1
|
Biswas R, Jangra B, Ashok G, Ravichandiran V, Mohan U. Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections. Indian J Microbiol 2024; 64:781-796. [PMID: 39282194 PMCID: PMC11399387 DOI: 10.1007/s12088-024-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 09/18/2024] Open
Abstract
The biofilm formation by various pathogens causes chronic infections and poses severe threats to industry, healthcare, and society. They can form biofilm on surfaces of medical implants, heart valves, pacemakers, contact lenses, vascular grafts, urinary catheters, dialysis catheters, etc. These biofilms play a central role in bacterial persistence and antibiotic tolerance. Biofilm formation occurs in a series of steps, and any interference in these steps can prevent its formation. Therefore, the hunt to explore and develop effective anti-biofilm strategies became necessary to decrease the rate of biofilm-related infections. In this review, we highlighted and discussed the current therapeutic approaches to eradicate biofilm formation and combat drug resistance by anti-biofilm drugs, phytocompounds, antimicrobial peptides (AMPs), antimicrobial lipids (AMLs), matrix-degrading enzymes, nanoparticles, phagebiotics, surface coatings, photodynamic therapy (PDT), riboswitches, vaccines, and antibodies. The clinical validation of these findings will provide novel preventive and therapeutic strategies for biofilm-associated infections to the medical world.
Collapse
Affiliation(s)
- Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Bhawana Jangra
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal India
| |
Collapse
|
2
|
Sharma G, Sharma R, Mishra V, Rajni E, Mamoria VP. Green Synthesis of Iron Oxide Nanoparticles and Their Efficacy against Multi Drug Resistant Bacteria and Fungi. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Rugaie OA, Abdellatif AAH, El-Mokhtar MA, Sabet MA, Abdelfattah A, Alsharidah M, Aldubaib M, Barakat H, Abudoleh SM, Al-Regaiey KA, Tawfeek HM. Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers. Microorganisms 2022; 10:1297. [PMID: 35889016 PMCID: PMC9319761 DOI: 10.3390/microorganisms10071297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Urinary catheter infections remain an issue for many patients and can complicate their health status, especially for individuals who require long-term catheterization. Catheters can be colonized by biofilm-forming bacteria resistant to the administered antibiotics. Therefore, this study aimed to investigate the efficacy of silver nanoparticles (AgNPs) stabilized with different polymeric materials generated via a one-step simple coating technique for their ability to inhibit biofilm formation on urinary catheters. AgNPs were prepared and characterized to confirm their formation and determine their size, charge, morphology, and physical stability. Screening of the antimicrobial activity of nanoparticle formulations and determining minimal inhibitory concentration (MIC) and their cytotoxicity against PC3 cells were performed. Moreover, the antibiofilm activity and efficacy of the AgNPs coated on the urinary catheters under static and flowing conditions were examined against a clinical isolate of Escherichia coli. The results showed that the investigated polymers could form physically stable AgNPs, especially those prepared using polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC). Preliminary screening and MIC determinations suggested that the AgNPs-EC and AgNPs-PVP had superior antibacterial effects against E. coli. AgNPs-EC and AgNPs-PVP inhibited biofilm formation to 58.2% and 50.8% compared with AgNPs-PEG, silver nitrate solution and control samples. In addition, coating urinary catheters with AgNPs-EC and AgNPs-PVP at concentrations lower than the determined IC50 values significantly (p < 0.05; t-test) inhibited bacterial biofilm formation compared with noncoated catheters under both static and static and flowing conditions using two different types of commercial Foley urinary catheters. The data obtained in this study provide evidence that AgNP-coated EC and PVP could be useful as potential antibacterial and antibiofilm catheter coating agents to prevent the development of urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah 51911, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt;
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Musaed Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51911, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman 11622, Jordan;
| | - Khalid A. Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| |
Collapse
|
4
|
Hemeg HA. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z NATURFORSCH C 2022; 77:365-378. [PMID: 35234019 DOI: 10.1515/znc-2021-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022]
Abstract
Some bacteria can withstand the existence of an antibiotic without undergoing any genetic changes. They are neither cysts nor spores and are one of the causes of disease recurrence, accounting for about 1% of the biofilm. There are numerous approaches to eradication and combating biofilm-forming organisms. Nanotechnology is one of them, and it has shown promising results against persister cells. In the review, we go over the persister cell and biofilm in extensive detail. This includes the biofilm formation cycle, antibiotic resistance, and treatment with various nanoparticles. Furthermore, the gene-level mechanism of persister cell formation and its therapeutic interventions with nanoparticles were discussed.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra 41411, Saudi Arabia
| |
Collapse
|
5
|
Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments.
Collapse
|
6
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|
7
|
The Mechanisms of Antibacterial Activity of Magnesium Alloys with Extreme Wettability. MATERIALS 2021; 14:ma14185454. [PMID: 34576677 PMCID: PMC8470035 DOI: 10.3390/ma14185454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 01/04/2023]
Abstract
In this study, we applied the method of nanosecond laser treatment for the fabrication of superhydrophobic and superhydrophilic magnesium-based surfaces with hierarchical roughness when the surface microrelief is evenly decorated by MgO nanoparticles. The comparative to the bare sample behavior of such surfaces with extreme wettability in contact with dispersions of bacteria cells Pseudomonas aeruginosa and Klebsiella pneumoniae in phosphate buffered saline (PBS) was studied. To characterize the bactericidal activity of magnesium samples with different wettability immersed into a bacterial dispersion, we determined the time variation of the planktonic bacterial titer in the dispersion. To explore the anti-bacterial mechanisms of the magnesium substrates, a set of experimental studies on the evolution of the magnesium ion concentration in liquid, pH of the dispersion medium, surface morphology, composition, and wettability was performed. The obtained data made it possible to reveal two mechanisms that, in combination, play a key role in the bacterial decontamination of the liquid. These are the alkalization of the dispersion medium and the collection of bacterial cells by microrods growing on the surface as a result of the interaction of magnesium with the components of the buffer solution.
