1
|
Macedo LDO, Masiero JF, Bou-Chacra NA. Drug Nanocrystals in Oral Absorption: Factors That Influence Pharmacokinetics. Pharmaceutics 2024; 16:1141. [PMID: 39339178 PMCID: PMC11434809 DOI: 10.3390/pharmaceutics16091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.
Collapse
Affiliation(s)
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo 05508-000, SP, Brazil
| |
Collapse
|
2
|
Trivedi R, Upadhyay TK. Preparation, characterization and antioxidant and anticancerous potential of Quercetin loaded β-glucan particles derived from mushroom and yeast. Sci Rep 2024; 14:16047. [PMID: 38992105 PMCID: PMC11239821 DOI: 10.1038/s41598-024-66824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
β-glucans are polysaccharides found in the cell walls of various fungi, bacteria and cereals. β-glucan have been found to show various kinds of anti-inflammatory, antimicrobial, antidiabetic antioxidant and anticancerous activities. In the present study, we have isolated β-glucan from the baker's yeast Saccharomyces cerevisiae and white button mushroom Agaricus bisporus and tested their antioxidant potential and anticancerous activity against prostate cancer cell line PC3. Particles were characterized with zeta sizer and further with FTIR that confirmed that the isolated particles are β-glucan and alginate sealing made slow and sustained release of the Quercetin from the β-glucan particles. Morphological analysis of the hollow and Quercetin loaded β-glucan was performed with the SEM analysis and stability was analyzed with TGA and DSC analysis that showed the higher stability of the alginate sealed particles. Assessments of the antioxidant potential showed that Quercetin loaded particles were having higher antioxidant activity than hollow β-glucan particles. Cell viability of the PC3 cells was examined with MTT assay and it was found that Quercetin loaded alginate sealed Agaricus bisporus derived β-glucan particles were having lowest IC50. Further ROS generation was found to increase in a dose dependent manner. Apoptosis detection was carried out with Propidium iodide and AO/EtBr staining dye which showed significant death in the cells treated with higher concentration of the particles. Study showed that particles derived from both of the sources were having efficient anticancer activity and showing a dose dependent increase in cell death in PC3 cells upon treatment.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Research and Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
3
|
Bao Z, Yung F, Hickman RJ, Aspuru-Guzik A, Bannigan P, Allen C. Data-driven development of an oral lipid-based nanoparticle formulation of a hydrophobic drug. Drug Deliv Transl Res 2024; 14:1872-1887. [PMID: 38158474 DOI: 10.1007/s13346-023-01491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Due to its cost-effectiveness, convenience, and high patient adherence, oral drug administration normally remains the preferred approach. Yet, the effective delivery of hydrophobic drugs via the oral route is often hindered by their limited water solubility and first-pass metabolism. To mitigate these challenges, advanced delivery systems such as solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been developed to encapsulate hydrophobic drugs and enhance their bioavailability. However, traditional design methodologies for these complex formulations often present intricate challenges because they are restricted to a relatively narrow design space. Here, we present a data-driven approach for the accelerated design of SLNs/NLCs encapsulating a model hydrophobic drug, cannabidiol, that combines experimental automation and machine learning. A small subset of formulations, comprising 10% of all formulations in the design space, was prepared in-house, leveraging miniaturized experimental automation to improve throughput and decrease the quantity of drug and materials required. Machine learning models were then trained on the data generated from these formulations and used to predict properties of all SLNs/NLCs within this design space (i.e., 1215 formulations). Notably, formulations predicted to be high-performers via this approach were confirmed to significantly enhance the solubility of the drug by up to 3000-fold and prevented degradation of drug. Moreover, the high-performance formulations significantly enhanced the oral bioavailability of the drug compared to both its free form and an over-the-counter version. Furthermore, this bioavailability matched that of a formulation equivalent in composition to the FDA-approved product, Epidiolex®.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Fion Yung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Riley J Hickman
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, M5S 1M1, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
- CIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON, M5S 1M1, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
