1
|
Lopez-Ayuso CA, Garcia-Contreras R, Manisekaran R, Figueroa M, Rangel-Grimaldo M, Jacome M, Dominguez-Perez RA, Lopez-Morales S, Cristians S, Acosta-Torres LS. Biological and mechanical properties of a self-curing acrylic resin enriched with AgNPs as a proposal for orthopedic aparatology. NANOSCALE ADVANCES 2025:d4na00846d. [PMID: 39991064 PMCID: PMC11840714 DOI: 10.1039/d4na00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/01/2025] [Indexed: 02/25/2025]
Abstract
Polymethylmethacrylate (PMMA) is widely used in dentistry, but its inherent characteristics, such as roughness and porosity, can facilitate the formation of bacterial biofilms. However, the integration of silver nanoparticles (AgNPs) can provide antimicrobial properties. Ongoing research endeavors aim to preserve post-nanoaggregation biocompatibility without compromising the mechanical integrity of the material. In this study, we investigated the biological and mechanical attributes of a PMMA nanocomposite infused with AgNPs biosynthesized from Pelargonium × hortorum. A method has been described to incorporate nanoparticles into the polymer at minimum concentrations. In the results, LC-MS-MS revealed the presence of 56 biochemical compounds. UPLCHRESIMS-MS/MS was used to compare the phytochemical profiles of the leaf extract of Pelargonium × hortorum before and after the formation of AgNPs, which were identified with spherical morphology, an absorbance of 28.5 ± 8.16 nm and a particle size of 415 nm. The MIC of AgNPs was 10 μg mL-1. In bacterial MTT, a decrease to 18.2 ± 2.5% with PMMA-10 μg mL-1 was observed (p < 0.05). Decreased cell viability was found only in PMMA-0 μg mL-1 at 89.1 ± 6.7%, indicating no cytotoxicity. These findings suggest a promising bionano material that is suitable for orthodontic and orthopedic devices and warrants further research.
Collapse
Affiliation(s)
- Christian Andrea Lopez-Ayuso
- Laboratorio de Investigación Interdisciplinaria, Área de Nanostructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), Predio el Saucillo y el Potrero, Comunidad de los Tepetates León 37684 Mexico
| | - Rene Garcia-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanostructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), Predio el Saucillo y el Potrero, Comunidad de los Tepetates León 37684 Mexico
| | - Ravichandran Manisekaran
- Laboratorio de Investigación Interdisciplinaria, Área de Nanostructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), Predio el Saucillo y el Potrero, Comunidad de los Tepetates León 37684 Mexico
| | | | | | | | - Ruben Abraham Dominguez-Perez
- Laboratorio de Investigación Odontológica Multidisciplinaria, Universidad Autónoma de Querétaro Querétaro 76010 Mexico
| | - Salvador Lopez-Morales
- Instituto de Investigaciones en Materiales, Departamento de Reología y Mecánica de Materiales, UNAM Ciudad de México 04510 Mexico
| | - Sol Cristians
- Laboratorio de Etnobotánica, Instituto de Biología, UNAM Ciudad de México 04510 Mexico
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanostructuras y Biomateriales, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), Predio el Saucillo y el Potrero, Comunidad de los Tepetates León 37684 Mexico
| |
Collapse
|
2
|
Sukumaran K, Ravindran S. Comparative Evaluation of the Flexural Strength of Heat-Activated Polymethyl Methacrylate Denture Base Resin With and Without 0.2% by the Weight of Silver Nanoparticles Cured by Conventional and Autoclave Methods: An In Vitro Study. Cureus 2024; 16:e62675. [PMID: 38903978 PMCID: PMC11187457 DOI: 10.7759/cureus.62675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE Heat-activated polymethyl methacrylate (PMMA) is the most common and widely accepted denture base material. Two important drawbacks are the development of denture stomatitis and the high incidence of fracture of denture bases. The present study investigated the effect of adding 0.2% by weight of silver nanoparticles (AgNps) and using the autoclave method of terminal boiling on the flexural strength of heat-activated PMMA denture base resin. METHODS A total of 40 samples of heat-activated PMMA blocks were divided into four groups, with 10 samples (n = 10) in each group. Group 1 consisted of unmodified heat-activated PMMA resin (PMMA-1) polymerized by the conventional method of terminal boiling (conventional curing); Group 2 consisted of 0.2% by weight AgNPs added to heat-activated PMMA resin (PMMA-2) polymerized by conventional curing; Group 3 consisted of PMMA-1 polymerized by the autoclave method of terminal boiling (autoclave curing); and Group 4 consisted of PMMA-2 polymerized by autoclave curing. The flexural strength was tested using a universal testing machine. Descriptive statistics were expressed as mean ± SD and median flexural strength. Kruskal-Wallis ANOVA with Mann-Whitney U post hoc test was applied to test for statistical significance between the groups. The level of significance was set at p<0.05. RESULTS The results showed a statistically significant reduction in flexural strength in Group 2 compared to Group 1. The samples from Group 4 showed a statistically significant increase in flexural strength compared to Group 2. The Group 4 denture base had the highest flexural strength (115.72 ± 7.27 MPa) among the four groups, followed by Group 3 (104.16 ± 4.85 MPa). The Group 1 samples gave a flexural strength of 101.45 ± 3.13 MPa, and Group 2 gave the lowest flexural strength (85.98 ± 3.49 MPa) among the four groups tested. CONCLUSION The reduction in flexural strength of the heat-activated PMMA denture base after adding 0.2% by weight of AgNP as an antifungal agent was a major concern among manufacturers of commercially available denture base materials. It was proved in the present study that employing the autoclave curing method of terminal boiling for the polymerization of 0.2% by weight of AgNp-added heat-activated PMMA denture base resulted in a significantly higher flexural strength compared to the conventional curing method of terminal boiling for polymerization. Unmodified heat-activated PMMA gave higher flexural strength values when polymerized by autoclave curing compared to the conventional curing method of terminal boiling.
Collapse
Affiliation(s)
- Kala Sukumaran
- Dentistry, Government Dental College, Thiruvananthapuram, IND
| | - Smitha Ravindran
- Prosthodontics, Government Dental College, Thiruvananthapuram, IND
| |
Collapse
|
3
|
Correa S, Matamala L, González JP, de la Fuente M, Miranda H, Olivares B, Maureira M, Agüero A, Gómez L, Lee X, Urzúa M, Covarrubias C. Development of novel antimicrobial acrylic denture modified with copper nanoparticles. J Prosthodont Res 2024; 68:156-165. [PMID: 37211413 DOI: 10.2186/jpr.jpr_d_22_00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
PURPOSE This study aimed to synthesize heat-cured poly(methyl methacrylate) (PMMA) acrylic formulated with copper nanoparticles (nCu) for producing dentures with antimicrobial properties and ability to prevent denture stomatitis (DS). METHODS nCu/PMMA nanocomposites were prepared through in situ formation of nCu into methyl methacrylate (MMA). The fabricated material was characterized using scanning electron microscopy, spectroscopy (energy-dispersive X-ray, attenuated total reflectance-Fourier-transform infrared, and X-ray photoelectron spectroscopy), X-ray diffraction analysis, and mechanical flexural tests (ISO 20795-1:2008). Antimicrobial activity against Candida albicans and oral bacteria was determined. MTS assay (ISO 10993-5:2009) and copper release experiments were conducted to assess cytotoxicity. In the clinical trial, participants wearing nCu/PMMA (n=25) and PMMA (n=25) dentures were compared; specifically, DS incidence and severity and Candida species proliferation were assessed for 12 months. Data were analyzed using analysis of variance with Tukey's post hoc test (α=0.05). RESULTS nCu/PMMA nanocomposite loaded with 0.045% nCu exhibited the maximum antimicrobial activity against C. albicans and other oral bacteria without producing cytotoxicity in the wearer. nCu/PMMA dentures retained their mechanical and aesthetic properties as well as inhibited the growth of Candida species on both denture surface and patient palate. DS incidence and severity were lower in the nCu/PMMA denture group than in the PMMA denture group. CONCLUSIONS PMMA acrylic produced with copper nanotechnology is antimicrobial, biocompatible, and aesthetic and can reduce DS incidence. Thus, this material may act as a novel preventive alternative for oral infections associated with denture use.
Collapse
Affiliation(s)
- Sebastián Correa
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Matamala
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Juan Pablo González
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Mónica de la Fuente
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Hetiel Miranda
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Bruno Olivares
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Miguel Maureira
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Amaru Agüero
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Leyla Gómez
- Laboratory of Microbiology, Department of Pathology and Oral Microbiology, University of Chile, Santiago, Chile
| | - Ximena Lee
- Public Health, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Madeleine Urzúa
- Public Health, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
4
|
Puspitasari R, Irnawati D, Widjijono. The effect of zinc oxide (ZnO) nanoparticle concentration on the adhesion of mucin and Streptococcus mutans to heat-cured acrylic resin. Dent Mater J 2023; 42:791-799. [PMID: 37793826 DOI: 10.4012/dmj.2023-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Incorporating zinc oxide (ZnO) nanoparticles as antibacterial fillers in heat-cured acrylic resin could decrease mucin and Streptococcus mutans (S. mutans) adhesion, reducing the incidence of dental caries in the baseplates of orthodontic patients. Here, ZnO nanoparticles were modified using 3-(trimethoxysilyl)propyl methacrylate with various concentrations, added to acrylic resin powder, homogenized, mixed with acrylic resin liquid, and processed. The composite systems interfered well with mucin and S. mutans adhesion. The lowest mean of the amount of mucin adhered was on heat-cured acrylic resin with 7.5% ZnO nanoparticles, with a standard deviation of 18.07±0.80 mg/mL. The ZnO nanoparticles with a concentration of 7.5% showed an 87.09±0.88% S. mutans adhesion in control groups with no additives. These composite systems were proven to have better physicochemical characteristics and antibacterial abilities. Combining ZnO nanoparticles with heat-cured acrylic resin has great potential for self-cleaning baseplates of orthodontic patients in the future.
Collapse
Affiliation(s)
- Rahmadani Puspitasari
- Magister Dental Science Study Program, Faculty of Dentistry, Universitas Gadjah Mada
| | - Dyah Irnawati
- Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada
| | - Widjijono
- Department of Dental Biomaterial, Faculty of Dentistry, Universitas Gadjah Mada
| |
Collapse
|
5
|
Lopez-Ayuso CA, Garcia-Contreras R, Manisekaran R, Figueroa M, Arenas-Arrocena MC, Hernandez-Padron G, Pozos-Guillén A, Acosta-Torres LS. Evaluation of the biological responses of silver nanoparticles synthesized using Pelargonium x hortorum extract. RSC Adv 2023; 13:29784-29800. [PMID: 37829709 PMCID: PMC10565737 DOI: 10.1039/d3ra00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 μg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 μg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.