Collapse
|
8
|
Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers (Basel) 2021; 13:polym13152533. [PMID: 34372136 PMCID: PMC8348235 DOI: 10.3390/polym13152533] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/02/2022] Open
Abstract
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Collapse
|
9
|
Yang X, Ye W, Qi Y, Ying Y, Xia Z. Overcoming Multidrug Resistance in Bacteria Through Antibiotics Delivery in Surface-Engineered Nano-Cargos: Recent Developments for Future Nano-Antibiotics. Front Bioeng Biotechnol 2021; 9:696514. [PMID: 34307323 PMCID: PMC8297506 DOI: 10.3389/fbioe.2021.696514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the recent few decades, the increase in multidrug-resistant (MDR) bacteria has reached an alarming rate and caused serious health problems. The incidence of infections due to MDR bacteria has been accompanied by morbidity and mortality; therefore, tackling bacterial resistance has become an urgent and unmet challenge to be properly addressed. The field of nanomedicine has the potential to design and develop efficient antimicrobials for MDR bacteria using its innovative and alternative approaches. The uniquely constructed nano-sized antimicrobials have a predominance over traditional antibiotics because their small size helps them in better interaction with bacterial cells. Moreover, surface engineering of nanocarriers offers significant advantages of targeting and modulating various resistance mechanisms, thus owe superior qualities for overcoming bacterial resistance. This review covers different mechanisms of antibiotic resistance, application of nanocarrier systems in drug delivery, functionalization of nanocarriers, application of functionalized nanocarriers for overcoming bacterial resistance, possible limitations of nanocarrier-based approach for antibacterial delivery, and future of surface-functionalized antimicrobial delivery systems.
Collapse
Affiliation(s)
- Xinfu Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wenxin Ye
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yajun Qi
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhongni Xia
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Antibacterial and In Vivo Studies of a Green, One-Pot Preparation of Copper/Zinc Oxide Nanoparticle-Coated Bandages. MEMBRANES 2021; 11:membranes11070462. [PMID: 34206493 PMCID: PMC8305234 DOI: 10.3390/membranes11070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Simultaneous water and ethanol-based synthesis and coating of copper and zinc oxide (CuO/ZnO) nanoparticles (NPs) on bandages was carried out by ultrasound irradiation. High resolution-transmission electron microscopy demonstrated the effects of the solvent on the particle size and shape of metal oxide NPs. An antibacterial activity study of metal-oxide-coated bandages was carried out against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). CuO NP-coated bandages made from both water and ethanol demonstrated complete killing of S. aureus and E. coli bacteria within 30 min., whereas ZnO NP-coated bandages demonstrated five-log reductions in viability for both kinds of bacteria after 60 min of interaction. Further, the antibacterial mechanism of CuO/ZnO NP-coated bandages is proposed here based on electron spin resonance studies. Nanotoxicology investigations were conducted via in vivo examinations of the effect of the metal-oxide bandages on frog embryos (teratogenesis assay-Xenopus). The results show that water-based coatings resulted in lesser impacts on embryo development than the ethanol-based ones. These bandages should therefore be considered safer than the ethanol-based ones. The comparison between the toxicity of the metal oxide NPs prepared in water and ethanol is of great importance, because water will replace ethanol for bulk scale synthesis of metal oxide NPs in commercial companies to avoid further ignition problems. The novelty and importance of this manuscript is avoiding the ethanol in the typical water:ethanol mixture as the solvent for the preparation of metal oxide NPs. Ethanol is ignitable, and commercial companies are trying the evade its use. This is especially important these days, as the face mask produced by sonochemistry (SONOMASK) is being sold all over the world by SONOVIA, and it is coated with ZnO.
Collapse
|
11
|
Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 2021; 19:1299-1323. [PMID: 33755503 DOI: 10.1080/14787210.2021.1908125] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Despite extensive advances in the production and synthesis of antibiotics, infectious diseases are one of the main problems of the 21st century due to multidrug-resistant (MDR) distributing in organisms. Therefore, researchers in nanotechnology have focused on new strategies to formulate and synthesis the different types of nanoparticles (NPs) with antimicrobial properties.Areas covered:The present review focuses on nanoparticles which are divided into two groups, organic (micelles, liposomes, polymer-based and lipid-based NPs) and inorganic (metals and metal oxides). NPs can penetrate the cell wall then destroy permeability of cell membrane, the structure and function of cell macromolecules by producing of reactive oxygen species (ROS) and eventually kill the bacteria. Moreover, their characteristics and mechanism in various bacteria especially MDR bacteria and finally their biocompatibility and the factors affecting their activity have been discussed.Expert opinion:Nanotechnology has led to higher drug absorption, targeted drug delivery and fewer side effects. NPs can overcome MDR through affecting several targets in the bacteria cell and synergistically increase the effectiveness of current antibiotics. Moreover, organic NPs with regard to their biodegradability and biocompatibility characteristics can be suitable agents for medical applications. However, they are less stable in environment in comparison to inorganic NPs.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
12
|
Kunrath MF, Campos MM. Metallic-nanoparticle release systems for biomedical implant surfaces: effectiveness and safety. Nanotoxicology 2021; 15:721-739. [PMID: 33896331 DOI: 10.1080/17435390.2021.1915401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current focus of bioengineering for implant devices involves the development of functionalized surfaces, bioactive coatings, and metallic nanoparticles (mNPs) with a controlled release, together with strategies for the application of drugs in situ, aiming at reducing infection rates, with an improvement of clinical outcomes. Controversially, negative aspects, such as cytotoxicity, mNP incorporation, bioaccumulation, acquired autoimmunity, and systemic toxicity have gained attention at the same status of importance, concerning the release of mNPs from these surface systems. The balance between the promising prospects of system releasing mNPs and the undesirable long-term adverse reactions require further investigation. The scarcity of knowledge and the methods of analysis of nanoscale-based systems to control the sequence of migration, interaction, and nanoparticle incorporation with human tissues raise hesitation about their efficacy and safety. Looking ahead, this innovative approach requires additional scientific investigation for permitting an evolution of implants without counterpoints, while updating implant surface technologies to a new level of development. This critical review has explored the promising properties of metals at the nano-scale to promote broad-spectrum bacterial control, allowing for a decrease in using systemic antibiotics. Attempts have also been made to discuss the existing limitations and the future challenges regarding these technologies, besides the negative findings that are explored in the literature.