1
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Govindasamy C, Al-Numair KS, Alsaif MA, Gopalakrishnan AV, Ganesan R. Assessment of metabolic responses following silica nanoparticles in zebrafish models using 1H NMR analysis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109808. [PMID: 38061618 DOI: 10.1016/j.cbpc.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Silica nanoparticles (SNPs) are widely explored as drug carriers, gene delivery vehicles, and as nanoparticles intended for bone and tissue engineering. SNPs are highly evident through various clinical trials for a wide range of biomedical applications. SNPs are biocompatible and promising nanoparticles for next-generation therapeutics. However, despite the well-established importance of SNPs, metabolomics methods for the SNPs remain elusive which renders its maximal clinical translation. We applied 1H nuclear magnetic resonance (1H NMR) spectroscopy to investigate the metabolomics profile in Zebrafish (Danio rerio) exposed to SNPs. Zebrafish were exposed to the SNPs (10.0, 25.0, and 50.0 μg/mL) for 72 h and whole-body samples were subjected for targeted profiling. Pattern recognition of 1H NMR spectral data depicted alterations in the metabolomic profiles between control and SNPs exposed zebrafish. We found that tryptophane, lysine, methionine, phenylalanine, tyrosine, sn-glycero-3-phosphocholine (G3PC), and o-phosphocholine were decreased. The metabolic expression of niacinamide, nicotinamide adenine dinucleotide (NAD+), citrate, adenosine triphosphate (ATP), and xanthine were increased in zebrafish with SNPs treatment. We are report for the first time on metabolite alterations and phenotypic expression in zebrafish via 1H NMR. These results demonstrate that SNPs can adversely affect the significant metabolic pathways involved in energy, amino acids, cellular membrane, lipids, and fatty acid metabolisms. Metabolomics profiling may be able to detect metabolic dysregulation in SNPs-treated zebrafish and establish a foundation for further toxicological studies.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohammed A Alsaif
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Raja Ganesan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Valadares LPDA, Lima LCO, Saboia-Morais SMTD, Arantes TM, Cristovan FH, da Silva NM, Andrade AB, Ribeiro SAB, Alves BG, Virote BDCR, da Silva IC, Machado MRF. Embryotoxicity of silica nanoparticles in the drug delivery of domperidone in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106454. [PMID: 36958154 DOI: 10.1016/j.aquatox.2023.106454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Domperidone is a dopamine D2 receptor inhibitor that stimulates pituitary gonadotropins. It is usually associated with synthetic GnRHa to promote spawning in fish. However, the route of administration used, intramuscular injection, can be quite stressful. Little is known about the effects of domperidone, as well as other routes. This study aims to evaluate the toxicity of domperidone encapsulated by silica nanoparticles in zebrafish embryos. The study involved four groups with three concentrations: 1. domperidone (DP) 0.0001, 0.0002 and 0.0004 mg/mL; 2. DP associated with silica nanoparticles (SiNPs) 0.0001 + 1.1, 0.0002 + 2.2 and 0.0004 + 4.4 mg/mL; 3. SiNPs 1.1, 2.2 and 4.4 mg/mL and 4. Control (E3), with four repetitions per group. Survival, teratogen and heart rate (HR) were evaluated over a period of 168 hpf. Survival was higher in DP + SiNPs treatment, HR was lower in treatment with 4.4 mg/mL of SiNPs, while treatment with 0.004 mg/mL of DP increased HR. This study demonstrated that the association of DP and SiNPs decreased the toxicity of both DP and SiNPs, demonstrating that this may be a viable alternative to reduce the possible cardiotoxic effects of DP.
Collapse
Affiliation(s)
| | - Larise Caroline Oliveira Lima
- Aquam production and conservation of aquatic species biodiversity, Federal University of Rio Grande do Sul, Porto Alegra, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | - Benner Geraldo Alves
- Invited Professor of the Postgraduate Program in Animal Bioscience at the Federal University of Jataí, Jataí, Goiás Brazil
| | | | - Ives Charlie da Silva
- Department of Pharmacology, University of São Paulo - ICB/USP, São Paulo - Capital, São Paulo, Brazil
| | | |
Collapse
|
4
|
Cakan-Akdogan G, Ersoz E, Sozer SC, Gelinci E. An in vivo zebrafish model reveals circulating tumor cell targeting capacity of serum albumin nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
6
|
Hosseinpour S, Walsh LJ, Xu C. Biomedical application of mesoporous silica nanoparticles as delivery systems: a biological safety perspective. J Mater Chem B 2021; 8:9863-9876. [PMID: 33047764 DOI: 10.1039/d0tb01868f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The application of mesoporous silica nanoparticles (MSNs) as drug delivery systems to deliver drugs, proteins, and genes has expanded considerably in recent years, using in vitro and animal studies. For future translation to clinical applications, the biological safety aspects of MSNs must be considered carefully. This paper reviews the biosafety of MSNs, examining key issues such as biocompatibility, effects on immune cells and erythrocytes, biodistribution, biodegradation and clearance, and how these vary depending on the effects of the physical and chemical properties of MSNs such as particle size, porosity, morphology, surface charge, and chemical modifications. The future use of MSNs as a delivery system must extend beyond what has been learnt thus far using rodent animal models to encompass larger animals.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia.