Collapse
Affiliation(s)
- Christian Andrea Lopez-Ayuso
- Programa de Doctorado en Ciencias Odontológicas, Universidad Nacional Autónoma de México (UNAM) Mexico
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | | | - Ma Concepción Arenas-Arrocena
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Genoveva Hernandez-Padron
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Departamento de Nanotecnología, Universidad Nacional Autónoma de México Campus Juriquilla Juriquilla 76230 Mexico
| | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University Av. Dr. Manuel Nava #2, Zona Universitaria 78290 San Luis Potosí SLP Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| |
Collapse
|
6
|
Mary SM, Ramakrishnan M, Sudalaimani Paulpandian SD, Rajeshkumar S, Pringle J. Application of nanoparticles in Dentistry. Bioinformation 2023; 19:14-18. [PMID: 37720271 PMCID: PMC10504510 DOI: 10.6026/97320630019014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
Nanoparticles(NPs) are of particle sizes lesser than 100nm and are insoluble the field which deal with the handling of these particles is coined as "Nanotechnology" as their particle size is smaller, they can penetrate easily therefore they are applied in various medical fields, drug delivery and in dentistry as they have antimicrobial property, reduces friction, anti-inflammatory and antioxidant property. Many studies have been done to evaluate its application and its cytotoxicity by varying its concentration and various studies have been done to evaluate its physical property. Therefore, it is of interest to describe concepts of nanoparticles, mode of action, tissue reaction and its application in orthodontics.
Collapse
Affiliation(s)
- Sheloni Missier Mary
- Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamilnadu, India
| | - Mahesh Ramakrishnan
- Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamilnadu, India
| | | | - Shanmugam Rajeshkumar
- Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamilnadu, India
| | - Jebilla Pringle
- Department of Orthodontics, Rajas Dental College and Hospital, Kavalkinaru, Tamilnadu, India
| |
Collapse
|
7
|
Pourhajibagher M, Bahador A. Effects of incorporation of nanoparticles into dental acrylic resins on antimicrobial and physico-mechanical properties: A meta-analysis of in vitro studies. J Oral Biol Craniofac Res 2022; 12:557-568. [PMID: 35898925 DOI: 10.1016/j.jobcr.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022] Open
Abstract
Background A meta-analysis study was conducted to determine whether the incorporation of nanoparticles into the dental acrylic resins influence the physico-mechanical properties and whether there are the appropriate nanoparticles exhibiting excellent antimicrobial activity against cariogenic bacteria along with acceptable physico-mechanical properties. Methods We systematically searched the various databases up to December 2021. The review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Consolidated Standards of Reporting Trials (CONSORT) guidelines. A meta-analysis of physico-mechanical properties was performed by a random-effects model at a 95% confidence interval and the antimicrobial effects were analyzed descriptively. Results 27 studies were included for the final analysis. There was no statistically significant difference in flexural strength (0.553, [95% confidence interval (CI) 0.501-0.604]), microhardness (0.509, [95% CI 0.278-0.736]), surface roughness (0.753, [95% CI 0.315-0.953]), impact strength (0.90, [95% CI 0.188-0.997]), and elastic modulus (0.848, [95% CI 0.514-0.967]), with nanoparticles addition compared with the control group. Forest plots were not generated for the thermal conductivity, tensile strength, and translucency because of the lack of comparison. Although the articles showed high heterogeneity without the high risk of bias, the finding showed the nanoparticles at low concentrations into dental acrylic resins could improve the antimicrobial activities without adverse effects on their physico-mechanical properties. Conclusion Adding the low concentration of nanoparticles such as 0.5% Ag, ≤0.25% TiO2, and ≤0.25% SiO2 as the most abundant antimicrobial nanoparticles do not influence their physico-mechanical properties and can be effective in the elimination of cariogenic pathogens.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, Tehran University of Medical Sciences, Tehran, Iran.,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
8
|
Adam RZ, Khan SB. Antimicrobial Efficacy of Silver Nanoparticles against Candida Albicans. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5666. [PMID: 36013803 PMCID: PMC9415300 DOI: 10.3390/ma15165666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Current treatment protocols for patients diagnosed with denture stomatitis are under scrutiny, and alternative options are being explored by researchers. The aim of this systematic review was to determine if silver nanoparticles inhibit the growth of Candida albicans, and the research question addressed was: In adults, do silver nanoparticles inhibit the growth of Candida albicans in acrylic dentures and denture liners compared to normal treatment options. A systematic review was the chosen methodology, and criteria were formulated to include all types of studies, including clinical and laboratory designs where the aim was tested. Of the 18 included studies, only one was a clinical trial, and 17 were in vitro research. The inhibition of candidal growth was based on the % concentration of AgNPs included within the denture acrylic and denture liner. As the % AgNPs increased, candida growth was reduced. This was reported as a reduction of candidal colony forming units in the studies. The quality of the included studies was mostly acceptable, as seen from the structured and validated assessments completed.
Collapse
Affiliation(s)
- Razia Z. Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7535, South Africa
| | | |
Collapse
|
9
|
Ahmed O, Sibuyi NRS, Fadaka AO, Madiehe MA, Maboza E, Meyer M, Geerts G. Plant Extract-Synthesized Silver Nanoparticles for Application in Dental Therapy. Pharmaceutics 2022; 14:380. [PMID: 35214112 PMCID: PMC8875651 DOI: 10.3390/pharmaceutics14020380] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022] Open
Abstract
Oral diseases are the most common non-communicable diseases in the world, with dental caries and periodontitis causing major health and social problems. These diseases can progress to systematic diseases and cause disfigurement when left untreated. However, treatment of oral diseases is among the most expensive treatments and often focus on restoration of form and function. Caries prevention has traditionally relied on oral hygiene and diet control, among other preventive measures. In this paper, these measures are not disqualified but are brought into a new context through the use of nanotechnology-based materials to improve these conventional therapeutic and preventive measures. Among inorganic nanomaterials, silver nanoparticles (AgNPs) have shown promising outcomes in dental therapy, due to their unique physicochemical properties and enhanced anti-bacterial activities. As such, AgNPs may provide newer strategies for treatment and prevention of dental infections. However, numerous concerns around the chemical synthesis of nanomaterials, which are not limited to cost and use of toxic reducing agents, have been raised. This has inspired the green synthesis route, which uses natural products as reducing agents. The biogenic AgNPs were reported to be biocompatible and environmentally friendly when compared to the chemically-synthesized AgNPs. As such, plant-synthesized AgNPs can be used as antimicrobial, antifouling, and remineralizing agents for management and treatment of dental infections and diseases.
Collapse
Affiliation(s)
- Omnia Ahmed
- Department of Restorative Dentistry, University of the Western Cape, Bellville 7535, South Africa;
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Adewale Oluwaseun Fadaka
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Madimabe Abram Madiehe
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Ernest Maboza
- Oral and Dental Research Laboratory, University of the Western Cape, Bellville 7535, South Africa;
| | - Mervin Meyer
- Department of Science and Innovation (DSI), Mintek Nanotechnology Innovation Centre (NIC) Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (N.R.S.S.); (A.O.F.); (M.A.M.)
| | - Greta Geerts
- Department of Restorative Dentistry, University of the Western Cape, Bellville 7535, South Africa;
| |
Collapse
|
10
|
Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:427. [PMID: 35057145 PMCID: PMC8779869 DOI: 10.3390/ma15020427] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Gayathiri Verasoundarapandian
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Farah Eryssa Khalid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Saitama 337-8570, Japan;
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
11
|
Antifungal Activity of Denture Base Resin Containing Nanozirconia: In Vitro Assessment of Candida albicans Biofilm. ScientificWorldJournal 2021; 2021:5556413. [PMID: 34381318 PMCID: PMC8352684 DOI: 10.1155/2021/5556413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To evaluate the antimicrobial effects of different concentrations of zirconium dioxide nanoparticles (nano-ZrO2) reinforcement of poly(methyl) methacrylate (PMMA) on surface roughness and C. albicans biofilm. Methods 20 heat-polymerized acrylic resin discs were conventionally made and divided into 4 groups (n = 5) according to nano-ZrO2 concentration: control (0% filler) and 3 experimental groups (2.5% (Z2.5), 5.0% (Z5.0), and 7.5% (Z7.5)). An optical profilometer was used for surface roughness evaluation, followed by Candida adherence assay. Specimens were sterilized, then immersed in cultured yeast (C. albicans), and incubated at 37°C for 48 hours. After that, discs were rinsed before extracting the clustered pellets of Candida. The attached C. albicans was counted using the direct method after spreading on agar media and incubating for 48 hours. Statistical analysis was performed using one-way ANOVA and Tukey's post hoc test at α = 0.05. Results Surface roughness was significantly increased with all modified groups compared with control (P < 0.01), which showed the lowest roughness value (0.027 ± 0.004 μm). There was no significant difference in the roughness value among reinforced groups (2.5, 5.0, and 7.5%) (P > 0.05), with Z7.5 showing the highest roughness value (0.042 ± 0.004 μm). Candida count was reduced as the nano-ZrO2 increased but not significantly (P=0.15). Conclusions The addition of different concentrations of nano-ZrO2 particles to PMMA increased the surface roughness compared with control; in contrast, insignificant reduction of C. albicans biofilm was detected.
Collapse
|
12
|
Biomaterials for the Prevention of Oral Candidiasis Development. Pharmaceutics 2021; 13:pharmaceutics13060803. [PMID: 34072188 PMCID: PMC8229946 DOI: 10.3390/pharmaceutics13060803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Thousands of microorganisms coexist within the human microbiota. However, certain conditions can predispose the organism to the overgrowth of specific pathogens that further lead to opportunistic infections. One of the most common such imbalances in the normal oral flora is the excessive growth of Candida spp., which produces oral candidiasis. In immunocompromised individuals, this fungal infection can reach the systemic level and become life-threatening. Hence, prompt and efficient treatment must be administered. Traditional antifungal agents, such as polyenes, azoles, and echinocandins, may often result in severe adverse effects, regardless of the administration form. Therefore, novel treatments have to be developed and implemented in clinical practice. In this regard, the present paper focuses on the newest therapeutic options against oral Candida infections, reviewing compounds and biomaterials with inherent antifungal properties, improved materials for dental prostheses and denture adhesives, drug delivery systems, and combined approaches towards developing the optimum treatment.