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Liao M, Liu H, Wang X, Hu X, Huang Y, Liu X, Brenan K, Mecha J, Nirmalan M, Lu JR. A technical review of face mask wearing in preventing respiratory COVID-19 transmission. Curr Opin Colloid Interface Sci 2021; 52:101417. [PMID: 33642918 PMCID: PMC7902177 DOI: 10.1016/j.cocis.2021.101417] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, most countries have recommended their citizens to adopt social distance, hand hygiene, and face mask wearing. However, wearing face masks has not been well adopted by many citizens. While the reasons are complex, there is a general perception that the evidence to support face mask wearing is lacking, especially for the general public in a community setting. Face mask wearing can block or filter airborne virus-carrying particles through the working of colloid and interface science. This paper assesses current knowledge behind the design and functioning of face masks by reviewing the selection of materials, mask specifications, relevant laboratory tests, and respiratory virus transmission trials, with an overview of future development of reusable masks for the general public. This review highlights the effectiveness of face mask wearing in the prevention of COVID-19 infection.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Huayang Liu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xi Wang
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yuhao Huang
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xuqing Liu
- Textile Technology Group, Department of Materials, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Keith Brenan
- Division of Cancer Studies, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jared Mecha
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Mahesan Nirmalan
- Division of Medical Education,School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jian Ren Lu
- Biological Physics Group, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
14
|
A Nanoengineered Stainless Steel Surface to Combat Bacterial Attachment and Biofilm Formation. Foods 2020; 9:foods9111518. [PMID: 33105653 PMCID: PMC7690382 DOI: 10.3390/foods9111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Nanopatterning and anti-biofilm characterization of self-cleanable surfaces on stainless steel substrates were demonstrated in the current study. Electrochemical etching in diluted aqua regia solution consisting of 3.6% hydrogen chloride and 1.2% nitric acid was conducted at 10 V for 5, 10, and 15 min to fabricate nanoporous structures on the stainless steel. Variations in the etching rates and surface morphologic characteristics were caused by differences in treatment durations; the specimens treated at 10 V for 10 min showed that the nanoscale pores are needed to enhance the self-cleanability. Under static and realistic flow environments, the populations of Escherichia coli O157:H7 and Salmonella Typhimurium on the developed features were significantly reduced by 2.1–3.0 log colony-forming unit (CFU)/cm2 as compared to bare stainless steel (p < 0.05). The successful fabrication of electrochemically etched stainless steel surfaces with Teflon coating could be useful in the food industry and biomedical fields to hinder biofilm formation in order to improve food safety.
Collapse
|
15
|
Munir MU, Ahmed A, Usman M, Salman S. Recent Advances in Nanotechnology-Aided Materials in Combating Microbial Resistance and Functioning as Antibiotics Substitutes. Int J Nanomedicine 2020; 15:7329-7358. [PMID: 33116477 PMCID: PMC7539234 DOI: 10.2147/ijn.s265934] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing escalation of drug-resistant bacteria creates the leading challenges for human health. Current predictions show that deaths due to bacterial illness will be more in comparison to cancer in 2050. Irrational use of antibiotics, prolonged regimen and using as a prophylactic treatment for various infections are leading cause of microbial resistance. It is an emerging approach to introduce evolving nanomaterials (NMs) as a base of antibacterial therapy to overcome the bacterial resistance pattern. NMs can implement several bactericidal ways and turn into a challenge for bacteria to survive and develop resistance against NMs. All the pathways depend on the surface chemistry, shape, core material and size of NMs. Because of these reasons, NMs based stuff shows a critical role in advancing the treatment efficiency by interacting with the cellular system of bacteria and functioned as an antibiotic substitute. We divided this review into two sections. The first part highlights the development of microbial resistance to antibiotics and their mechanisms. The second section details the NMs mechanisms to combat antibiotic resistance. In short, we try to summarize the advances in NMs role to deal with microbial resistance and giving solution as antibiotics substitute.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia.,Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| |
Collapse
|
16
|
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4347. [PMID: 33007802 PMCID: PMC7579083 DOI: 10.3390/ma13194347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
This research presents, for the first time, the potential of the Lactobacillus paracasei LC20 isolated from sweet whey as a novel, effective and accessible source for post-cultured ZnO nanocomposites synthesis. The obtained nanocomposites were subjected to comprehensive characterization by a broad spectrum of instrumental techniques. Results of spectroscopic and microscopic analysis confirmed the hexagonal crystalline structure of ZnO in the nanometer size. The dispersion stability of the obtained nanocomposites was determined based on the zeta potential (ZP) measurements-the average ZP value was found to be -29.15 ± 1.05 mV in the 7-9 pH range. The ZnO nanocomposites (NCs) demonstrated thermal stability up to 130 °C based on the results of thermogravimetric TGA/DTG) analysis. The organic deposit on the nanoparticle surface was recorded by spectroscopic analysis in the infrared range (FT-IR). Results of the spectrometric study exhibited nanostructure-assisted laser desorption/ionization effects and also pointed out the presence of organic deposits and, what is more, allowed us to identify the specific amino acids and peptides present on the ZnO NCs surfaces. In this context, mass spectrometry (MS) data confirmed the nano-ZnO formation mechanism. Moreover, fluorescence data showed an increase in fluorescence signal in the presence of nanocomposites designed for potential use as, e.g., biosensors. Despite ZnO NCs' luminescent properties, they can also act as promising antiseptic agents against clinically relevant pathogens. Therefore, a pilot study on the antibacterial activity of biologically synthesized ZnO NCs was carried out against four strains (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa) by using MIC (minimal inhibitory concentration). Additionally, the colony forming units (CFU) assay was performed and quantified for all bacterial cells as the percentage of viable cells in comparison to a control sample (untreated culture) The nanocomposites were effective among three pathogens with MIC values in the range of 86.25-172.5 μg/mL and showed potential as a new type of, e.g., medical path or ointment formulation.