| |
Collapse
|
7
|
Abdo GG, Gupta I, Kheraldine H, Rizeq B, Zagho MM, Khalil A, Elzatahry A, Al Moustafa AE. Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111910. [PMID: 33641906 DOI: 10.1016/j.msec.2021.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Carbon nanofibers (CNFs) have been implicated in biomedical applications, yet, they are still considered as a potential hazard. Conversely, mesoporous silica is a biocompatible compound that has been used in various biomedical applications. In this regard, we recently reported that CNFs induce significant toxicity on the early stage of embryogenesis in addition to the inhibition of its angiogenesis. Thus, we herein use mesoporous silica coating of CNFs (MCNFs) in order to explore their outcome on normal development and angiogenesis using avian embryos at 3 days and its chorioallantoic membrane (CAM) at 6 days of incubation. Our data show that mesoporous silica coating of CNFs significantly reduces embryotoxicity provoked by CNFs. However, MCNFs exhibit slight increase in angiogenesis inhibition in comparison with CNFs. Further investigation revealed that MCNFs slightly deregulate the expression patterns of key controller genes involved in cell proliferation, survival, angiogenesis, and apoptosis as compared to CNFs. We confirmed these data using avian primary normal embryonic fibroblast cells established in our lab. Regarding the molecular pathways, we found that MCNFs downregulate the expression of ERK1/ERK2, p-ERK1/ERK2 and JNK1/JNK2/JNK3, thus indicating a protective role of MCNFs via ERK and JNK pathways. Our data suggest that coating CNFs with a layer of mesoporous silica can overcome their toxicity making them suitable for use in biomedical applications. Nevertheless, further investigations are required to evaluate the effects of MCNFs and their mechanisms using different in vitro and in vivo models.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar; Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ishita Gupta
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hadeel Kheraldine
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Balsam Rizeq
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America.
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Department of Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
8
|
Sala RL, Venâncio T, Camargo ER. Probing the Structural Dynamics of the Coil-Globule Transition of Thermosensitive Nanocomposite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1531-1541. [PMID: 33481601 DOI: 10.1021/acs.langmuir.0c03079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanocomposite hydrogels have emerged to exhibit multipurpose properties, boosting especially the biomaterial field. However, the development and characterization of these materials can be a challenge, especially stimuli-sensitive materials with dynamic properties in response to external stimuli. By employing UV-vis spectroscopy and NMR relaxation techniques, we could outline the formation and behavior of thermosensitive nanocomposites obtained by in situ polymerization of poly(N-vinylcaprolactam) (PNVCL) and mesoporous silica nanofibers under temperature stimuli. For instance, inorganic nanoparticles covalently linked to PNVCL changed the pattern of temperature-induced phase transition despite showing similar critical temperatures to neat PNVCL. Thermodynamic parameters indicated the formation of an interconnected system of silica and polymer chains with reduced enthalpic contribution and mobility. The investigation of water molecule and polymer segment motions also revealed that the absorption and release of water happened in a wider temperature range for the nanocomposites, and the polymer segments respond in different ways during the phase transition in the presence of silica. This set of techniques was essential to reveal the polymer motions and structural features in nanocomposite hydrogels under temperature stimuli, demonstrating its potential use as experimental guideline to study multicomponent nanocomposites with diverse functionalities and dynamic properties.
Collapse
Affiliation(s)
- Renata L Sala
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, São Carlos, SP 13565-905, Brazil
| | - Tiago Venâncio
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, São Carlos, SP 13565-905, Brazil
| | - Emerson R Camargo
- Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luis km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
9
|
Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release 2019; 311-312:301-318. [PMID: 31446084 DOI: 10.1016/j.jconrel.2019.08.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
With the rapid development of engineered nanomaterials for various applications, in vivo toxicological studies for evaluating the potential hazardous effects of nanomaterials on environmental and human safety are in urgent need. Zebrafish has long been considered as the "gold standard" for biosafety assessments of chemicals and pollutants due to its high fecundity, cost-effectiveness, well-characterized developmental stages, optical transparency, and so forth. Thus, zebrafish holds great potential for high-throughput nanotoxicity screening. In this review, we summarize the in vivo toxicological profiles of different nanomaterials, including Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs, quantum dots, nanoscale metal-organic frameworks, etc, in zebrafish and focus on how the physicochemical properties (e.g., size, surface charge, and surface chemistry) of these nanomaterials influence their biosafety. In addition, we also report the recent advances of the in vivo delivery of nanopharmaceuticals using zebrafish as the model organism for therapeutic assessment, biodistribution tracking, and the controlled release of loaded drugs. Limitations and special considerations of zebrafish model are also discussed. Overall, zebrafish is expected to serve as a high-throughput screening platform for nanotoxicity and drug delivery assessment, which may instruct the design of safe nanomaterials and more effective nanomedicines.