Collapse
|
13
|
Sun J, Wang L, Wang J, Li Y, Zhou X, Guo X, Zhang T, Guo H. Characterization and evaluation of a novel silver nanoparticles-loaded polymethyl methacrylate denture base: In vitro and in vivo animal study. Dent Mater J 2021; 40:1100-1108. [PMID: 33980747 DOI: 10.4012/dmj.2020-129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to optimize the preparation method of polymethyl methacrylate (PMMA) denture base loaded with nano silver (NAg), to more effectively and safely impart sustainable antibacterial functions. NAg solution was synthetized and mixed with acrylic acid and methyl methyacrylate (MMA) monomer in order to prepare a new type of NAg solution (NS)/polymer methyl methacrylate denture base specimens (NS/PMMA). The surface morphology, mechanical strength, antimicrobial activity, anti-aging performance, cytotoxicity and biocompatibility of NS/PMMA denture base were evaluated in comparison with specimens fabricated using traditional NAg adding methods and NAg-free denture base. The aesthetic characteristics and mechanical strength of NS/PMMA denture base met the clinical application requirements. Meanwhile, NS/PMMA denture base showed better antibacterial activity, anti-aging properties, no cytotoxicity and displayed exceptional biocompatibility. NS/PMMA denture base thus has great potential for clinical application.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering.,Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering
| | - Jian Wang
- Medical Devices Control, National Institutes For Food and Drug Control
| | - Yabin Li
- Department of Stomatology, the Fifth Medical Center, Chinese PLA General Hospital
| | - Xiangbin Zhou
- Department of Stomatology, the Third Medical Center, Chinese PLA General Hospital
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences
| | - Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital
| | - Hongyan Guo
- Department of Stomatology, the Third Medical Center, Chinese PLA General Hospital
| |
Collapse
|
14
|
Clarin A, Ho D, Soong J, Looi C, Ipe DS, Tadakamadla SK. The Antibacterial and Remineralizing Effects of Biomaterials Combined with DMAHDM Nanocomposite: A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1688. [PMID: 33808198 PMCID: PMC8037094 DOI: 10.3390/ma14071688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Researchers have developed novel nanocomposites that incorporate additional biomaterials with dimethylaminohexadecyl methacrylate (DMAHDM) in order to reduce secondary caries. The aim of this review was to summarize the current literature and assess the synergistic antibacterial and remineralizing effects that may contribute to the prevention of secondary caries. An electronic search was undertaken in MEDLINE using PubMed, Embase, Scopus, Web of Science and Cochrane databases. The initial search identified 954 papers. After the removal of duplicates and screening the titles and abstracts, 15 articles were eligible for this review. The amalgamation of 2-methacryloyloxyethyl phosphorylcholine (MPC) and silver nanoparticles (AgNPs) with DMAHDM resulted in increased antibacterial potency. The addition of nanoparticles of amorphous calcium phosphate (NACP) and polyamidoamine dendrimers (PAMAM) resulted in improved remineralization potential. Further clinical studies need to be planned to explore the antibacterial and remineralizing properties of these novel composites for clinical success.
Collapse
Affiliation(s)
- Alison Clarin
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Daphne Ho
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Jana Soong
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Cheryl Looi
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
| | - Deepak Samuel Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| | - Santosh Kumar Tadakamadla
- School of Dentistry and Oral Health, Griffith University, Gold Coast 4217, Australia; (A.C.); (D.H.); (J.S.); (C.L.); (D.S.I.)
- Menzies Health Institute Queensland, Gold Coast 4217, Australia
| |
Collapse
|
15
|
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci 2021; 22:2485. [PMID: 33801230 PMCID: PMC7957900 DOI: 10.3390/ijms22052485] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been successfully applied in several areas due to their significant antimicrobial activity against several microorganisms. In dentistry, AgNP can be applied in disinfection, prophylaxis, and prevention of infections in the oral cavity. In this work, the use of silver nanoparticles in dentistry and associated technological innovations was analyzed. The scientific literature was searched using PubMed and Scopus databases with descriptors related to the use of silver nanoparticles in dentistry, resulting in 90 open-access articles. The search for patents was restricted to the A61K code (International Patent Classification), using the same descriptors, resulting in 206 patents. The results found were ordered by dental specialties and demonstrated the incorporation of AgNPs in different areas of dentistry. In this context, the search for patents reaffirmed the growth of this technology and the dominance of the USA pharmaceutical industry over AgNPs product development. It could be concluded that nanotechnology is a promising area in dentistry with several applications.
Collapse
Affiliation(s)
- Clara Couto Fernandez
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ana Rita Sokolonski
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Maísa Santos Fonseca
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| | - Danilo Barral Araújo
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ricardo Dias Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| |
Collapse
|
16
|
Adam RZ, Khan SB. Antimicrobial efficacy of silver nanoparticles against Candida albicans: A systematic review protocol. PLoS One 2021; 16:e0245811. [PMID: 33493167 PMCID: PMC7833133 DOI: 10.1371/journal.pone.0245811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Denture-induced stomatitis is one form of candidiasis. It is characterised as inflammation and erythema of the oral mucosa underneath the denture-bearing areas and clinically classified into three types according to severity. Denture hygiene, appropriate mouth rinses and the use of antifungal therapy are commonly used to treat the condition, but new technologies are emerging that may assist in its treatment. AIM The aim of this systematic review is to determine if silver nanoparticles inhibit the growth of Candida Albicans when included in acrylic dentures and in different denture liners. METHODOLOGY A protocol was developed and published on PROSPERO (Registration No: CRD42019145542) and with the institutional ethics committee (Registration No: BM20/4/1). The protocol includes all aspects of a systematic review namely: selection criteria, search strategy, selection methods using predetermined eligibility criteria, data collection, data extraction, critical appraisal of included studies, and the intended statistical analyses such as calculating risk ratios (RR) for dichotomous outcomes and presented at 95% confidence intervals, a meta-analysis, if possible or a narrative report as needed. EXPECTED RESULTS With rigorous inclusion criteria set and databases identified for searching, appropriate clinical and laboratory studies may be obtained but the results and its interpretation and translation into clinical practice may be a challenge as these depend on the quality of the research.
Collapse
Affiliation(s)
- Razia Z. Adam
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| | - Saadika B. Khan
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
17
|
Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry. NANOMATERIALS 2021; 11:nano11020259. [PMID: 33498453 PMCID: PMC7909445 DOI: 10.3390/nano11020259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
This review is an attempt to summarize current research on ozone, titanium dioxide (TiO2), silver (Ag), copper oxide CuO and platinum (Pt) nanoparticles (NPs). These agents can be used in various fields of dentistry such as conservative dentistry, endodontic, prosthetic or dental surgery. Nanotechnology and ozone can facilitate the dentist’s work by providing antimicrobial properties to dental materials or ensuring a decontaminated work area. However, the high potential of these agents for use in medicine should be confirmed in further research due to possible side effects, especially in long duration of observation so that the best way to apply them can be obtained.
Collapse
|
18
|
Mok ZH, Proctor G, Thanou M. Emerging nanomaterials for dental treatments. Emerg Top Life Sci 2020; 4:613-625. [PMID: 33200780 PMCID: PMC7752085 DOI: 10.1042/etls20200195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
The emergence of nanomaterials for dental treatments is encouraged by the nanotopography of the tooth structure, together with the promising benefits of nanomedicine. The use of nanoparticles in dentistry, also termed as 'nanodentistry', has manifested in applications for remineralisation, antimicrobial activity, local anaesthesia, anti-inflammation, osteoconductivity and stem cell differentiation. Besides the applications on dental tissues, nanoparticles have been used to enhance the mechanical properties of dental composites, improving their bonding and anchorage and reducing friction. The small particle size allows for enhanced permeation into deeper lesions, and reduction in porosities of dental composites for higher mechanical strength. The large surface area to volume ratio allows for enhanced bioactivity such as bonding and integration, and more intense action towards microorganisms. Controlled release of encapsulated bioactive molecules such as drugs and growth factors enables them to be delivered more precisely, with site-targeted delivery for localised treatments. These properties have benefitted across multiple fields within dentistry, including periodontology and endodontics and reengineering of dental prosthetics and braces. This review summarises the current literature on the emerging field of nanomaterials for dental treatments.
Collapse
Affiliation(s)
- Zi Hong Mok
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Gordon Proctor
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, U.K
| | - Maya Thanou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| |
Collapse
|
19
|
Antifungal and Surface Properties of Chitosan-Salts Modified PMMA Denture Base Material. Molecules 2020; 25:molecules25245899. [PMID: 33322112 PMCID: PMC7763281 DOI: 10.3390/molecules25245899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan (CS) and its derivatives show antimicrobial properties. This is of interest in preventing and treating denture stomatitis, which can be caused by fungi. Therefore, the aim of this study was the development of a novel antifungal denture base material by modifying polymethyl methacrylate (PMMA) with CS-salt and characterizing its antifungal and surface properties in vitro. For this purpose, the antifungal effect of chitosan-hydrochloride (CS-HCl) or chitosan-glutamate (CS-G) as solutions in different concentrations was determined. To obtain modified PMMA resin specimens, the CS-salts were added to the PMMA before polymerization. The roughness of these specimens was measured by contact profilometry. For the evaluation of the antifungal properties of the CS-salt modified resins, a C. albicans biofilm assay on the specimens was performed. As solutions, both the CS-G and CS-HCl-salt had an antifungal effect and inhibited C. albicans growth in a dose-dependent manner. In contrast, CS-salt modified PMMA resins showed no significant reduced C. albicans biofilm formation. Furthermore, the addition of CS-salts to PMMA significantly increased the surface roughness of the specimens. This study shows that despite the antifungal effect of CS-salts in solution, a modification of PMMA resin with these CS-salts does not improve the antifungal properties of PMMA denture base material.