Collapse
Affiliation(s)
- Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
17
|
Kallas P, Kang H, Valen H, Haugen HJ, Andersson M, Hulander M. Effect of silica nano-spheres on adhesion of oral bacteria and human fibroblasts. Biomater Investig Dent 2020; 7:134-145. [PMID: 33063045 PMCID: PMC7534277 DOI: 10.1080/26415275.2020.1816175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study investigated the effect of surface nano-patterning on adhesion of an oral early commensal colonizer, Streptococcus mitis and the opportunistic pathogen Staphylococcus aureus and human fibroblasts (HDFa) in a laminar flow cell. METHODS Nanostructured surfaces were made by functionalizing glass substrates with 40 nm SiO2 nanoparticles. Gradients in nanoparticle surface coverage were fabricated to study the effect of nanoparticle spacing within a single experiment. Bacterial adhesion was investigated after 5 min of contact time by subjecting surfaces to a flow in a laminar flow cell. In addition, to examine the particles effect on human cells, the establishment of focal adhesion and spreading of primary human dermal fibroblasts (HDFa) were investigated after 4 and 24 h. RESULTS Adhesion of both S. aureus and S. mitis decreased on surfaces functionalized with nanoparticles and coincided with higher nanoparticle surface coverage on the surface. Both strains were tested on three separate surfaces. The regression analysis showed that S. mitis was influenced more by surface modification than S. aureus. The establishment of focal adhesions in HDFa cells was delayed on the nanostructured part of the surfaces after both 4 and 24 h of culturing. SIGNIFICANCE In the current manuscript, we have used a flow cell to investigate the effect of nanotopographies on S. aureus and S. mitis adhesion. The present findings are of relevance for design of future implant and prostheses surfaces in order to reduce adhesion of bacteria.
Collapse
Affiliation(s)
- Pawel Kallas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Hua Kang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkon Valen
- Nordic Institute of Dental Materials, Oslo, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
New Generation of Antibacterial Products Based on Colloidal Silver. MATERIALS 2020; 13:ma13071578. [PMID: 32235381 PMCID: PMC7177337 DOI: 10.3390/ma13071578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
Abstract
The main objective of the present paper is the green synthesis of colloidal silver by ultrasonication starting from silver nitrate and using soluble starch as the reducing agent. Soluble starch has been used during synthesis because it is a cheap and environmentally friendly reactive. Silver colloid has been characterized by physicochemical methods: UV–VIS spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray spectroscopy. This colloidal material was prepared in order to prove and establish its toxicity on heterotrophic bacteria. Toxicity tests were carried out using test cultures with and without silver colloid with different concentrations. This way was possible to establish the minimum silver concentration that presents a toxic effect against used bacteria. Quantitative evaluation of bacterial growth was performed by using the Most Probable Number method. By counting the bacterial colony number, the antibacterial effect was determined for colloidal silver deposited onto the cotton gauze by adsorption. During the present study, we optimized the adsorption specific parameters: solid:liquid ratio, temperature, contact time, colloidal silver concentration. By thermodynamic, equilibrium and kinetic studies, the adsorptive process mechanism was established.
Collapse
|
19
|
Duta OC, Ţîţu AM, Marin A, Ficai A, Ficai D, Andronescu E. Surface Modification of Poly(Vinylchloride) for Manufacturing Advanced Catheters. Curr Med Chem 2020; 27:1616-1633. [DOI: 10.2174/0929867327666200227152150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/11/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
Abstract
Polymeric materials, due to their excellent physicochemical properties and versatility found
applicability in multiples areas, including biomaterials used in tissue regeneration, prosthetics (hip,
artificial valves), medical devices, controlled drug delivery systems, etc. Medical devices and their
applications are very important in modern medicine and the need to develop new materials with improved
properties or to improve the existent materials is increasing every day. Numerous reasearches
are activated in this domain in order to obtain materials/surfaces that does not have drawbacks such as
structural failure, calcifications, infections or thrombosis. One of the most used material is
poly(vinylchloride) (PVC) due to its unique properties, availability and low cost. The most common
method used for obtaining tubular devices that meet the requirements of medical use is the surface
modification of polymers without changing their physical and mechanical properties, in bulk. PVC is a
hydrophobic polymer and therefore many research studies were conducted in order to increase the hydrophilicity
of the surface by chemical modification in order to improve biocompatibility, to enhance
wettability, reduce friction or to make lubricious or antimicrobial coatings. Surface modification of
PVC can be achieved by several strategies, in only one step or, in some cases, in two or more steps by
applying several techniques consecutively to obtain the desired modification / performances. The most
common processes used for modifying the surface of PVC devices are: plasma treatment, corona discharge,
chemical grafting, electric discharge, vapour deposition of metals, flame treatment, direct
chemical modification (oxidation, hydrolysis, etc.) or even some physical modification of the roughness
of the surface.