Collapse
|
10
|
Liu HJ, Xu P. Smart Mesoporous Silica Nanoparticles for Protein Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E511. [PMID: 30986952 PMCID: PMC6523670 DOI: 10.3390/nano9040511] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
Abstract
Mesoporous silica nanoparticles (MSN) have attracted a lot of attention during the past decade which is attributable to their versatile and high loading capacity, easy surface functionalization, excellent biocompatibility, and great physicochemical and thermal stability. In this review, we discuss the factors affecting the loading of protein into MSN and general strategies for targeted delivery and controlled release of proteins with MSN. Additionally, we also give an outlook for the remaining challenges in the clinical translation of protein-loaded MSNs.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Mosselhy DA, He W, Hynönen U, Meng Y, Mohammadi P, Palva A, Feng Q, Hannula SP, Nordström K, Linder MB. Silica-gentamicin nanohybrids: combating antibiotic resistance, bacterial biofilms, and in vivo toxicity. Int J Nanomedicine 2018; 13:7939-7957. [PMID: 30568441 PMCID: PMC6276608 DOI: 10.2147/ijn.s182611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Antibiotic resistance is a growing concern in health care. Methicillin-resistant Staphylococcus aureus (MRSA), forming biofilms, is a common cause of resistant orthopedic implant infections. Gentamicin is a crucial antibiotic preventing orthopedic infections. Silica-gentamicin (SiO2-G) delivery systems have attracted significant interest in preventing the formation of biofilms. However, compelling scientific evidence addressing their efficacy against planktonic MRSA and MRSA biofilms is still lacking, and their safety has not extensively been studied. MATERIALS AND METHODS In this work, we have investigated the effects of SiO2-G nanohybrids against planktonic MRSA as well as MRSA and Escherichia coli biofilms and then evaluated their toxicity in zebrafish embryos, which are an excellent model for assessing the toxicity of nanotherapeutics. RESULTS SiO2-G nanohybrids inhibited the growth and killed planktonic MRSA at a minimum concentration of 500 µg/mL. SiO2-G nanohybrids entirely eradicated E. coli cells in biofilms at a minimum concentration of 250 µg/mL and utterly deformed their ultrastructure through the deterioration of bacterial shapes and wrinkling of their cell walls. Zebrafish embryos exposed to SiO2-G nanohybrids (500 and 1,000 µg/mL) showed a nonsignificant increase in mortality rates, 13.4±9.4 and 15%±7.1%, respectively, mainly detected 24 hours post fertilization (hpf). Frequencies of malformations were significantly different from the control group only 24 hpf at the higher exposure concentration. CONCLUSION Collectively, this work provides the first comprehensive in vivo assessment of SiO2-G nanohybrids as a biocompatible drug delivery system and describes the efficacy of SiO2-G nanohybrids in combating planktonic MRSA cells and eradicating E. coli biofilms.
Collapse
Affiliation(s)
- Dina A Mosselhy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland,
- Fish Diseases Department, Microbiological Unit, Animal Health Research Institute, Dokki, Giza 12618, Egypt,
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ulla Hynönen
- Department of Veterinary Biosciences, Division of Veterinary Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | - Yaping Meng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, People's Republic of China
| | - Pezhman Mohammadi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Veterinary Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, People's Republic of China,
| | - Simo-Pekka Hannula
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Katrina Nordström
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland,
| |
Collapse
|
12
|
P K, M P, Samuel Rajendran R, Annadurai G, Rajeshkumar S. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug Chem Toxicol 2018; 42:104-111. [PMID: 30456988 DOI: 10.1080/01480545.2018.1523186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zirconia oxide nanoparticles (ZrO2NPs) are known to be one of the neutral bioceramic metal compounds that has been widely used for their beneficial applications in many biomedical areas, in dental implants, bone joint replacements, drug delivery vehicles, and in various industrial applications. To study the effects of ZrO2NPs on zebrafish model, we used early life stages of the zebrafish (Danio rerio) to examine such effects on embryonic development in this species. ZrO2NPs were synthesized by the sol-gel method, size about 15-20 nm and characterized by SEM, EDX, XRD, FTIR, UV-Vis Spectra. In this study, zebrafish embryos were treated with ZrO2NPs 0.5, 1, 2, 3, 4, or 5 μg of nanoparticles/ml during 24-96 hour post fertilization (hpf). The results showed that ≥0.5-1 μg/ml of ZrO2NPs instigated developmental acute toxicity in these embryos, causing mortality, hatching delay, and malformation. ZrO2NPs exposure induced axis bent, tail bent, spinal cord curvature, yolk-sac, and pericardial edema. A typical phenotype was observed as an unhatched dead embryo at ≥1 μg/ml of ZrO2NPs exposure. This study is one of the first reports on developmental toxicity of zebrafish embryos caused by zirconium oxide nanoparticles in aquatic environments. Our results show that exposure of zirconium oxide nanoparticles is more toxic to embryonic zebrafish at lower concentrations. The results will contribute to the current understanding of the potential biomedical toxicological effects of nanoparticles and support the safety evaluation and synthesis of Zirconia oxide nanoparticles.