Collapse
|
20
|
Zafar MS. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers (Basel) 2020; 12:E2299. [PMID: 33049984 PMCID: PMC7599472 DOI: 10.3390/polym12102299] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
A wide range of polymers are commonly used for various applications in prosthodontics. Polymethyl methacrylate (PMMA) is commonly used for prosthetic dental applications, including the fabrication of artificial teeth, denture bases, dentures, obturators, orthodontic retainers, temporary or provisional crowns, and for the repair of dental prostheses. Additional dental applications of PMMA include occlusal splints, printed or milled casts, dies for treatment planning, and the embedding of tooth specimens for research purposes. The unique properties of PMMA, such as its low density, aesthetics, cost-effectiveness, ease of manipulation, and tailorable physical and mechanical properties, make it a suitable and popular biomaterial for these dental applications. To further improve the properties (thermal properties, water sorption, solubility, impact strength, flexural strength) of PMMA, several chemical modifications and mechanical reinforcement techniques using various types of fibers, nanoparticles, and nanotubes have been reported recently. The present article comprehensively reviews various aspects and properties of PMMA biomaterials, mainly for prosthodontic applications. In addition, recent updates and modifications to enhance the physical and mechanical properties of PMMA are also discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
21
|
Antifungal Effect of Silver Nitrate on Prosthodontic Dentures. BALKAN JOURNAL OF DENTAL MEDICINE 2020. [DOI: 10.2478/bjdm-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Background/Aim: Although there are studies about the antimicrobial activity of silver, there is no study evaluating it as a denture disinfectant. The purpose of this study was to explore the effectiveness of 6 disinfectant solutions (50% vinegar, 100% vinegar, 1% silver nitrate, 2% silver nitrate, %1 sodium hypochlorite, 0,12% chlorhexidine digluconate) in the disinfection of acrylic resin specimens contaminated in vitro by Candida albicans, as measured by residual colony-forming unit (CFU).
Material and Methods: 66 pieces of 10mmx2mm acrylic resin disc samples were prepared and incubated in 1x106 cell/ml suspension of C. albicans ATCC 18804 for 24 h (one of them as a control, n=11/group). The specimens were then transferred into tubes containing 10 ml of the tested disinfectants and kept for 10 minutes in the disinfectant. After washing with saline, the specimens were vortexed to remove the microorganisms adhered to the surfaces. Colony counting of the collected microorganisms was performed on Sabouroud dextrose medium using 10−1, 10−2 and 10−3 dilutions. The results were analysed using Kruskal-Wallis and Mann-Whitney U tests (p<0,05).
Results: The results showed that 1% sodium hypochlorite, %1 silver nitrate and 2% silver nitrate were the most effective against Candida Albicans (p<0,05), followed by 100% vinegar, 0,12% chlorhexidine digluconate and 50% vinegar (p<0,05).
Conclusions: Within the boundaries of this study, we conclude that 1% silver nitrate is a promising alternative disinfectant to 1% sodium hypochlorite and performs better compared to 0,12 % chlorhexidine gluconate, 50% and 100% vinegar.
Collapse
|
22
|
Rodriguez-Torres MDP, Díaz-Torres LA, Millán-Chiu BE, García-Contreras R, Hernández-Padrón G, Acosta-Torres LS. Antifungal and Cytotoxic Evaluation of Photochemically Synthesized Heparin-Coated Gold and Silver Nanoparticles. Molecules 2020; 25:E2849. [PMID: 32575630 PMCID: PMC7356581 DOI: 10.3390/molecules25122849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Heparin-based silver nanoparticles (AgHep-NPs) and gold nanoparticles (AuHep-NPs) were produced by a photochemical method using silver nitrate and chloroauric acid as metal precursors and UV light at 254 nm. UV-Vis spectroscopy graphs showed absorption for AgHep-NPs and AuHep-NPs at 420 nm and 530 nm, respectively. TEM revealed a pseudospherical morphology and a small size, corresponding to 10-25 nm for AgHep-NPs and 1.5-7.5 nm for AuHep-NPs. Their antifungal activity against Candida albicans, Issatchenkia orientalis (Candida krusei), and Candida parapsilosis was assessed by the microdilution method. We show that AgHep-NPs were effective in decreasing fungus density, whereas AuHep-NPs were not. Additionally, the viability of human gingival fibroblasts was preserved by both nanoparticle types at a level above 80%, indicating a slight cytotoxicity. These results are potentially useful for applications of the described NPs mainly in dentistry and, to a lesser extent, in other biomedical areas.
Collapse
Affiliation(s)
- María del Pilar Rodriguez-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | | | - Blanca E. Millán-Chiu
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - René García-Contreras
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
| | - Genoveva Hernández-Padrón
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico;
| | - Laura Susana Acosta-Torres
- Laboratorio de Investigación Interdisciplinaria, Área de Nanoestructuras y Biomateriales, Escuela Nacional de Estudios Superiores, Unidad León de la Universidad Nacional Autónoma de México (UNAM), Boulevard UNAM No. 2011, Predio el Saucillo y el Potrero, 37684 León, Guanajuato, Mexico;
| |
Collapse
|
23
|
Pérez-Duran F, Acosta-Torres LS, Serrano-Díaz PN, Toscano-Torres IA, Olivo-Zepeda IB, García-Caxin E, Nuñez-Anita RE. Toxicity and antimicrobial effect of silver nanoparticles in swine sperms. Syst Biol Reprod Med 2020; 66:281-289. [PMID: 32456478 DOI: 10.1080/19396368.2020.1754962] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bacterial contamination in swine semen affects the quality and longevity of sperm and consequently fertility is reduced. Antibiotics have been used to prevent bacterial growth, but the frequency of bacterial resistance to various antibiotics are increasing. Silver nanoparticles (AgNPs) of 10-20 nm in size have shown a biocide effect in bacteria and fungi microorganisms without toxicity to certain mammalian cells. The goal of this study was to analyze both, antimicrobial activity against Staphylococcus aureus and toxicity in swine sperms after 10-20 nm AgNPs treatment. S. aureus proliferation decreased when concentrations from 0.4 to 10 mM AgNPs were assayed. Also, sperm viability measured by mitochondrial metabolism after AgNPs treatment up to a concentration of 10 mM, was viable. In addition, viability determined by membrane integrity of sperms showed that AgNPs treatment up to a concentration of 10 mM was safe. Sperm morphology was evaluated by automated quantification of proximal and distal drops and whiptails. Data indicated that AgNPs treatment up to a concentration of 4 mM were harmless. Finally, sperm capacitation and acrosome reactions were determined by (chlortetracycline) CTC assay. Data showed that no changes in sperm capacitation were observed when sperms were treated with 2 mM of AgNPs, but data showed increased calcium mobilization when treated with 10 mM AgNPs, which suggested sperm capacitation. Finally, there were no significant changes encountered on sperm acrosome reaction for any of the treatments after AgNPs treatment. Taken together, these results show the potential of AgNPs as an alternative to conventional antimicrobial agents that are currently used in extenders to preserve semen required for storage. ABBREVIATIONS AgNPs: silver nanoparticles; AMK: amikacin; AMP: adenosine monophosphate; AR: acrosome reaction; C: capacitation; CF: cefallotin; CFU: colony-forming unit; CTC: chlortetracycline; CXM: cefuroxime; DMSO: dimethyl sulfoxide; NC: non-capacitation; NOM: Norma Oficial Mexicana; PBS: phosphate buffered saline; RLUs: relative light units; ROS: reactive oxygen species; SQS: Seminal Quality System.
Collapse
Affiliation(s)
- Francisco Pérez-Duran
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Laura Susana Acosta-Torres
- Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México , Guanajuato, México
| | | | - Irma Arcelia Toscano-Torres
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Ingrid Brenda Olivo-Zepeda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Edwin García-Caxin
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| | - Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo , Tarímbaro, México
| |
Collapse
|
24
|
Ahmad N, Jafri Z, Khan ZH. Evaluation of nanomaterials to prevent oral Candidiasis in PMMA based denture wearing patients. A systematic analysis. J Oral Biol Craniofac Res 2020; 10:189-193. [PMID: 32373449 DOI: 10.1016/j.jobcr.2020.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/15/2020] [Accepted: 04/14/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose The purpose of this study is the prevention of Candida colonies on PMMA Denture Base by altering the surface and incorporations of Nanoparticles. Materials and methods The Pub Med/Medline was searched to identify 100 relevant studies published from 2011 to 2020. The search strategy employed the following keywords related to "use of Nanoparticles in dentistry", "Antimicrobial agents and PMMA", "Candidiasis and nanomaterials", "Prevention of oral Candidiasis", "Incorporation of antimicrobial agents in acrylic dentures," "nanoparticles as therapeutic agents for denture stomatitis", "Nanodentistry" or "Nanotechnology" or "Nanocomposite" or "Nanodrugs" or "Nanomaterials". Results Most of the studies shows that modified PMMA denture base resin containing different antimicrobial coatings and incorporation of metal oxides Nanoparticles and other nanomaterials showed antifungal activity in vitro; however some materials in higher concentration showing altered physical and mechanical properties possibly due to aggregation of Nanoparticles in the lattice of PMMA molecules. Conclusion Metal oxides nanomaterials revealed cytotoxicity to Candida and other microbes present in oral biofilm including PMMA denture surface. Nano toxicity may attribute to direct interaction of nanoparticles with cell membrane, hindrance in protein synthesis and early adhesion & interfere with physiology of pathogens.
Collapse
Affiliation(s)
- Nafis Ahmad
- Dept of Prosthodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Zeba Jafri
- Dept of Periodontics, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| | - Zishan H Khan
- Dept. of Applied Science & Humanities, Faculty of Engineering &Technology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
25
|
Lee MJ, Kim MJ, Oh SH, Kwon JS. Novel Dental Poly (Methyl Methacrylate) Containing Phytoncide for Antifungal Effect and Inhibition of Oral Multispecies Biofilm. MATERIALS 2020; 13:ma13020371. [PMID: 31941105 PMCID: PMC7014161 DOI: 10.3390/ma13020371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Despite the many advantages of poly (methyl methacrylate) (PMMA) as a dental polymer, its antifungal and antibacterial effects remain limited. Here, phytoncide was incorporated into PMMA to inhibit fungal and biofilm accumulation without impairing the basic and biological properties of PMMA. A variable amount of phytoncide (0 wt % to 5 wt %) was incorporated into PMMA, and the basic material properties of microhardness, flexural strength and gloss were evaluated. In addition, cell viability was confirmed by MTT assay. This MTT assay measures cell viability via metabolic activity, and the color intensity of the formazan correlates viable cells. The fungal adhesion and viability on the PMMA surfaces were evaluated using Candida albicans (a pathogenic yeast). Finally, the thickness of saliva-derived biofilm was estimated. The flexural strength of PMMA decreased with increasing phytoncide contents, whereas there were no significant differences in the microhardness and gloss (p > 0.05) and the cell viability (p > 0.05) between the control and the phytoncide-incorporated PMMA samples. The amounts of adherent Candida albicans colony-forming unit (CFU) counts, and saliva-derived biofilm thickness were significantly lower in the phytoncide-incorporated PMMA compared to the control (p < 0.05). Hence, it was concluded that the incorporation of appropriate amounts of phytoncide in PMMA demonstrated antifungal effects while maintaining the properties, which could be a possible use in dentistry application such as denture base resin.