Collapse
Affiliation(s)
- Oana Cristina Duta
- University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Aurel Mihail Ţîţu
- “Lucian Blaga” University of Sibiu, Faculty of Engineering, Industrial Engineering and Management Departament, 4 Emil Cioran Street, Sibiu, Romania
| | - Alexandru Marin
- University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| |
Collapse
|
20
|
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective. MATERIALS 2020; 13:ma13030784. [PMID: 32046363 PMCID: PMC7040917 DOI: 10.3390/ma13030784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/24/2022]
Abstract
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by tailoring the coatings composition and morphology. Furthermore, their mechanical properties are of the utmost importance in view of the antimicrobial surface durability. Indeed, the coating properties might be tuned differently according to the specific synthesis method. The present review focuses on nanoparticle based bactericidal coatings obtained via magneton-spattering and supersonic cluster beam deposition. The bacteria–NP interaction mechanisms are first reviewed, thus making clear the requirements that a nanoparticle-based film should meet in order to serve as a bactericidal coating. Paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed. The emphasis is on widening the bactericidal spectrum so as to be effective both against gram-positive and gram-negative bacteria, while ensuring a good adhesion to a variety of substrates and mechanical durability. It is discussed how this goal may be achieved combining different elements into the coating.
Collapse
|
21
|
Kunrath MF, Leal BF, Hubler R, de Oliveira SD, Teixeira ER. Antibacterial potential associated with drug-delivery built TiO 2 nanotubes in biomedical implants. AMB Express 2019; 9:51. [PMID: 30993485 PMCID: PMC6468021 DOI: 10.1186/s13568-019-0777-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 02/09/2023] Open
Abstract
The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations. Also, it explains the TiO2 nanotubes (TNTs) surface creation, in which the possibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising future perspectives of in situ drug delivery systems aggregated to biomedical implants.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil.
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil.
| | - Bruna Ferreira Leal
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil
| | - Sílvia Dias de Oliveira
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Eduardo Rolim Teixeira
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
22
|
Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering (Basel) 2019; 6:bioengineering6010026. [PMID: 30893761 PMCID: PMC6466241 DOI: 10.3390/bioengineering6010026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology deals with matter of atomic or molecular scale. Other factors that define the character of a nanoparticle are its physical and chemical properties, such as surface area, surface charge, hydrophobicity of the surface, thermal stability of the nanoparticle and its antimicrobial activity. A nanoparticle is usually characterized by using microscopic and spectroscopic techniques. Microscopic techniques are used to characterise the size, shape and location of the nanoparticle by producing an image of the individual nanoparticle. Several techniques, such as scanning electron microscopy (SEM), transmission electron microscopy/high resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) have been developed to observe and characterise the surface and structural properties of nanostructured material. Spectroscopic techniques are used to study the interaction of a nanoparticle with electromagnetic radiations as the function of wavelength, such as Raman spectroscopy, UV–Visible spectroscopy, attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), dynamic light scattering spectroscopy (DLS), Zeta potential spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray photon correlation spectroscopy. Nanostructured materials have a wide application in the food industry as nanofood, nano-encapsulated probiotics, edible nano-coatings and in active and smart packaging.
Collapse
|
23
|
Naushad M, Rajendran S, Gracia F, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: Antimicrobial Applications and Its Prospects. ADVANCED NANOSTRUCTURED MATERIALS FOR ENVIRONMENTAL REMEDIATION 2019; 25. [PMCID: PMC7123839 DOI: 10.1007/978-3-030-04477-0_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, nanomaterials [NPs; size, 1–100 nm] have emerged as unique antimicrobial agents. Specially, several classes of antimicrobial NPs and nanosized carriers for antibiotic delivery have proven their efficacy for handling infectious diseases, including antibiotic-resistant ones, in vitro as well as in animal models, which can offer better therapy than classical drugs due to their high surface area-to-volume ratio, resulting in appearance of new mechanical, chemical, electrical, optical, magnetic, electro-optical, and magneto-optical properties, unlike from their bulk properties. Thus, scientifically NPs have been validated to be fascinating in fighting bacteria. In this chapter, we will discuss precise properties of microorganisms and their modifications among each strain specifically. The toxicity mechanisms vary from one stain to another. Even the NP’s efficacy to treat against bacteria and drug-resistant bacteria and their defense mechanisms change according to strains in particular composition of cell walls, the enzymic composition, and so on. Thus, we provide an outlook on NPs in the microbial world and mechanism to overcome the drug resistance by tagging antibiotics in NPs and its future prospects for the scientific world.
Collapse
Affiliation(s)
- Mu. Naushad
- grid.56302.320000 0004 1773 5396Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saravanan Rajendran
- grid.412182.c0000 0001 2179 0636Faculty of Engineering, Department of Mechanical Engineering, University of Tarapacá, Arica, Chile
| | - Francisco Gracia
- grid.443909.30000 0004 0385 4466Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
24
|
Al-Busaidi H, Karim ME, Abidin SAZ, Tha KK, Chowdhury EH. Magnesium Fluoride Forms Unique Protein Corona for Efficient Delivery of Doxorubicin into Breast Cancer Cells. TOXICS 2019; 7:toxics7010010. [PMID: 30813300 PMCID: PMC6468515 DOI: 10.3390/toxics7010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
Background: The efficacy of chemotherapy is undermined by adverse side effects and chemoresistance of target tissues. Developing a drug delivery system can reduce off-target side effects and increase the efficacy of drugs by increasing their accumulation in target tissues. Inorganic salts have several advantages over other drug delivery vectors in that they are non-carcinogenic and less immunogenic than viral vectors and have a higher loading capacity and better controlled release than lipid and polymer vectors. Methods: MgF2 crystals were fabricated by mixing 20 mM MgCl2 and 10 mM NaF and incubating for 30 min at 37 °C. The crystals were characterized by absorbance, dynamic light scattering, microscopic observance, pH sensitivity test, SEM, EDX and FTIR. The binding efficacy to doxorubicin was assessed by measuring fluorescence intensity. pH-dependent doxorubicin release profile was used to assess the controlled release capability of the particle-drug complex. Cellular uptake was assessed by fluorescence microscopy. Cytotoxicity of the particles and the drug-particle complex were assessed using MTT assay to measure cell viability of MCF-7 cells. Results and Discussion: Particle size on average was estimated to be <200 nm. The crystals were cubic in shape. The particles were pH-sensitive and capable of releasing doxorubicin in increasing acidic conditions. MgF2 nanocrystals were safe in lower concentrations, and when bound to doxorubicin, enhanced its uptake. The protein corona formed around MgF2 nanoparticles lacks typical opsonins but contains some dysopsonins. Conclusion: A drug delivery vector in the form of MgF2 nanocrystals has been developed to transport doxorubicin into breast cancer cells. It is pH-sensitive (allowing for controlled release), size-modifiable, simple and cheap to produce.