Collapse
Affiliation(s)
- Karthiga P
- a Department of Chemistry , Manonmaniam Sundaranar University , Tirunelveli , TN , India.,b Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences , Manonmaniam Sundaranar University , Alwarkurichi , TN , India
| | - Ponnanikajamideen M
- b Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences , Manonmaniam Sundaranar University , Alwarkurichi , TN , India.,c College of Chemistry and Chemical Engineering , Central South University , Changsha , P.R. China
| | - R Samuel Rajendran
- b Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences , Manonmaniam Sundaranar University , Alwarkurichi , TN , India
| | - Gurusamy Annadurai
- b Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences , Manonmaniam Sundaranar University , Alwarkurichi , TN , India
| | - S Rajeshkumar
- d Department of Pharmacology , Saveetha Dental College and Hospitals, SIMATS , Chennai , TN , India
| |
Collapse
|
13
|
Zhang X, Song J, Klymov A, Zhang Y, de Boer L, Jansen JA, van den Beucken JJ, Yang F, Zaat SA, Leeuwenburgh SC. Monitoring local delivery of vancomycin from gelatin nanospheres in zebrafish larvae. Int J Nanomedicine 2018; 13:5377-5394. [PMID: 30254441 PMCID: PMC6143646 DOI: 10.2147/ijn.s168959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Infections such as biomaterial-associated infection and osteomyelitis are often associated with intracellular survival of bacteria (eg, Staphylococcus aureus). Treatment of these infections remains a major challenge due to the low intracellular efficacy of many antibiotics. Therefore, local delivery systems are urgently required to improve the therapeutic efficacy of antibiotics by enabling their intracellular delivery. Purpose To assess the potential of gelatin nanospheres as carriers for local delivery of vancomycin into macrophages of zebrafish larvae in vivo and into THP-1-derived macrophages in vitro using fluorescence microscopy. Materials and methods Fluorescently labeled gelatin nanospheres were prepared and injected into transgenic zebrafish larvae with fluorescent macrophages. Both the biodistribution of gelatin nanospheres in zebrafish larvae and the co-localization of vancomycin-loaded gelatin nanospheres with zebrafish macrophages in vivo and uptake by THP-1-derived macrophages in vitro were studied. In addition, the effect of treatment with vancomycin-loaded gelatin nanospheres on survival of S. aureus-infected zebrafish larvae was investigated. Results Internalization of vancomycin-loaded gelatin nanospheres by macrophages was observed qualitatively both in vivo and in vitro. Systemically delivered vancomycin, on the other hand, was hardly internalized by macrophages without the use of gelatin nanospheres. Treatment with a single dose of vancomycin-loaded gelatin nanospheres delayed the mortality of S. aureus-infected zebrafish larvae, indicating the improved therapeutic efficacy of vancomycin against (intracellular) S. aureus infection in vivo. Conclusion The present study demonstrates that gelatin nanospheres can be used to facilitate local and intracellular delivery of vancomycin.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Jiankang Song
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Alexey Klymov
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Yang Zhang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | | | - Fang Yang
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| | - Sebastian Aj Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sander Cg Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, the Netherlands,
| |
Collapse
|
14
|
Tu J, Bussmann J, Du G, Gao Y, Bouwstra JA, Kros A. Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int J Pharm 2018; 543:169-178. [DOI: 10.1016/j.ijpharm.2018.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 12/25/2022]
|
15
|
C. Nandanpawar P, Ashraf Rather M, Ramesh Badhe M, Sharma R. Assessment of DNA Damage During Gene Delivery in Freshwater Prawn by Chitosan Reduced Gold Nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increasing application of nanoparticles both in industries and in agricultural fields has led to its accumulation in the aquatic ecosystem through water run-off. Insights into the validity of safer nanoparticles such as gold and chitosan are fairly established. However, its effect on aquatic invertebrates has been less studied. The present study was aimed to study effects of chitosan reduced gold nanoparticles (CRGNPs) during green fluorescent protein (GFP) encoding plasmid delivery in giant freshwater prawn, macrobrachium rosenbergii. The mean particle size and zeta potential CRGNPs was 33.7 nm and 24.79 mV respectively. Prawn juveniles were exposed to nanoparticles concentrations (10 µg/L, 20 µg/L) of CRGNPs by immersion treatment for a period of 36 hours. GFP was ubiquitously expressed in muscle tissues of prawns. The comet assay indicated dose dependent genotoxicity of CRGNPs in gill, pleopod and muscle tissues which was in conformity with its bioaccumulation pattern in vivo. The highest bioaccumulation of CRGNPs was found in Gills, followed by pleopods and least in muscles. Hence, the toxicological potential of CRGNPs to the environment cannot be denied and demands more research on the particular aspect. The doses standardized in the present study would be helpful in safer nano-gene delivery in aquatic invertebrates and development of transgenics employing less cost.
Collapse
Affiliation(s)
- Priyanka C. Nandanpawar
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| | | | - Mohan Ramesh Badhe
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| | - Rupam Sharma
- Fish Genetics and Biotechnology Central Institute of Fisheries Education Panch Marg, Versova Mumbai – 400061, India
| |
Collapse
|
16
|
Brezániová I, Záruba K, Králová J, Sinica A, Adámková H, Ulbrich P, Poučková P, Hrubý M, Štěpánek P, Král V. Silica-based nanoparticles are efficient delivery systems for temoporfin. Photodiagnosis Photodyn Ther 2017; 21:275-284. [PMID: 29288831 DOI: 10.1016/j.pdpdt.2017.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site became a new standard in novel anticancer methods Anticancer photodynamic therapy also takes benefit from using nanoparticles by means of increasing targeting efficiency and decreased side effect. With this in mind, the silica-based nanoparticles, as drug delivery systems for the second-generation photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (temoporfin) were developed. METHODS In order to determine the stability and therapeutic performance of the selected nanomaterials in physiological fluids, their physicochemical properties (i.e. size, polydispersity, zeta potential) were measured by dynamic light scattering technique and the diameter and the morphology of the individual particles were visualized by a transmission electron microscopy. Their efficacy was compared with commercial temoporfin formulation in terms of in vitro phototoxicity in 4T1 (murine mammary carcinoma) and of in vivo anticancer effect in Nu/Nu mice bearing MDA-MB-231 tumors. RESULTS AND CONCLUSIONS The two types of silica nanoparticles, porous and non-porous and with different surface chemical modification, were involved and critically compared within the study. Their efficacy was successfully demonstrated and was shown to be superior in comparison with commercial temoporfin formulation in terms of in vitro phototoxicity and cellular uptake as well as in terms of in vivo anticancer effect on human breast cancer model. Temoporfin-loaded silica nanoparticles also passed through the blood-brain barrier showing potential for the treatment of brain metastases.