Collapse
Affiliation(s)
- Myung-Jin Lee
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.L.); (M.-J.K.)
| | - Min-Ji Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.L.); (M.-J.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Sang-Hwan Oh
- Department of Dental Hygiene, College of Medical Science, Konyang University, Daejeon 35365, Korea;
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.-J.L.); (M.-J.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-3081
| |
Collapse
|
26
|
Chladek G, Pakieła K, Pakieła W, Żmudzki J, Adamiak M, Krawczyk C. Effect of Antibacterial Silver-Releasing Filler on the Physicochemical Properties of Poly(Methyl Methacrylate) Denture Base Material. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4146. [PMID: 31835665 PMCID: PMC6947518 DOI: 10.3390/ma12244146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Colonization of polymeric dental prosthetic materials by yeast-like fungi and the association of these microorganisms with complications occurring during prosthetic treatment are important clinical problems. In previously presented research, submicron inorganic particles of silver sodium hydrogen zirconium phosphate (S-P) were introduced into poly(methyl methacrylate) (PMMA) denture base material which allowed for obtaining the antimicrobial effect during a 90 day experiment. The aim of the present study was to investigate the flexural strength, impact strength, hardness, wear resistance, sorption, and solubility during three months of storage in distilled water. With increasing S-P concentration after 2 days of conditioning in distilled water, reduced values of flexural strength (107-72 MPa), impact strength (18.4-5.5 MPa) as well as enhanced solubility (0.95-1.49 µg/mm3) were registered, but they were at acceptable levels, and the sorption was stable. Favorable changes included increased hardness (198-238 MPa), flexural modulus (2.9-3.3 GPa), and decreased volume loss during wear test (2.9-0.2 mm3). The percentage changes of the analyzed properties during the 90 days of storage in distilled water were similar for all materials.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland; (K.P.); (W.P.); (J.Ż.); (M.A.)
| | - Katarzyna Pakieła
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland; (K.P.); (W.P.); (J.Ż.); (M.A.)
| | - Wojciech Pakieła
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland; (K.P.); (W.P.); (J.Ż.); (M.A.)
| | - Jarosław Żmudzki
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland; (K.P.); (W.P.); (J.Ż.); (M.A.)
| | - Marcin Adamiak
- Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland; (K.P.); (W.P.); (J.Ż.); (M.A.)
| | - Cezary Krawczyk
- Department of Dental Technology, Medical College, ul. 3 Maja 63, 41-800 Zabrze, Poland;
| |
Collapse
|
27
|
Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin Oral Investig 2019; 24:2713-2725. [PMID: 31734793 DOI: 10.1007/s00784-019-03133-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The study evaluates the effect of adding graphene-Ag nanoparticles (G-AgNp) to a PMMA auto-polymerizing resin, with focus on antibacterial activity, cytotoxicity, monomer release, and mechanical properties. MATERIALS AND METHODS Auto-polymerizing acrylic resin (M) was loaded with 1 wt% G-AgNp (P1) and 2 wt% G-AgNp (P2). Methyl methacrylate monomer release (MMA) was measured after immersion of the samples in chloroform and cell medium respectively. Cell viability was assessed on dysplastic oral keratinocytes (DOK) and dental pulp stem cells. Oxidative stress and inflammatory response following exposure of dysplastic oral keratinocytes to the experimental resins was evaluated. Antibacterial activity against Staphylococcus aureus, Streptococcus mutans and Escherichia coli and also flexural strength of the resins were assessed. RESULTS Residual monomer: For samples immersed in chloroform, MMA concentration reached high levels, 10.27 μg/g for sample P1; MMA increased at higher G-AgNp loading; 0.63 μg/g MMA was found in medium for P1, and less for sample P2. Cell viability: Both cell lines displayed a viability decrease, but remained above 75%, compared to controls, when exposed to undiluted samples. Inflammation: proinflammatory molecule TNF-α decreased when DOK cultures were exposed to G-AgNp samples. MDA levels indicated increased oxidative stress damage in cells treated with PMMA, confirmed by the antioxidant mechanism activation, while samples containing G-AgNp induced an antioxidant effect. All tested samples showed antibacterial properties against Gram-positive bacteria. Samples containing G-AgNp also exhibited bactericide action on E. coli. Mechanical properties: both samples containing G-AgNp improved flexural strength compared to the sample resin, measured through elastic strength parameters. CONCLUSIONS PMMA resin loaded with G-AgNp presents promising antibacterial activity associated with minimal toxicity to human cells, in vitro, as well as improved flexural properties. CLINICAL RELEVANCE These encouraging results obtained in vitro support further in vivo investigation, to thoroughly check whether the PMMA loaded with graphene-silver nanoparticles constitute an improvement over current denture materials.
Collapse
|
28
|
Cierech M, Wojnarowicz J, Kolenda A, Krawczyk-Balska A, Prochwicz E, Woźniak B, Łojkowski W, Mierzwińska-Nastalska E. Zinc Oxide Nanoparticles Cytotoxicity and Release from Newly Formed PMMA-ZnO Nanocomposites Designed for Denture Bases. NANOMATERIALS 2019; 9:nano9091318. [PMID: 31540147 PMCID: PMC6781076 DOI: 10.3390/nano9091318] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023]
Abstract
The goal of the study was to investigate the level of zinc oxide nanoparticles (ZnO NPs) release from polymethyl methacrylate (PMMA)-ZnO nanocomposites (2.5%, 5%, and 7.5% w/w), as well as from the ZnO NPs layer produced on pure PMMA, and the impact of the achieved final ZnO NPs concentration on cytotoxicity, before the potential use as an alternative material for denture bases. The concentration of ZnO nanoparticles released to the aqueous solution of Zn2+ ions was assessed using optical emission spectrometry with inductively coupled plasma (ICP-OES). In the control group (pure PMMA), the released mean for ZnO was 0.074 mg/L and for individual nanocomposites at concentrations of 2.5%, 5%, and 7.5% was 2.281 mg/L, 2.143 mg/L, and 3.512 mg/L, respectively. The median for the ZnO NPs layer produced on PMMA was 4.878 mg/L. In addition, in vitro cytotoxicity of ZnO NPs against the human HeLa cell line was determined through the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. The cytotoxicity studies demonstrate that ZnO nanoparticles in the concentrations up to 20 mg/L have no adverse effect on HeLa cells. When compared with the released and cytotoxic concentrations of ZnO NPs, it can be expected that ZnO released from dental prostheses to the oral cavity environment will have no cytotoxic effect on host cells.
Collapse
Affiliation(s)
- Mariusz Cierech
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Adam Kolenda
- Department of Prosthodontics, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Agata Krawczyk-Balska
- Department of Applied Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Emilia Prochwicz
- Department of Applied Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-089 Warsaw, Poland.
| | - Bartosz Woźniak
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | - Witold Łojkowski
- Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland.
| | | |
Collapse
|
29
|
In vitro Comparative Study of Fibroblastic Behaviour on Polymethacrylate (PMMA) and Lithium Disilicate Polymer Surfaces. Polymers (Basel) 2019; 11:polym11040744. [PMID: 31027245 PMCID: PMC6523339 DOI: 10.3390/polym11040744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Polymethyl methacrylate (PMMA) and lithium disilicate are widely used materials in the dental field. PMMA is mainly used for the manufacture of removable prostheses; however, with the incorporation of CAD-CAM technology, new applications have been introduced for this material, including as a provisional implant attachment. Lithium disilicate is considered the gold standard for definitive attachment material. On the other hand, PMMA has begun to be used in clinics as a provisional attachment until the placement of a definitive one occurs. Although there are clinical studies regarding its use, there are few studies on cell reorganization around this type of material. This is why we carried out an in vitro comparative study using discs of both materials in which human gingival fibroblasts (HGFs) were cultured. After processing them, we analyzed various cellular parameters (cell count, cytoskeleton length, core size and coverage area). We analyzed the surface of the discs together with their composition. The results obtained were mostly not statistically significant, which shows that the qualities of PMMA make it a suitable material as an implant attachment.
Collapse
|
30
|
da Silva EVF, dos Santos DM, Bonatto LDR, Brito VGB, de Oliveira SHP, Goiato MC. Influence of Preparation and Exposure Periods of Eluates from Ocular Prosthesis Acrylic Resin in Human Conjunctival Cell Line. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 30011425 PMCID: PMC6305826 DOI: 10.29252/.23.1.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND This study was undertaken to analyze if different preparation and exposure periods of eluates from ocular prosthesis acrylic resin influence the cytotoxicity for conjunctival cells. METHODS Twenty-four acrylic resin specimens were divided, according to the period of eluate exposure to Chang conjunctival cells (24 and 72 hours). Eluates were prepared in four different ways: 24, 48, and 72 hours of resin specimen immersion in medium and 24 hours of immersion in water, followed by 24 hours of immersion in medium. MTT assay was used to evaluate the cytotoxic effect. The production of IL-1β, IL-6, TNF-α, and chemokine macrophage inflammatory protein 1α was evaluated by ELISA, while the mRNA expression of type IV collagen (COL IV), transforming growth factor β (TGF-β), and matrix metalloproteinase 9 (MMP9) were evaluated by real-time RT-PCR technique. The statistical analysis was carried out using ANOVA with Bonferroni post-hoc test and the student’s t-test (p < 0.05). RESULTS Significant quantities of IL-6 (4.594 pg/mL) and mRNA expression of COL IV (1.58) were verified at 72 hours of eluate exposure to cells, as compared to 24 hours. After the 72-hour exposure of eluates to cells, lower cell proliferation (88.4%) and higher IL-6 quantities (12.374 pg/mL), as well as mRNA expression of COL IV (2.21), TGF-β (2.02), and MMP9 (5.75) were observed, which corresponded to 72 hours of a specimen immersed in medium. CONCLUSION Longer periods of eluate preparation and exposure from the acrylic resin to cells are related to higher production of proinflammatory cytokines and extracellular matrix proteins.