Collapse
Affiliation(s)
- Hamed Al-Busaidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| | - Md Emranul Karim
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| | - Kyi Kyi Tha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
- Health & Wellbeing Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia.
| |
Collapse
|
25
|
Tyagi P, Mathew R, Opperman C, Jameel H, Gonzalez R, Lucia L, Hubbe M, Pal L. High-Strength Antibacterial Chitosan-Cellulose Nanocrystal Composite Tissue Paper. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:104-112. [PMID: 30472858 DOI: 10.1021/acs.langmuir.8b02655] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A heightened need to control the spread of infectious diseases prompted the current work in which functionalized and innovative antimicrobial tissue paper was developed with a hydrophobic spray-coating of chitosan (Ch) and cellulose nanocrystals (CNCs) composite. It was hypothesized that the hydrophobic nature of chitosan could be counterbalanced by the addition of CNC to maintain fiber formation and water absorbency. Light-weight tissue handsheets were prepared, spray-coated with Ch, CNC, and their composite coating (ChCNC), and tested for antimicrobial activity against Gram-negative bacteria Escherichia coli and a microbial sample from a human hand after using the rest room. Water absorption and strength properties were also analyzed. To activate the surface of cationized tissue paper, an oxygen/helium gas atmospheric plasma treatment was employed on the best performing antimicrobial tissue papers. The highest bactericidal activity was observed with ChCNC-coated tissue paper, inhibiting up to 98% microbial growth. Plasma treatment further improved the antimicrobial activity of the coatings. Water absorption properties were reduced with Ch but increased with CNC. This "self-disinfecting" bactericidal tissue has the potential to be one of the most innovative products for the hygiene industry because it can dry, clean, and resist the infection of surfaces simultaneously, providing significant societal benefits.
Collapse
Affiliation(s)
- Preeti Tyagi
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| | - Reny Mathew
- Department of Entomology and Plant Pathology , NC State University , Campus Box 7616, Raleigh , North Carolina 27695 , United States
| | - Charles Opperman
- Department of Entomology and Plant Pathology , NC State University , Campus Box 7616, Raleigh , North Carolina 27695 , United States
| | - Hasan Jameel
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| | - Ronalds Gonzalez
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| | - Lucian Lucia
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| | - Martin Hubbe
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| | - Lokendra Pal
- Department of Forest Biomaterials , NC State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
| |
Collapse
|
26
|
Antibacterial and physical properties of a novel sonochemical-assisted Zn-CuO contact lens nanocoating. Graefes Arch Clin Exp Ophthalmol 2018; 257:95-100. [DOI: 10.1007/s00417-018-4172-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022] Open
|
27
|
Regmi C, Joshi B, Ray SK, Gyawali G, Pandey RP. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Front Chem 2018. [PMID: 29541632 PMCID: PMC5835762 DOI: 10.3389/fchem.2018.00033] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Asan-si, South Korea
| | - Bhupendra Joshi
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Asan-si, South Korea
| | - Schindra K Ray
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Asan-si, South Korea
| | - Gobinda Gyawali
- Department of Environmental and Bio-chemical Engineering, Sun Moon University, Asan-si, South Korea
| | - Ramesh P Pandey
- Department of Life Science and Bio-chemical Engineering, Sun Moon University, Asan-si, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Asan-si, South Korea
| |
Collapse
|
28
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
29
|
Bassegoda A, Ivanova K, Ramon E, Tzanov T. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials. Appl Microbiol Biotechnol 2018; 102:2075-2089. [PMID: 29392390 DOI: 10.1007/s00253-018-8776-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/26/2023]
Abstract
Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.
Collapse
Affiliation(s)
- Arnau Bassegoda
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Eva Ramon
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain.
| |
Collapse
|
30
|
Anjum S, Singh S, Benedicte L, Roger P, Panigrahi M, Gupta B. Biomodification Strategies for the Development of Antimicrobial Urinary Catheters: Overview and Advances. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700068. [PMID: 31565299 PMCID: PMC6607219 DOI: 10.1002/gch2.201700068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/05/2017] [Indexed: 05/27/2023]
Abstract
Microbial burden associated with medical devices poses serious health challenges and is accountable for an increased number of deaths leading to enormous medical costs. Catheter-associated urinary tract infections are the most common hospital-acquired infections with enhanced patient morbidity. Quite often, catheter-associated bacteriuria produces apparent adverse outcomes such as urosepsis and even death. Taking this into account, the methods to modify urinary catheters to control microbial infections with relevance to clinical drug resistance are systematically evaluated in this review. Technologies to restrict biofilm formation at initial stages by using functional nanomaterials are elucidated. The conventional methodology of using single therapeutic intervention for developing an antimicrobial catheter lacks clinically meaningful benefit. Therefore, catheter modification using naturally derived antimicrobials such as essential oils, curcumin, enzymes, and antimicrobial peptides in combination with synthetic antibiotics/nanoantibiotics is likely to exert sufficient inhibitory effect on uropathogens and is extensively discussed. Futuristic efforts in this area are projected here that demand clinical studies to address areas of uncertainty to avoid development of bacterial resistance to the new generation therapy with minimum discomfort to the patients.