Collapse
Affiliation(s)
- Ingrid Brezániová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Kamil Záruba
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Jarmila Králová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alla Sinica
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Hana Adámková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Pavla Poučková
- First Faculty of Medicine, Charles University in Prague, Kateřinská 32, Prague 2, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 162 06 Prague 6, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic; BIOCEV, Průmyslová 595, 252 50Vestec, Czech Republic.
| |
Collapse
|
17
|
Yang J, Tu J, Lamers GEM, Olsthoorn RCL, Kros A. Membrane Fusion Mediated Intracellular Delivery of Lipid Bilayer Coated Mesoporous Silica Nanoparticles. Adv Healthc Mater 2017; 6. [PMID: 28945015 DOI: 10.1002/adhm.201700759] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/10/2017] [Indexed: 01/07/2023]
Abstract
Protein delivery into the cytosol of cells is a challenging topic in the field of nanomedicine, because cellular uptake and endosomal escape are typically inefficient, hampering clinical applications. In this contribution cuboidal mesoporous silica nanoparticles (MSNs) containing disk-shaped cavities with a large pore diameter (10 nm) are studied as a protein delivery vehicle using cytochrome-c (cytC) as a model membrane-impermeable protein. To ensure colloidal stability, the MSNs are coated with a fusogenic lipid bilayer (LB) and cellular uptake is induced by a complementary pair of coiled-coil (CC) lipopeptides. Coiled-coil induced membrane fusion leads to the efficient cytosolic delivery of cytC and triggers apoptosis of cells. Delivery of these LB coated MSNs in the presence of various endocytosis inhibitors strongly suggests that membrane fusion is the dominant mechanism of cellular uptake. This method is potentially a universal way for the efficient delivery of any type of inorganic nanoparticle or protein into cells mediated by CC induced membrane fusion.
Collapse
Affiliation(s)
- Jian Yang
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Jing Tu
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Gerda E. M. Lamers
- Institute of Biology; Leiden University; Sylviusweg 72 Leiden 2333 BE The Netherlands
| | - René C. L. Olsthoorn
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 Leiden 2300 RA The Netherlands
| |
Collapse
|
18
|
Enhancing internalization of silica particles in myocardial cells through surface modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Paatero I, Casals E, Niemi R, Özliseli E, Rosenholm JM, Sahlgren C. Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes. Sci Rep 2017; 7:8423. [PMID: 28827674 PMCID: PMC5566213 DOI: 10.1038/s41598-017-09312-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH2-MSNs), polyethyleneimine (PEI-MSNs), succinic acid (SUCC-MSNs) or polyethyleneglycol (PEG-MSNs) functionalized MSNs. Toxicity was assessed by viability and cardiovascular function. NH2-MSNs, SUCC-MSNs and PEG-MSNs were well tolerated, 50 µg/ml PEI-MSNs induced 100% lethality 48 hours post fertilization (hpf). Dechoroniated embryos were more sensitive and 10 µg/ml PEI-MSNs reduced viability to 5% at 96hpf. Sensitivity to PEG- and SUCC-, but not NH2-MSNs, was also enhanced. Typically cardiovascular toxicity was evident prior to lethality. Confocal microscopy revealed that PEI-MSNs penetrated into the embryos whereas PEG-, NH2- and SUCC-MSNs remained aggregated on the skin surface. Direct exposure of inner organs by microinjecting NH2-MSNs and PEI-MSNs demonstrated that the particles displayed similar toxicity indicating that functionalization affects the toxicity profile by influencing penetrance through biological barriers. The data emphasize the need for careful analyses of toxicity mechanisms in relevant models and constitute an important knowledge step towards the development of safer and sustainable nanotherapies
Collapse
Affiliation(s)
- Ilkka Paatero
- Department of Cell Biology, Biozentrum, University of Basel, Basel, Switzerland. .,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland.
| | - Eudald Casals
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Rasmus Niemi
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland.,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, FI-20520, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland. .,Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland. .,Department of Biomedical Engineering, Technical University of Eindhoven, 5613 DR, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
20
|
Papathanasiou KE, Turhanen P, Brückner SI, Brunner E, Demadis KD. Smart, programmable and responsive injectable hydrogels for controlled release of cargo osteoporosis drugs. Sci Rep 2017; 7:4743. [PMID: 28684783 PMCID: PMC5500573 DOI: 10.1038/s41598-017-04956-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/05/2017] [Indexed: 01/23/2023] Open
Abstract
Easy-to-prepare drug delivery systems, based on smart, silica gels have been synthesized, characterized, and studied as hosts in the controlled release of bisphosphonates. They exhibit variable release rates and final % release, depending on the nature of bisphosphonate (side-chain length, hydro-philicity/-phobicity, water-solubility), cations present, pH and temperature. These gels are robust, injectable, re-loadable and re-usable.
Collapse
Affiliation(s)
- Konstantinos E Papathanasiou
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete, GR-71003, Greece
| | - Petri Turhanen
- University of Eastern Finland, School of Pharmacy, Biocenter Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland
| | - Stephan I Brückner
- Fachrichtung Chemie und Lebensmittelchemie, TU Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Fachrichtung Chemie und Lebensmittelchemie, TU Dresden, 01062, Dresden, Germany
| | - Konstantinos D Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete, GR-71003, Greece.