Collapse
Affiliation(s)
- Emily Vivianne Freitas da Silva
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil
| | - Daniela Micheline dos Santos
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil
| | - Liliane da Rocha Bonatto
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil
| | - Victor Gustavo Balera Brito
- Department of Basic Sciences, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil
| | | | - Marcelo Coelho Goiato
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil,Corresponding Author: Marcelo Goiato Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Sao Paulo State University (UNESP), Aracatuba, Sao Paulo, Brazil; Tel.: (+55-18) 36363287; Fax: (+55-18) 36363246; E-mail:
| |
Collapse
|
31
|
Ziąbka M, Menaszek E, Tarasiuk J, Wroński S. Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology-In Vivo Evaluation. NANOMATERIALS 2018; 8:nano8100764. [PMID: 30262741 PMCID: PMC6215221 DOI: 10.3390/nano8100764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The aim of this work was to investigate of biocompatibility of polymeric implants modified with silver nanoparticles (AgNPs). Middle ear prostheses (otoimplants) made of the (poly)acrylonitrile butadiene styrene (ABS) and ABS modified with silver nanoparticles were prepared through extrusion and injection moulding process. The obtained prostheses were characterized by SEM-EDX, micro-CT and mechanical tests, confirming their proper shape, good AgNPs homogenization and mechanical parameters stability. The biocompatibility of the implants was evaluated in vivo on rats, after 4, 12, 24 and 48 weeks of implantation. The tissue-healing process and cytotoxicity of the implants were evaluated on the basis of microscopic observations of the materials morphology after histochemical staining with cytochrome c oxidase (OCC) and acid phosphatase (AP), as well as via micro-tomography (ex vivo). The in vivo studies confirmed biocompatibility of the implants in the surrounding tissue environment. Both the pure ABS and nanosilver-modified ABS implants exhibited a distinct decrease in the area of granulation tissue which was replaced with the regenerating muscle tissue. Moreover, a slightly smaller area of granulation tissue was observed in the surroundings of the silver-doped prosthesis than in the case of pure ABS prosthesis. The kinetics of silver ions releasing from implants was investigated by ICP-MS spectrometry. The measurement confirmed that concentration of the silver ions increased within the implant’s immersion period. Our results showed that middle ear implant with the nanoscale modification is biocompatible and might be used in ossicular reconstruction.
Collapse
Affiliation(s)
- Magdalena Ziąbka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Elżbieta Menaszek
- Department of Cytobiology, Collegium Medicum, Faculty of Pharmacy, UJ Jagiellonian University, 30-001 Krakow, Poland.
| | - Jacek Tarasiuk
- Department of Condensed Matter Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Sebastian Wroński
- Department of Condensed Matter Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
32
|
Türkcan İ, Nalbant AD, Bat E, Akca G. Examination of 2-methacryloyloxyethyl phosphorylcholine polymer coated acrylic resin denture base material: surface characteristics and Candida albicans adhesion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:107. [PMID: 29971499 DOI: 10.1007/s10856-018-6116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
The aim of this study is to evaluate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coating with various concentrations onto acrylic resin denture base material on surface characteristics such as contact angle and surface roughness and on Candida albicans adhesion which is the major factor of denture stomatitis. Specimens, prepared from heat-polymerized acrylic denture base material, were divided into control and three test groups, randomly. Surfaces of the specimens in test groups were coated with poly(MPC) (PMPC) by graft polymerization of MPC in different concentrations (0.25 mol/L; 0.50 mol/L and 0.75 mol/L), while no surface treatment was applied to the control group. Contact angles and surface roughness were examined, and chemical composition of the surfaces was analyzed by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (FTIR) to verify the presence of PMPC coatings. Then, specimens were incubated with C. albicans for 18 h and the number of adhered cells was determined. Upon PMPC coating, the contact angle values statistically decreased, but no difference was found in surface roughness values. A statistically significant decrease was observed in C. albicans adhesion in parallel with the increase in the MPC polymer concentration. There was no significant difference between 0.50 mol/L and 0.75 mol/L groups in terms of adhesion. These findings indicated that graft polymerization of MPC on acrylic denture base material reduces the adhesion of C. albicans, and may be evaluated as a coating for prevention of denture stomatitis.
Collapse
Affiliation(s)
- İrem Türkcan
- Özel Çankaya Hikmet Bozyel Oral and Dental Health Policlinic, Ankara, Turkey.
| | - A Dilek Nalbant
- Faculty of Dentistry, Department of Prosthodontics, Gazi University, Ankara, Turkey
| | - Erhan Bat
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Gülçin Akca
- Faculty of Dentistry, Department of Microbiology, Gazi University, Ankara, Turkey
| |
Collapse
|
33
|
Shen XT, Zhang YZ, Xiao F, Zhu J, Zheng XD. Effects on cytotoxicity and antibacterial properties of the incorporations of silver nanoparticles into the surface coating of dental alloys. J Zhejiang Univ Sci B 2018; 18:615-625. [PMID: 28681586 DOI: 10.1631/jzus.b1600555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to research the changes in cytotoxicity and antibacterial properties after silver nanoparticles (AgNPs) were incorporated into the surface coating of dental alloys. AgNPs were attached to cobalt chromium alloys and pure titanium using a hydrothermal method, according to the reaction: AgNO3+NaBH4→ Ag+1/2H2+1/2B2H6+NaNO3. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate the cytotoxicity of the alloys when in contact with osteogenic precursor cells (MC3T3-E1) from mice and mesenchymal stem cells (BMSC) from rats. The antibacterial properties of dental alloys incorporating three different concentrations (10, 4, and 2 μmol/L) of AgNPs were tested on Staphylococcus aureus (SA) and Streptococcus mutans (MS). High cytotoxicity values were observed for all dental alloys that contained 0% of AgNPs (the control groups). The incorporation of AgNPs reduced cytotoxicity values. No significant difference was observed for antibacterial performance when comparing dental alloys containing AgNPs to the respective control groups. The results demonstrated that the cobalt chromium alloys and pure titanium all had cytotoxicity to MC3T3-E1 and BMSC and that the incorporation of AgNPs could reduce this cytotoxicity. The concentrations of AgNPs adopted in this study were found to have no antibacterial action against SA or MS.
Collapse
Affiliation(s)
- Xiao-Ting Shen
- Stomatology Hospital Affiliated to Zhejiang University of Medicine, Hangzhou 310006, China
| | - Yan-Zhen Zhang
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Fang Xiao
- Department of General Dentistry, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jing Zhu
- Department of Stomatology, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Abdulrazzaq Naji S, Jafarzadeh Kashi TS, Pourhajibagher M, Behroozibakhsh M, Masaeli R, Bahador A. Evaluation of Antimicrobial Properties of Conventional Poly(Methyl Methacrylate) Denture Base Resin Materials Containing Hydrothermally Synthesised Anatase TiO 2 Nanotubes against Cariogenic Bacteria and Candida albicans. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:161-172. [PMID: 31011350 PMCID: PMC6447881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the antimicrobial properties of a conventional poly methyl methacrylate (PMMA) modified with hydrothermally synthesised titanium dioxide nanotubes (TNTs). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentrations (MFC) for planktonic cells of the TiO2 nanotubes solution against Lactobacillus acidophilus, Streptococcus mutans and Candida albicans were determined. The powder of conventional acrylic resin was modified using 2.5% and 5% by weight synthesised titanium dioxide (TiO2) nanotubes, and rectangular-shaped specimens (10 mm × 10 mm × 3 mm) were fabricated. The antimicrobial properties of ultraviolet (UV) and non-UV irradiated modified, and non-modified acrylic resins were evaluated using the estimation of planktonic cell count and biofilm formation of the three microorganisms mentioned above. The data were analysed by one-way analysis of variance (ANOVA), followed by a post-hoc Tukey's test at a significance level of 5%. MIC, for Streptococcus. mutans, Lactobacillus. acidophilus, and Candida. albicans, MBC for S. mutans and L. acidophilus and MFC for Candida. albicans were obtained more than 2100 µg/mL. The results of this study indicated a significant reduction in both planktonic cell count and biofilm formation of modified UV-activated acrylic specimens compared with the control group (p = 0.00). According to the results of the current study, it can be concluded that PMMA/TiO2 nanotube composite can be considered as a promising new material for antimicrobial approaches.
Collapse
Affiliation(s)
- Sahar Abdulrazzaq Naji
- Foundation of Technical Education, College of Health and Medical Technology, Baghdad, Iraq.,Department of Dental Biomaterials, School of Dentistry, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.
| | - Tahereh Sadat Jafarzadeh Kashi
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| | - Reza Masaeli
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A. PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 2017; 12:3801-3812. [PMID: 28553115 PMCID: PMC5440038 DOI: 10.2147/ijn.s130722] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This paper reviews acrylic denture base resin enhancement during the past few decades. Specific attention is given to the effect of fiber, filler, and nanofiller addition on poly(methyl methacrylate) (PMMA) properties. The review is based on scientific reviews, papers, and abstracts, as well as studies concerning the effect of additives, fibers, fillers, and reinforcement materials on PMMA, published between 1974 and 2016. Many studies have reported improvement of PMMA denture base material with the addition of fillers, fibers, nanofiller, and hybrid reinforcement. However, most of the studies were limited to in vitro investigations without bioactivity and clinical implications. Considering the findings of the review, there is no ideal denture base material, but the properties of PMMA could be improved with some modifications, especially with silanized nanoparticle addition and a hybrid reinforcement system.