Collapse
Affiliation(s)
- Sadiya Anjum
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Surabhi Singh
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| | - Lepoittevin Benedicte
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Philippe Roger
- ICMMO ‐ LG2M ‐ Bât 420Université Paris‐Sud XI, 15rue Georges Clémenceau91405Orsay CedexFrance
| | - Manoj Panigrahi
- Department of Urology and PathologySikkim Manipal Institute of Medical SciencesGangtokSikkim737101India
| | - Bhuvanesh Gupta
- Bioengineering LaboratoryDepartment of Textile TechnologyIndian Institute of TechnologyNew Delhi110016India
| |
Collapse
|
31
|
Abstract
Despite an array of cogent antibiotics, bacterial infections, notably those produced by nosocomial pathogens, still remain a leading factor of morbidity and mortality around the globe. They target the severely ill, hospitalized and immunocompromised patients with incapacitated immune system, who are prone to infections. The choice of antimicrobial therapy is largely empirical and not devoid of toxicity, hypersensitivity, teratogenicity and/or mutagenicity. The emergence of multidrug-resistant bacteria further intensifies the clinical predicament as it directly impacts public health due to diminished potency of current antibiotics. In addition, there is an escalating concern with respect to biofilm-associated infections that are refractory to the presently available antimicrobial armory, leaving almost no therapeutic option. Hence, there is a dire need to develop alternate antibacterial agents. The past decade has witnessed a substantial upsurge in the global use of nanomedicines as innovative tools for combating the high rates of antimicrobial resistance. Antibacterial activity of metal and metal oxide nanoparticles (NPs) has been extensively reported. The microbes are eliminated either by microbicidal effects of the NPs, such as release of free metal ions culminating in cell membrane damage, DNA interactions or free radical generation, or by microbiostatic effects coupled with killing potentiated by the host's immune system. This review encompasses the magnitude of multidrug resistance in nosocomial infections, bacterial evasion of the host immune system, mechanisms used by bacteria to develop drug resistance and the use of nanomaterials based on metals to overcome these challenges. The diverse annihilative effects of conventional and biogenic metal NPs for antibacterial activity are also discussed. The use of polymer-based nanomaterials and nanocomposites, alone or functionalized with ligands, antibodies or antibiotics, as alternative antimicrobial agents for treating severe bacterial infections is also discussed. Combinatorial therapy with metallic NPs, as adjunct to the existing antibiotics, may aid to restrain the mounting menace of bacterial resistance and nosocomial threat.
Collapse
Affiliation(s)
- Hassan A Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12:1227-1249. [PMID: 28243086 PMCID: PMC5317269 DOI: 10.2147/ijn.s121956] [Citation(s) in RCA: 1616] [Impact Index Per Article: 230.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Stomatology, Hainan General Hospital, Haikou, Hainan
| | - Chen Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
33
|
Shi SF, Jia JF, Guo XK, Zhao YP, Chen DS, Guo YY, Zhang XL. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. Int J Nanomedicine 2016; 11:6499-6506. [PMID: 27994455 PMCID: PMC5153269 DOI: 10.2147/ijn.s41371] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus can adhere to most foreign materials and form biofilm on the surface of medical devices. Biofilm infections are difficult to resolve. The goal of this in vitro study was to explore the use of chitosan-coated nanoparticles to prevent biofilm formation. For this purpose, S. aureus was seeded in 96-well plates to incubate with chitosan-coated iron oxide nanoparticles in order to study the efficiency of biofilm formation inhibition. The biofilm bacteria count was determined using the spread plate method; biomass formation was measured using the crystal violet staining method. Confocal laser scanning microscopy and scanning electron microscopy were used to study the biofilm formation. The results showed decreased viable bacteria numbers and biomass formation when incubated with chitosan-coated iron oxide nanoparticles at all test concentrations. Confocal laser scanning microscopy showed increased dead bacteria and thinner biofilm when incubated with nanoparticles at a concentration of 500 µg/mL. Scanning electron microscopy revealed that chitosan-coated iron oxide nanoparticles inhibited biofilm formation in polystyrene plates. Future studies should be performed to study these nanoparticles for anti-infective use.
Collapse
Affiliation(s)
- Si-Feng Shi
- Department of Orthopedics, the Affiliated Hospital of Xu Zhou Medical University, Xu Zhou, Jiangsu; Department of Orthopedic Surgery, Shanghai sixth People's Hospital, Shanghai Jiao Tong University, Shanghai
| | - Jing-Fu Jia
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai
| | - Xiao-Kui Guo
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ya-Ping Zhao
- School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai
| | - De-Sheng Chen
- Department of Orthopedic Surgery, Shanghai sixth People's Hospital, Shanghai Jiao Tong University, Shanghai
| | - Yong-Yuan Guo
- Department of Orthopedic Surgery, Shanghai sixth People's Hospital, Shanghai Jiao Tong University, Shanghai
| | - Xian-Long Zhang
- Department of Orthopedic Surgery, Shanghai sixth People's Hospital, Shanghai Jiao Tong University, Shanghai
| |
Collapse
|
34
|
Ivanova K, Fernandes MM, Francesko A, Mendoza E, Guezguez J, Burnet M, Tzanov T. Quorum-Quenching and Matrix-Degrading Enzymes in Multilayer Coatings Synergistically Prevent Bacterial Biofilm Formation on Urinary Catheters. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27066-27077. [PMID: 26593217 DOI: 10.1021/acsami.5b09489] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacteria often colonize in-dwelling medical devices and grow as complex biofilm communities of cells embedded in a self-produced extracellular polymeric matrix, which increases their resistance to antibiotics and the host immune system. During biofilm growth, bacterial cells cooperate through specific quorum-sensing (QS) signals. Taking advantage of this mechanism of biofilm formation, we hypothesized that interrupting the communication among bacteria and simultaneously degrading the extracellular matrix would inhibit biofilm growth. To this end, coatings composed of the enzymes acylase and α-amylase, able to degrade bacterial QS molecules and polysaccharides, respectively, were built on silicone urinary catheters using a layer-by-layer deposition technique. Multilayer coatings of either acylase or amylase alone suppressed the biofilm formation of corresponding Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Further assembly of both enzymes in hybrid nanocoatings resulted in stronger biofilm inhibition as a function of acylase or amylase position in the layers. Hybrid coatings, with the QS-signal-degrading acylase as outermost layer, demonstrated 30% higher antibiofilm efficiency against medically relevant Gram-negative bacteria compared to that of the other assemblies. These nanocoatings significantly reduced the occurrence of single-species (P. aeruginosa) and mixed-species (P. aeruginosa and Escherichia coli) biofilms on silicone catheters under both static and dynamic conditions. Moreover, in an in vivo animal model, the quorum quenching and matrix degrading enzyme assemblies delayed the biofilm growth up to 7 days.
