nrf2-HO-1 axis was the crucial regulatory mechanism for the antioxidative response in the context of ZnONPs-induced endothelial damage. Mechanistically, we demonstrate that the p62-Keap1 axis was not involved in the activation of Nrf2. Intriguingly, the degradation half-life of Nrf2 in HUVEC cells was increased from less than 1 h under quiescent conditions to approximately 6 h under ZnONPs treatment condition; moreover, ZnONPs treatment induced activation of Nrf2/HO-1 and accumulation of ubiquitin in the aorta ventralis of mouse, suggesting that the ubiquitin-proteasome system had been perturbed, which subsequently led to the stabilization of Nrf2 and activation of HO-1. This study might contribute to a better understanding of ZnONPs-associated toxicity.
Collapse
Affiliation(s)
- Longbin Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Liyong Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhexue Qin
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
36
|
Jarrar B, Al‐Doaiss A, Shati A, Al‐Kahtani M, Jarrar Q. Behavioural alterations induced by chronic exposure to 10 nm silicon dioxide nanoparticles. IET Nanobiotechnol 2021; 15:221-235. [PMID: 34694701 PMCID: PMC8675786 DOI: 10.1049/nbt2.12041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023] Open
Abstract
Silicon dioxide nanoparticles (SiO2 NPs) are widely invested in medicine, industry, agriculture, consuming products, optical imaging agents, cosmetics, and drug delivery. However, the toxicity of these NPs on human health and the ecosystem have not been extensively studied and little information is available about their behavioural toxicities. The current study aimed to find out the behavioural alterations that might be induced by chronic exposure to 10 nm SiO2 NPs. BALB/C mice were subjected to 36 injections of SiO2 NPs (2 mg/kg Bw) and subjected to 11 neurobehavioural tests: elevated plus-maze test, elevated zero-maze test, multiradial maze test, open field test, hole-board test, light-dark box test, forced swimming test, tail-suspension test, Morris water-maze test, Y-maze test and multiple T-maze test. Treated mice demonstrated anxiety-like effect, depression tendency, behavioural despair stress, exploration and locomotors activity reduction with error induction in both reference and working memories. The findings may suggest that silica NPs are anxiogenic and could aggravate depression affecting memory, learning, overall activity and exploratory behaviour. Moreover, the findings may indicate that these nanomaterials (NMs) may induce potential oxidative stress in the body leading to neurobehavioural alterations with possible changes in the vital organ including the central nervous system.
Collapse
Affiliation(s)
- Bashir Jarrar
- Nanobiology UnitDepartment of Biological SciencesCollege of ScienceJerash UniversityJordan
| | - Amin Al‐Doaiss
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
- Department of Anatomy and HistologyFaculty of MedicineSana'a UniversityYemen
| | - Ali Shati
- Department of BiologyCollege of ScienceKing Khalid UniversitySaudi Arabia
| | | | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Pharmacy PracticeFaculty of PharmacyIsra UniversityJordan
| |
Collapse
|