| |
Collapse
|
21
|
Tu J, Boyle AL, Friedrich H, Bomans PHH, Bussmann J, Sommerdijk NAJM, Jiskoot W, Kros A. Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32211-32219. [PMID: 27933855 DOI: 10.1021/acsami.6b11324] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have been explored extensively as solid supports for proteins in biological and medical applications. Small (<200 nm) MSNs with ordered large pores (>5 nm), capable of encapsulating therapeutic small molecules suitable for delivery applications in vivo, are rare however. Here we present small, elongated, cuboidal, MSNs with average dimensions of 90 × 43 nm that possess disk-shaped cavities, stacked on top of each other, which run parallel to the short axis of the particle. Amine functionalization was achieved by modifying the MSN surface with 3-aminopropyltriethoxysilane or 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AP-MSNs and AEP-MSNs) and were shown to have similar dimensions to the nonfunctionalized MSNs. The dimensions of these particles, and their large surface areas as measured by nitrogen adsorption-desorption isotherms, make them ideal scaffolds for protein encapsulation and delivery. We therefore investigated the encapsulation and release behavior for seven model proteins (α-lactalbumin, ovalbumin, bovine serum albumin, catalase, hemoglobin, lysozyme, and cytochrome c). It was discovered that all types of MSNs used in this study allow rapid encapsulation, with a high loading capacity, for all proteins studied. Furthermore, the release profiles of the proteins were tunable. The variation in both rate and amount of protein uptake and release was found to be determined by the surface chemistry of the MSNs, together with the isoelectric point (pI), and molecular weight of the proteins, as well as by the ionic strength of the buffer. These MSNs with their large surface area and optimal dimensions provide a scaffold with a high encapsulation efficiency and controllable release profiles for a variety of proteins, enabling potential applications in fields such as drug delivery and protein therapy.
Collapse
Affiliation(s)
| | | | - Heiner Friedrich
- Laboratory of Materials and Interface Chemistry & Center of Multiscale Electron Microscopy, Department of Chemical engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Paul H H Bomans
- Laboratory of Materials and Interface Chemistry & Center of Multiscale Electron Microscopy, Department of Chemical engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Nico A J M Sommerdijk
- Laboratory of Materials and Interface Chemistry & Center of Multiscale Electron Microscopy, Department of Chemical engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | |
Collapse
|
22
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016; 14:65. [PMID: 27544212 PMCID: PMC4992559 DOI: 10.1186/s12951-016-0217-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world’s total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Ashish Ranjan Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Garima Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
23
|
Yang F, Gao C, Wang P, Zhang GJ, Chen Z. Fish-on-a-chip: microfluidics for zebrafish research. LAB ON A CHIP 2016; 16:1106-25. [PMID: 26923141 DOI: 10.1039/c6lc00044d] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-efficiency zebrafish (embryo) handling platforms are crucially needed to facilitate the deciphering of the increasingly expanding vertebrate-organism model values. However, the manipulation platforms for zebrafish are scarce and rely mainly on the conventional "static" microtiter plates or glass slides with rigid gel, which limits the dynamic, three-dimensional (3D), tissue/organ-oriented information acquisition from the intact larva with normal developmental dynamics. In addition, these routine platforms are not amenable to high-throughput handling of such swimming multicellular biological entities at the single-organism level and incapable of precisely controlling the growth microenvironment by delivering stimuli in a well-defined spatiotemporal fashion. Recently, microfluidics has been developed to address these technical challenges via tailor-engineered microscale structures or structured arrays, which integrate with or interface to functional components (e.g. imaging systems), allowing quantitative readouts of small objects (zebrafish larvae and embryos) under normal physiological conditions. Here, we critically review the recent progress on zebrafish manipulation, imaging and phenotype readouts of external stimuli using these microfluidic tools and discuss the challenges that confront these promising "fish-on-a-chip" technologies. We also provide an outlook on future potential trends in this field by combining with bionanoprobes and biosensors.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Chuan Gao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
24
|
Liu TP, Wu SH, Chen YP, Chou CM, Chen CT. Biosafety evaluations of well-dispersed mesoporous silica nanoparticles: towards in vivo-relevant conditions. NANOSCALE 2015; 7:6471-80. [PMID: 25804371 DOI: 10.1039/c4nr07421a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study aimed to investigate how mesoporous silica nanoparticles (MSNs), especially focussing on their surface functional groups, interacted with Raw 264.7 macrophages, as well as with zebrafish embryos. Upon introducing nanoparticles into a biological milieu, adsorption of proteins and biomolecules onto the nanoparticle surface usually progresses rapidly. Nanoparticles bound with proteins can result in physiological and pathological changes, but the mechanisms remain to be elucidated. In order to evaluate how protein corona affected MSNs and the subsequent cellular immune responses, we experimented in both serum and serum-deprived conditions. Our findings indicated that the level of p-p38 was significantly elevated by the positively charged MSNs, whereas negatively charged MSNs resulted in marked ROS production. Most significantly, our experiments demonstrated that the presence of protein efficiently mitigated the potential nano-hazard. On the other hand, strongly positively charged MSNs caused 94% of the zebrafish embryos to die. In that case, the toxicity caused by the quaternary ammonium ligands on the surface of those nanoparticles was exerted in a dose-dependent manner. In summary, these fundamental studies here provide valuable insights into the design of better biocompatible nanomaterials in the future.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Barkalina N, Jones C, Coward K. Mesoporous silica nanoparticles: a potential targeted delivery vector for reproductive biology? Nanomedicine (Lond) 2015; 9:557-60. [PMID: 24827836 DOI: 10.2217/nnm.14.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Natalia Barkalina
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | | | | |
Collapse
|
26
|
Celá P, Veselá B, Matalová E, Večeřa Z, Buchtová M. Embryonic Toxicity of Nanoparticles. Cells Tissues Organs 2014; 199:1-23. [DOI: 10.1159/000362163] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 11/19/2022] Open
|
27
|
Martelli G, Zope HR, Capell MB, Kros A. Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles. Chem Commun (Camb) 2014; 49:9932-4. [PMID: 24037026 DOI: 10.1039/c3cc45790g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coiled-coil peptide motifs were used as thermo-responsive valves for mesoporous silica nanoparticles (MSNs). The controlled release of a model drug as a function of temperature was demonstrated.