Collapse
Affiliation(s)
- Mohammed M Gad
- Department of Substitutive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - Shaimaa M Fouda
- Department of Substitutive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia.,Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Fahad A Al-Harbi
- Department of Substitutive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Kingdom of Saudi Arabia
| | - Ritva Näpänkangas
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Aune Raustia
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
36
|
Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces. J Prosthet Dent 2017; 118:765-770. [PMID: 28434686 DOI: 10.1016/j.prosdent.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 11/24/2022]
Abstract
STATEMENT OF PROBLEM Candida-associated denture stomatitis is the most common oral mucosal lesion among denture wearers. Trimethylsilane (TMS) plasma coating may inhibit the growth of Candida albicans on denture surfaces. PURPOSE The purpose of this in vitro study was to investigate whether TMS plasma coatings can effectively reduce C albicans adhesion on denture base acrylic resin surfaces. MATERIAL AND METHODS Sixty denture base acrylic resin disks with smooth and rough surfaces were prepared and were either left untreated (control group) or coated with TMS monomer (experimental group) by using plasma. Contact angles were measured immediately after TMS plasma coating. The morphology of C albicans adhesion was observed with scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) was used to characterize the elemental composition of the specimen surface. An adhesion test was performed by incubating the resin disk specimens in C albicans suspensions (1×107 cells/mL) at 37°C for 24 hours and further measuring the optical density of the C albicans by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay test. One-way ANOVA and 2-way ANOVA were followed by a post hoc test analysis (α=.05). RESULTS The group with TMS coating exhibited a more hydrophobic surface than the control group. EDS analysis revealed successful TMS plasma coating. The difference in the mean contact angles between the uncoated group and the TMS-coated group was statistically significant (P<.05), 79.0 ±2.9 degrees versus 105.7 ±1.5 degrees for the smooth surface and 90.2 ±7.6 degrees versus 131.5 ±2.1 degrees for the rough surface. In SEM analysis, the C albicans biofilm was found to grow more on the surface of the denture base resin without the TMS coating than on the surfaces of the experimental group. In the adhesion test, the amount of C albicans adhering to the surface of denture base resin with the TMS coating was significantly less than that on the surfaces without TMS coating (P<.05). CONCLUSIONS TMS coating significantly reduced the adhesion of C albicans to the denture base resin and may reduce denture stomatitis.
Collapse
|
37
|
Chen H, Han Q, Zhou X, Zhang K, Wang S, Xu HHK, Weir MD, Feng M, Li M, Peng X, Ren B, Cheng L. Heat-Polymerized Resin Containing Dimethylaminododecyl Methacrylate Inhibits Candida albicans Biofilm. MATERIALS 2017; 10:ma10040431. [PMID: 28772791 PMCID: PMC5507000 DOI: 10.3390/ma10040431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 02/05/2023]
Abstract
The prevalence of stomatitis, especially caused by Candida albicans, has highlighted the need of new antifungal denture materials. This study aimed to develop an antifungal heat-curing resin containing quaternary ammonium monomer (dimethylaminododecyl methacrylate, DMADDM), and evaluate its physical performance and antifungal properties. The discs were prepared by incorporating DMADDM into the polymer liquid of a methyl methacrylate-based, heat-polymerizing resin at 0% (control), 5%, 10%, and 20% (w/w). Flexure strength, bond quality, surface charge density, and surface roughness were measured to evaluate the physical properties of resin. The specimens were incubated with C. albicans solution in medium to form biofilms. Then Colony-Forming Units, XTT assay, and scanning electron microscope were used to evaluate antifungal effect of DMADDM-modified resin. DMADDM modified acrylic resin had no effect on the flexural strength, bond quality, and surface roughness, but it increased the surface charge density significantly. Meanwhile, this new resin inhibited the C. albicans biofilm significantly according to the XTT assay and CFU counting. The hyphae in C. albicans biofilm also reduced in DMADDM-containing groups observed by SEM. DMADDM modified acrylic resin was effective in the inhibition of C. albicans biofilm with good physical properties.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
- Department of Preventive Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China.
| | - Qi Han
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Keke Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Suping Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Mingye Feng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China.
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomedicine 2017; 12:2353-2360. [PMID: 28392692 PMCID: PMC5376186 DOI: 10.2147/ijn.s132116] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA), is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. Aim of the study This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps) with or without methacryloxypropyltrimethoxysilane modification. Materials and methods Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w) nonsilanized (Nosi) or silanized (Si) ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness), a* (red-green), b* (yellow-blue) and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. Results The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE) and opacity of the Nosi groups were greater compared with the Si groups. The flexural strength of the Si groups, except for the 1.25% group, was significantly greater compared with the Nosi groups. Conclusion PMMA incorporated with Si ZnOnps, particularly with 2.5% Si ZnOnps, had a greater antifungal effect, less color differences, and opacity compared with Nosi ZnOnps, while retaining its mechanical properties.
Collapse
Affiliation(s)
- Krid Kamonkhantikul
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Mansuang Arksornnukit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hidekazu Takahashi
- Oral Biomaterials Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
39
|
Köroğlu A, Şahin O, Kürkçüoğlu I, Dede DÖ, Özdemir T, Hazer B. Silver nanoparticle incorporation effect on mechanical and thermal properties of denture base acrylic resins. J Appl Oral Sci 2017; 24:590-596. [PMID: 28076464 PMCID: PMC5161257 DOI: 10.1590/1678-775720160185] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/22/2016] [Indexed: 02/08/2023] Open
Abstract
Objective The aim of the present study was to evaluate the mechanical and thermal characteristics of two denture base acrylic resins containing silver nanoparticles (AgNPs). Material and Methods Two different acrylic denture base resins (heat-polymerized and microwave polymerized) containing 0.3, 0.8 and 1.6 wt% AgNPs were evaluated for flexural strength, elastic modulus and impact strength. The glass transition temperature (Tg) and relative heat capacity (Cp) of the samples were determined from the Differential Scanning Calorimetry (DSC) results. For statistical analysis, two-way ANOVA and Tukey-HSD tests were performed. Results Addition of 0.8% and 1.6% AgNPs in microwave-polymerized resin significantly decreased the transverse strength and elastic modulus. In terms of impact strength, the addition of AgNPs has no effect on both resin groups. Glass transition temperature (Tg) was decreased with the addition of AgNPs for both denture base resins. Conclusions The incorporation of AgNPs, generally used for antimicrobial efficiency, affected the transverse strength of the denture base acrylic resins depending on the concentration of nanoparticles. Tg was decreased with the addition of AgNPs for both denture base resins.
Collapse
Affiliation(s)
- Ayşegül Köroğlu
- - Bülent Ecevit University, Faculty of Dentistry, Department of Prosthodontics, Zonguldak, Turkey
| | - Onur Şahin
- - Bülent Ecevit University, Faculty of Dentistry, Department of Prosthodontics, Zonguldak, Turkey
| | - Işın Kürkçüoğlu
- - Süleyman Demirel University, Faculty of Dentistry, Department of Prosthodontics, Isparta, Turkey
| | - Doğu Ömür Dede
- - Ordu University, Faculty of Dentistry, Department of Prosthodontics, Ordu, Turkey
| | - Tonguç Özdemir
- - Mersin University, Faculty of Engineering, Department of Chemical Engineering, Mersin, Turkey
| | - Baki Hazer
- - Bülent Ecevit University, Faculty of Arts and Sciences, Department of Chemistry, Zonguldak, Turkey
| |
Collapse
|
40
|
Poggio C, Trovati F, Ceci M, Chiesa M, Colombo M, Pietrocola G. Biological and antibacterial properties of a new silver fiber post: In vitro evaluation. J Clin Exp Dent 2017; 9:e387-e393. [PMID: 28298980 PMCID: PMC5347287 DOI: 10.4317/jced.53464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/27/2016] [Indexed: 11/25/2022] Open
Abstract
Background The incorporation of nano silver particles (AgNPs) to improve antibacterial properties of dental materials has become increasingly common. The aim of the present study was to compare the antibacterial activity and cytotoxicity effects of different fiber posts: glass fiber post, quartz fiber post, nano fiber post and silver fiber post. Material and Methods The antibacterial activity against S. mutans, S. salivarius and S. sanguis was evaluated by using the agar disc diffusion test (ADT). Four wells of 3x2 mm (one for each material) were made with a punch by removing the agar and filled with the materials to be evaluated. The size of the inhibition zone was calculated. An extract was made eluting the posts in cell culture medium using the surface area-to-volume ratio of approximately 1.25cm²/ml between the surface of the samples and the volume of medium. Cell cultures were then exposed to 100 μL of the extracts medium. After 24 h, cell viability was determined using the MTT assay. Results Silver fiber post was the only material showing a fair antibacterial effect against all the three streptococcal strains. The level of cytotoxicity of all the fiber posts tested was higher than 90% and therefore they were considered not cytotoxic. Conclusions The new silver fiber post reported a fair antibacterial activity. On the other hand all the fiber posts tested (including the post with incorporated AgNPs) proved to be biocompatible, suggesting that their application does not represent a threat to human health. Key words:Antibacterial activity, agar disc diffusion test, biocompatibility, fiber post, MTT test.
Collapse
Affiliation(s)
- Claudio Poggio
- MD, DDS, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Pavia, Italy
| | - Federico Trovati
- DMD, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Pavia, Italy
| | - Matteo Ceci
- DMD, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Pavia, Italy
| | - Marco Chiesa
- DMD, PhD , Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Pavia, Italy
| | - Marco Colombo
- DMD, PhD , Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Section of Dentistry, University of Pavia, Pavia, Italy
| | - Giampiero Pietrocola
- MD, DDS, Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
41
|
Xu N, Cheng H, Xu J, Li F, Gao B, Li Z, Gao C, Huo K, Fu J, Xiong W. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo. Int J Nanomedicine 2017; 12:731-743. [PMID: 28184157 PMCID: PMC5291465 DOI: 10.2147/ijn.s123648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antibiotic-resistant bacteria have become a major issue due to the long-term use and abuse of antibiotics in treatments in clinics. The combination therapy of antibiotics and silver (Ag) nanoparticles is an effective way of both enhancing the antibacterial effect and decreasing the usage of antibiotics. Although the method has been proved to be effective in vitro, no in vivo tests have been carried out at present. Herein, we described a combination therapy of local delivery of Ag and systemic antibiotics treatment in vitro in an infection model of rat. Ag nanoparticle-loaded TiO2 nanotube (NT) arrays (Ag-NTs) were fabricated on titanium implants for a customized release of Ag ion. The antibacterial properties of silver combined with antibiotics vancomycin, rifampin, gentamicin, and levofloxacin, respectively, were tested in vitro by minimum inhibitory concentration (MIC) assay, disk diffusion assay, and antibiofilm formation test. Enhanced antibacterial activity of combination therapy was observed for all the chosen bacterial strains, including gram-negative Escherichia coli (ATCC 25922), gram-positive Staphylococcus aureus (ATCC 25923), and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300). Moreover, after a relative short (3 weeks) combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology; Institute of Biology and Medicine, Wuhan University of Science and Technology
| | - Hao Cheng
- Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiangwen Xu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology
| | - Feng Li
- Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology
| | - Zi Li
- Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chenghao Gao
- Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology; Institute of Biology and Medicine, Wuhan University of Science and Technology
| | - Wei Xiong
- Orthopaedic Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
42
|
de Figueiredo Freitas LS, Rossoni RD, Jorge AOC, Junqueira JC. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized. Lasers Med Sci 2017; 32:549-555. [PMID: 28091850 DOI: 10.1007/s10103-017-2147-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/05/2017] [Indexed: 11/28/2022]
Abstract
Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.