Collapse
Affiliation(s)
- Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Margarida M Fernandes
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Antonio Francesko
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ernest Mendoza
- Laboratory of Applied Nanomaterials, Center for Research in NanoEngineering, Universitat Politècnica de Catalunya , c/Pascual I Vila 15, 08028 Barcelona, Spain
| | - Jamil Guezguez
- Synovo GmbH , Paul Ehrlich 15, D-72076 Tübingen, Germany
| | - Michael Burnet
- Synovo GmbH , Paul Ehrlich 15, D-72076 Tübingen, Germany
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya , Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| |
Collapse
|
35
|
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:246012. [PMID: 25861355 PMCID: PMC4378595 DOI: 10.1155/2015/246012] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
Abstract
Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.
Collapse
Affiliation(s)
- Nurit Beyth
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Avi Domb
- Department of Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, 91120 Jerusalem, Israel
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad 500 037, India
| | - Ronen Hazan
- Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, P.O. Box 12272, 91120 Jerusalem, Israel
- IYAR, The Israeli Institute for Advanced Research, Tel Aviv, Israel
| |
Collapse
|
36
|
Barakat HS, Kassem MA, El-Khordagui LK, Khalafallah NM. Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces. AAPS PharmSciTech 2014; 15:1263-74. [PMID: 24895077 DOI: 10.1208/s12249-014-0141-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 05/07/2014] [Indexed: 12/19/2022] Open
Abstract
A new vancomycin (VCM)-eluting mixed bilayer niosome formulation was evaluated for the control of staphylococcal colonization and biofilm formation on abiotic surfaces, a niosome application not explored to date. Cosurfactant niosomes were prepared using a Span 60/Tween 40/cholesterol blend (1: 1: 2). Tween 40, a polyethoxylated amphiphile, was included to enhance VCM entrapment and confer niosomal surface properties precluding bacterial adhesion. VCM-eluting niosomes showed good quality attributes including relatively high entrapment efficiency (∼50%), association of Tween 40 with vesicles in a constant proportion (∼87%), biphasic release profile suitable for inhibiting early bacterial colonization, and long-term stability at 4°C for a 12-month study period. Niosomes significantly enhanced VCM activity against planktonic bacteria of nine staphylococcal strains. Using microtiter plates as abiotic surface, VCM-eluting niosomes proved superior to VCM in inhibiting biofilm formation, eradicating surface-borne biofilms, inhibiting biofilm growth, and interfering with biofilm induction by VCM subminimal inhibitory concentrations. Data suggest dual functionality of cosurfactant VCM-eluting niosomes as passive colonization inhibiting barrier and active antimicrobial-controlled delivery system, two functions recognized in infection control of abiotic surfaces and medical devices.
Collapse
|
37
|
Lellouche J, Friedman A, Gedanken A, Banin E. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 2012; 7:5611-24. [PMID: 23152681 PMCID: PMC3496407 DOI: 10.2147/ijn.s37075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. Moreover, colonization of abiotic surfaces by microorganisms and the formation of biofilms is a major cause of infections associated with medical implants, resulting in prolonged hospitalization periods and patient mortality. In this study we describe a water-based synthesis of yttrium fluoride (YF3) nanoparticles (NPs) using sonochemistry. The sonochemical irradiation of an aqueous solution of yttrium (III) acetate tetrahydrate [Y(Ac)3 · (H2O)4], containing acidic HF as the fluorine ion source, yielded nanocrystalline needle-shaped YF3 particles. The obtained NPs were characterized by scanning electron microscopy and X-ray elemental analysis. NP crystallinity was confirmed by electron and powder X-ray diffractions. YF3 NPs showed antibacterial properties against two common bacterial pathogens (Escherichia coli and Staphylococcus aureus) at a μg/mL range. We were also able to demonstrate that antimicrobial activity was dependent on NP size. In addition, catheters were surface modified with YF3 NPs using a one-step synthesis and coating process. The coating procedure yielded a homogeneous YF3 NP layer on the catheter, as analyzed by scanning electron microscopy and energy dispersive spectroscopy. These YF3 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. The YF3 NP-coated catheters were able to significantly reduce bacterial colonization compared to the uncoated surface. Taken together, our results highlight the potential to further develop the concept of utilizing these metal fluoride NPs as novel antimicrobial and antibiofilm agents, taking advantage of their low solubility and providing extended protection.
Collapse
Affiliation(s)
- Jonathan Lellouche
- Biofilm Research Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, BarIlan University, Ramat-Gan, Israel
| | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Asad U Khan
- Correspondence: Asad U Khan, Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India, Tel +91 98 3702 1912, Fax +91 57 1272 1776, Email
| |
Collapse
|