Collapse
Affiliation(s)
- Giuliana Martelli
- Leiden Institute of Chemistry, Leiden University, P.O. Box 2300, RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Steven CR, Busby GA, Mather C, Tariq B, Briuglia ML, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV. Bioinspired silica as drug delivery systems and their biocompatibility. J Mater Chem B 2014; 2:5028-5042. [DOI: 10.1039/c4tb00510d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green nanosilicas offer improved biocompatibility and are excellent alternatives for drug delivery systems as they provide tailorability and eliminate many of the potential biomedical issues associated with mesoporous silicas.
Collapse
Affiliation(s)
- Christopher R. Steven
- Chemical and Process Engineering
- University of Strathclyde
- Glasgow, UK
- Pure and Applied Chemistry
- University of Strathclyde
| | - Grahame A. Busby
- Chemical and Process Engineering
- University of Strathclyde
- Glasgow, UK
- Department of Biomedical Engineering
- University of Strathclyde
| | - Craig Mather
- Chemical and Process Engineering
- University of Strathclyde
- Glasgow, UK
| | - Balal Tariq
- Chemical and Process Engineering
- University of Strathclyde
- Glasgow, UK
- Department of Biomedical Engineering
- University of Strathclyde
| | - Maria Lucia Briuglia
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Dimitrios A. Lamprou
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - Andrew J. Urquhart
- Strathclyde Institute of Pharmacy and Biomedical Sciences
- University of Strathclyde
- Glasgow, UK
| | - M. Helen Grant
- Department of Biomedical Engineering
- University of Strathclyde
- Glasgow, UK
| | | |
Collapse
|
29
|
Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:924362. [PMID: 24455738 PMCID: PMC3884600 DOI: 10.1155/2013/924362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/06/2013] [Indexed: 01/23/2023]
Abstract
The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.
Collapse
|
30
|
Xue JY, Li X, Sun MZ, Wang YP, Wu M, Zhang CY, Wang YN, Liu B, Zhang YS, Zhao X, Feng XZ. An assessment of the impact of SiO2 nanoparticles of different sizes on the rest/wake behavior and the developmental profile of zebrafish larvae. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3161-3168. [PMID: 23468419 DOI: 10.1002/smll.201300430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Indexed: 06/01/2023]
Abstract
In this study, zebrafish larvae are introduced as an in vivo platform to examine the neurotoxicity and developmental toxicity associated with continuous exposure to a concentration gradient of different sizes of SiO2 nanoparticles (15 nm and 50 nm diameter) to determine the dose effect and size effect of SiO2 nanoparticle (NP)-induced toxicity. Bovine serum albumin (BSA-V) is utilized as a stabilizing agent to prevent coagulation of the SiO2 nanoparticles. To the best of our knowledge, this study is the first to describe locomotor activity assays linking rest/wake behavioral profiles for the purpose of investigating the neurotoxicity of NPs. In addition, developmental toxicological endpoints including mortality, LC50 , malformation, and cartilaginous deformity are assessed. The results show a concentration-dependent increase in behavioral neurotoxicity, mortality, and malformation among larvae treated with the SiO2 nanoparticles of 15 nm and 50 nm. A comparison of the 15 nm and 50 nm NPs by K-means clustering analysis demonstrates that the 15 nm NPs have a greater neurotoxic effect than the 50 nm NPs, with the 50 nm NPs exhibiting greater developmental toxicity on the zebrafish larvae than the 15 nm NPs.
Collapse
Affiliation(s)
- Ji-Yang Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory on Technologies Enabling, Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Research Center of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One 2013; 8:e74606. [PMID: 24058598 PMCID: PMC3776836 DOI: 10.1371/journal.pone.0074606] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/05/2013] [Indexed: 11/18/2022] Open
Abstract
Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4-96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.
Collapse
Affiliation(s)
- Junchao Duan
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Yongbo Yu
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Huiqin Shi
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P.R. China
| | - Linwei Tian
- School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Caixia Guo
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Peili Huang
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
| | - Shuangqing Peng
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, P.R. China
- * E-mail: (SQP); (ZWS)
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, P.R. China
- * E-mail: (SQP); (ZWS)
| |
Collapse
|
32
|
Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. NANOSCALE 2013; 5:5167-79. [PMID: 23657437 DOI: 10.1039/c3nr00357d] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.
Collapse
Affiliation(s)
- Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3144-76. [PMID: 23681931 DOI: 10.1002/adma.201205292] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/27/2013] [Indexed: 05/19/2023]
Abstract
The remarkable progress of nanotechnology and its application in biomedicine have greatly expanded the ranges and types of biomaterials from traditional organic material-based nanoparticles (NPs) to inorganic biomaterials or organic/inorganic hybrid nanocomposites due to the unprecedented advantages of the engineered inorganic material-based NPs. Colloidal mesoporous silica NPs (MSNs), one of the most representative and well-established inorganic materials, have been promoted into biology and medicine, and shifted from extensive in vitro research towards preliminary in vivo assays in small-animal disease models. In this comprehensive review, the recent progresses in chemical design and engineering of MSNs-based biomaterials for in vivo biomedical applications has been detailed and overviewed. Due to the intrinsic structural characteristics of elaborately designed MSNs such as large surface area, high pore volume and easy chemical functionalization, they have been extensively investigated for therapeutic, diagnostic and theranostic (concurrent diagnosis and therapy) purposes, especially in oncology. Systematic in vivo bio-safety evaluations of MSNs have revealed the evidences that the in vivo bio-behaviors of MSNs are strongly related to their preparation prodecures, particle sizes, geometries, surface chemistries, dosing parameters and even administration routes. In vivo pharmacokinetics and pharmacodynamics further demonstrated the effectiveness of MSNs as the passively and/or actively targeted drug delivery systems (DDSs) for cancer chemotherapy. Especially, the advance of nano-synthetic chemistry enables the production of composite MSNs for advanced in vivo therapeutic purposes such as gene delivery, stimuli-responsive drug release, photothermal therapy, photodynamic therapy, ultrasound therapy, or anti-bacteria in tissue engineering, or as the contrast agents for biological and diagnostic imaging. Additionally, the critical issues and potential challenges related to the chemical design/synthesis of MSNs-based "magic bullet" by advanced nano-synthetic chemistry and in vivo evaluation have been discussed to highlight the issues scientists face in promoting the translation of MSNs-based DDSs into clinical trials.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of High Performance, Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, P. R. China
| | | | | |
Collapse
|
34
|
Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP. Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013; 62:246-54. [PMID: 23769806 DOI: 10.1016/j.ymeth.2013.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.