Collapse
Affiliation(s)
- Lírian Silva de Figueiredo Freitas
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil.
| |
Collapse
|
43
|
Metin-Gürsoy G, Taner L, Barış E. Biocompatibility of nanosilver-coated orthodontic brackets: an in vivo study. Prog Orthod 2016; 17:39. [PMID: 27800593 PMCID: PMC5136532 DOI: 10.1186/s40510-016-0152-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
Background Nanosilver particles of which antibacterial and antifungal properties have been shown in various in vitro and in vivo studies are used in many medical and dental fields for the prevention of infection. In this study, it is intended to evaluate the biocompatibility of nanosilver-coated brackets. Methods Nanosilver coating process was applied to the standard orthodontic brackets by a physical vapor deposition system. Brackets were coated with nanosilver particles of 1 μ thickness. A total of 12 Wistar Albino rats were included in the study (six) and control (six) groups. For the study and control groups, four nanosilver-coated and four standard brackets were aseptically implanted subcutaneously in the dorsal region of each rat. The brackets were removed with the surrounding tissues on days 7, 14, 30, and 60. The specimens were evaluated for inflammatory response. Results No significant difference was found in terms of tissue reaction between the study and control groups. On day 7, randomly distributed brown-black granules were seen in the granulation tissue adjacent to the bracket in the study group. These foreign particles continued along the bracket cavity in a few samples, but the inflammatory response was insignificant between the groups. Mast cell count was found to be significantly smaller only on day 7 in the study group than in the control group. Conclusions Nanosilver-coated orthodontic brackets were found to be similar with the standard type concerning inflammation. Further researches are needed with regard to the assessment of the brown-black granules, especially on the deposition of the vessel walls.
Collapse
Affiliation(s)
- Gamze Metin-Gürsoy
- Department of Orthodontics, Faculty of Dentistry, Gazi University, Bişkek cad. 1. Sok. No: 4 06510, Emek, Ankara, Turkey.
| | - Lale Taner
- Department of Orthodontics, Faculty of Dentistry, Gazi University, Bişkek cad. 1. Sok. No: 4 06510, Emek, Ankara, Turkey
| | - Emre Barış
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Bişkek cad. 1. Sok. No: 4 06510, Emek, Ankara, Turkey
| |
Collapse
|
44
|
Effect of Antimicrobial Denture Base Resin on Multi-Species Biofilm Formation. Int J Mol Sci 2016; 17:ijms17071033. [PMID: 27367683 PMCID: PMC4964409 DOI: 10.3390/ijms17071033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
Our aims of the research were to study the antimicrobial effect of dimethylaminododecyl methacrylate (DMADDM) modified denture base resin on multi-species biofilms and the biocompatibility of this modified dental material. Candida albicans (C. albicans), Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis), as well as Actinomyces naeslundii (A. naeslundii) were used for biofilm formation on denture base resin. Colony forming unit (CFU) counts, microbial viability staining, and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) array were used to evaluate the antimicrobial effect of DMADDM. C. albicans staining and Real-time PCR were used to analyze the morphology and expression of virulence genes of C. albicans in biofilm. Lactate dehydrogenase (LDH) array and Real-time PCR were conducted to examine the results after biofilm co-cultured with epithelial cell. Hematoxylin and eosin (HE) staining followed by histological evaluation were used to study the biocompatibility of this modified material. We found that DMADDM containing groups reduced both biomass and metabolic activity of the biofilm significantly. DMADDM can also inhibit the virulence of C. albicans by means of inhibiting the hyphal development and downregulation of two virulence related genes. DMADDM significantly reduced the cell damage caused by multi-species biofilm according to the LDH activity and reduced the expression of IL-18 gene of the cells simultaneously. The in vivo histological evaluation proved that the addition of DMADDM less than 6.6% in denture material did not increase the inflammatory response (p > 0.05). Therefore, we proposed that the novel denture base resin containing DMADDM may be considered as a new promising therapeutic system against problems caused by microbes on denture base such as denture stomatitis.
Collapse
|
45
|
Chladek G, Basa K, Mertas A, Pakieła W, Żmudzki J, Bobela E, Król W. Effect of Storage in Distilled Water for Three Months on the Antimicrobial Properties of Poly(methyl methacrylate) Denture Base Material Doped with Inorganic Filler. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E328. [PMID: 28773451 PMCID: PMC5503091 DOI: 10.3390/ma9050328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/16/2022]
Abstract
The colonization of poly(methyl methacrylate) (PMMA) denture base materials by pathogenic microorganisms is a major problem associated with the use of prostheses, and the incorporation of antimicrobial fillers is a method of improving the antimicrobial properties of these materials. Numerous studies have demonstrated the initial in vitro antimicrobial effectiveness of this type of material; however, reports demonstrating the stability of these fillers over longer periods are not available. In this study, silver sodium hydrogen zirconium phosphate was introduced into the powder component of a PMMA denture base material at concentrations of 0.25%, 0.5%, 1%, 2%, 4%, and 8% (w/w). The survival rates of the gram-positive bacterium Staphylococcus aureus, gram-negative bacterium Escherichia coli and yeast-type fungus Candida albicans were established after fungal or bacterial suspensions were incubated with samples that had been previously stored in distilled water. Storage over a three-month period led to the progressive reduction of the initial antimicrobial properties. The results of this study suggest that additional microbiological tests should be conducted for materials that are treated with antimicrobial fillers and intended for long-term use. Future long-term studies of the migration of silver ions from the polymer matrix and the influence of different media on this ion emission are required.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Katarzyna Basa
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Anna Mertas
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| | - Wojciech Pakieła
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Jarosław Żmudzki
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland.
| | - Elżbieta Bobela
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| | - Wojciech Król
- Chair and Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Jordana 19, Zabrze 41-808, Poland.
| |
Collapse
|
46
|
Wen J, Yeh CK, Sun Y. Functionalized Denture Resins as Drug Delivery Biomaterials to Control Fungal Biofilms. ACS Biomater Sci Eng 2016; 2:224-230. [DOI: 10.1021/acsbiomaterials.5b00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianchuan Wen
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Avenue, Lowell, Massachusetts 01854, United States
| | - Chih-Ko Yeh
- Department
of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, and Geriatric Research Education and Clinical Center, Audie L. Murphy Division, South Texas Veterans Health Care System,
7400 Merton Minter Boulevard, San Antonio, Texas 78229, United States
| | - Yuyu Sun
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
47
|
Castro DTD, Holtz RD, Alves OL, Watanabe E, Valente MLDC, Silva CHLD, Reis ACD. Development of a novel resin with antimicrobial properties for dental application. J Appl Oral Sci 2015; 22:442-9. [PMID: 25466477 PMCID: PMC4245757 DOI: 10.1590/1678-775720130539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/01/2014] [Indexed: 11/22/2022] Open
Abstract
UNLABELLED The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. OBJECTIVE To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3). MATERIAL AND METHODS The minimum inhibitory concentration (MIC) of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay-Clássico. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%), with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05); the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way), and Tukey's test (α=0.05). RESULTS The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p<0.05). Higher rates of the nanomaterial did not alter the mechanical properties of the resin in comparison with the control group (p>0.05). CONCLUSIONS The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control.
Collapse
Affiliation(s)
| | | | | | - Evandro Watanabe
- School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
48
|
Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. Application of dental nanomaterials: potential toxicity to the central nervous system. Int J Nanomedicine 2015; 10:3547-65. [PMID: 25999717 PMCID: PMC4437601 DOI: 10.2147/ijn.s79892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.
Collapse
Affiliation(s)
- Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jianfeng Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Limin Wei
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
49
|
Silver nanoparticles in dental biomaterials. Int J Biomater 2015; 2015:485275. [PMID: 25667594 PMCID: PMC4312639 DOI: 10.1155/2015/485275] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time.
Collapse
|
50
|
Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, de la Fuente-Hernández J, Castaño VM. Toxicology of antimicrobial nanoparticles for prosthetic devices. Int J Nanomedicine 2014; 9:3999-4006. [PMID: 25187703 PMCID: PMC4149446 DOI: 10.2147/ijn.s63064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Advances in nanotechnology are producing an accelerated proliferation of new nanomaterial composites that are likely to become an important source of engineered health-related products. Nanoparticles with antifungal effects are of great interest in the formulation of microbicidal materials. Fungi are found as innocuous commensals and colonize various habitats in and on humans, especially the skin and mucosa. As growth on surfaces is a natural part of the Candida spp. lifestyle, one can expect that Candida organisms colonize prosthetic devices, such as dentures. Macromolecular systems, due to their properties, allow efficient use of these materials in various fields, including the creation of reinforced nanoparticle polymers with antimicrobial activity. This review briefly summarizes the results of studies conducted during the past decade and especially in the last few years focused on the toxicity of different antimicrobial polymers and factors influencing their activities, as well as the main applications of antimicrobial polymers in dentistry. The present study addresses aspects that are often overlooked in nanotoxicology studies, such as careful time-dependent characterization of agglomeration and ion release.
Collapse
Affiliation(s)
- Rosa Elvira Nuñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarìmbaro Municipio de Morelia, Michoacán, Meóxico
| | - Laura Susana Acosta-Torres
- Escuela Nacionalde Estudios Superiores, Universidad Nacional Autoónoma de Meóxico, Unidad Leoón, Leòn Guanajuato, Meóxico
| | - Jorge Vilar-Pineda
- Escuela Nacionalde Estudios Superiores, Universidad Nacional Autoónoma de Meóxico, Unidad Leoón, Leòn Guanajuato, Meóxico
| | - Juan Carlos Martínez-Espinosa
- Unidad Profesional Interdisciplinaria de Ingenieria Campus Guanajuato, Instituto Politeócnico Nacional, Leòn Guanajuato, Meóxico
| | - Javier de la Fuente-Hernández
- Escuela Nacionalde Estudios Superiores, Universidad Nacional Autoónoma de Meóxico, Unidad Leoón, Leòn Guanajuato, Meóxico
| | - Víctor Manuel Castaño
- Departamento de Materiales Moleculares, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autoónoma de Meóxico, Campus Juriquilla, Querètaro, Meóxico
| |
Collapse
|