Collapse
Affiliation(s)
- Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nadrah P, Porta F, Planinšek O, Kros A, Gaberšček M. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better. Phys Chem Chem Phys 2013; 15:10740-8. [PMID: 23689395 DOI: 10.1039/c3cp44614j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To elucidate the importance of the size of capping agents in stimulus-induced release systems from mesoporous silica nanoparticles (MSNs), the effectiveness of poly(propylene imine) dendrimers in controlling the model drug release was studied. MCM-41-type MSNs were synthesized and characterized. Fluorescent compounds (fluorescein disodium salt and carboxyfluorescein) were loaded in the porous structure of the MSNs and entrapped in the silica matrix with the dendrimers of generations I through V by anchoring dendrimers on the MSN surface through disulfide bonds. Stimulus-induced release of the cargo was studied in the presence of dithiothreitol (DTT). Dendrimers of generations I and II were found to be more effective in model drug retention and subsequent release than higher generations. Moreover, MSNs modified with larger amounts of dendrimers lowered the cargo release in the presence of DTT. These findings are of importance for optimizing drug delivery systems based on responsive MSNs as they enable tuning of the amount of the released cargo by choosing the capping agent of appropriate size.
Collapse
Affiliation(s)
- Peter Nadrah
- National Institute of Chemistry, Hajdrihova ul. 19, 1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
36
|
Mesoporous silica nanoparticles in medicine--recent advances. Adv Drug Deliv Rev 2013; 65:689-702. [PMID: 22921598 DOI: 10.1016/j.addr.2012.07.018] [Citation(s) in RCA: 420] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
MSNs have attracted increasing interest as drug carriers due to promising in vivo results in small-animal disease models, especially related to cancer therapy. In most cases small hydrophobic drugs have been used, but recent in vitro studies demonstrate that MSNs are highly interesting for gene delivery applications. This review covers recent advances related to the therapeutic use of mesoporous silica nanoparticles (MSNs) administered intravenously, intraperitoneally or locally. We also cover the use of MSNs in alternative modes of therapy such as photodynamic therapy and multidrug therapy. We further discuss the current understanding about the biodistribution and safety of MSNs. Finally, we critically discuss burning questions especially related to experimental design of in vivo studies in order to enable a fast transition to clinical trials of this promising drug delivery platform.
Collapse
|
37
|
Nadrah P, Maver U, Jemec A, Tišler T, Bele M, Dražić G, Benčina M, Pintar A, Planinšek O, Gaberšček M. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3908-3915. [PMID: 23581883 DOI: 10.1021/am400604d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.
Collapse
Affiliation(s)
- Peter Nadrah
- National Institute of Chemistry, Hajdrihova ul. 19, SI-1001 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, den Dulk H, Backendorf C, Zink JI, Kros A. Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater 2013. [PMID: 23184490 DOI: 10.1002/adhm.201200176] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiola Porta
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xi J, Qin J, Fan L. Chondroitin sulfate functionalized mesostructured silica nanoparticles as biocompatible carriers for drug delivery. Int J Nanomedicine 2012; 7:5235-47. [PMID: 23091377 PMCID: PMC3471603 DOI: 10.2147/ijn.s34128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have garnered a great deal of attention as potential carriers for therapeutic payloads. Here, we report a pH-responsive drug-carrier based on chondroitin sulfate functionalized mesostructured silica nanoparticles (NMChS-MSNs) ie, the amidation between NMChS macromer and amino group functionalized MSNs. The prepared nanoparticles were characterized using dynamic light scattering, fourier transform infrared spectroscopy and transmission electron microscopy. The resultant NMChS-MSNs were uniform spherical nanoparticles with a mean diameter of approximately 74 nm. Due to the covalent graft of hydrophilic and pH responsive NMChS, the NMChS-MSNs could be well dispersed in aqueous solution, which is favorable to being utilized as drug carriers to construct a pH-responsive controlled drug delivery system. Doxorubicin hydrochloride (DOX), a well-known anticancer drug, could be effectively loaded into the channels of NMChS-MSNs through electrostatic interactions between drug and matrix. The drug release rate of DOX@NMChS-MSNs was pH dependent and increased with the decrease of pH. The in vitro cytotoxicity test indicated that NMChS-MSNs were highly biocompatible and suitable to use as drug carriers. Our results imply that chondroitin sulfate functionalized nanoparticles are promising platforms to construct the pH-responsive controlled drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Juqun Xi
- Department of Pharmacology, Yangzhou University Medical Academy, Yangzhou, People's Republic of China
| | | | | |
Collapse
|