4
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Falah F, Samie A, Mortazavi SA, Danesh A, Yazdi FT, Ramezani M. Bio-synthesis, purification and structural analysis of Cyclosporine-A produced by Tolypocladium inflatum with valorization of agro-industrial wastes. Sci Rep 2024; 14:12540. [PMID: 38822034 PMCID: PMC11143273 DOI: 10.1038/s41598-024-63110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Cyclosporine A (CyA) holds significant importance as a strategic immunosuppressive drug for organ transplant patients. In this study, we aimed to produce pure and cost-effective Cyclosporine A (CyA) by fermenting a culture medium containing dairy sludge, using Tolypocladium inflatum PTCC 5253. Following the fermentation stage, ethyl acetate extraction and fast protein liquid chromatography were employed for sample purification. The initial evaluation of the effectiveness of CyA obtained from these processes was performed through bioassay, wherein the antimicrobial clear zone diameter was found to be larger compared to the sample obtained from the fermentation culture. The concentration of CyA was determined using high-performance liquid chromatography, yielding values of 334 mg/L, 456 mg/L, and 578 mg/L for the fermented, extracted, and purified samples, respectively. Further analysis utilizing liquid chromatography tandem mass spectrometry (LC/MS/MS) confirmed a purity of 91.9% and proper agreement with the standard sample based on the ion intensity of Z/m 1205. To validate the structure of CyA, nuclear magnetic resonance spectroscopy, Fourier-transform infrared (FT-IR), and Raman spectroscopy were employed. X-ray diffraction and differential scanning calorimetry analyses demonstrated that the purified CyA exhibited a crystal structure similar to the standard sample, characterized by two broad peaks at 2θ = 9° and 20°, and comparable glass transition temperatures (57-68 °C for the purified sample; 53-64 °C for the standard sample). Dynamic light scattering analysis confirmed a uniform particle size distribution in both the purified and standard samples. The zeta potentials of the purified and standard samples were determined to be - 25.8 ± 0.16 and - 23.63 ± 0.12 mV, respectively. Our results demonstrate that dairy sludge can serve as a suitable culture medium for the production of (CyA).
Collapse
Affiliation(s)
- Fereshteh Falah
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolghasem Danesh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Ozaki M, Kobayashi T, Fujinaga A, Nishioka M, Shikichi K, Okano S, Sakai Y, Fujii S, Matsui N, Takasago M, Okada N, Yamasaki T, Kitahara T. Influence of filtering on the effective concentration and sterility of a 2% cyclosporine ophthalmic solution: a quality improvement perspective. J Pharm Health Care Sci 2023; 9:50. [PMID: 38148477 PMCID: PMC10752018 DOI: 10.1186/s40780-023-00323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Pharmaceutical companies do not sell formulations for all diseases; thus, healthcare workers have to treat some diseases by concocting in-hospital preparations. An example is the high-concentration 2% cyclosporine A (CyA) ophthalmic solution. Utilizing a filter in sterility operations is a general practice for concocting in-hospital preparations, as is the case for preparing a 2% CyA ophthalmic solution. However, whether filtering is appropriate concerning the active ingredient content and bacterial contamination according to the post-preparing quality control of a 2% CyA ophthalmic solution is yet to be verified. METHODS We conducted particle size, preparation concentration, and bacterial contamination studies to clarify aforementioned questions. First, we measured the particle size of CyA through a laser diffraction particle size distribution. Next, we measured the concentration after preparation with or without a 0.45-µm filter operation using an electrochemiluminescence immunoassay. Finally, bacterial contamination tests were conducted using an automated blood culture system to prepare a 2% CyA ophthalmic solution without a 0.45 μm filtering. Regarding the pore size of the filter in this study, it was set to 0.45 μm with reference to the book (the 6th edition) with recipes for the preparation of in-hospital preparations edited by the Japanese Society of Hospital Pharmacists. RESULTS CyA had various particle sizes; approximately 30% of the total particles exceeded 0.45 μm. The mean ± standard deviation of filtered and non-filtered CyA concentrations in ophthalmic solutions were 346.51 ± 170.76 and 499.74 ± 76.95ng/mL, respectively (p = 0.011). Regarding bacterial contamination tests, aerobes and anaerobes microorganisms were not detected in 14 days of culture. CONCLUSIONS Due to the results of this study, the concentration of CyA may be reduced by using a 0.45-µm filter during the preparation of CyA ophthalmic solutions, and furthermore that the use of a 0.45-µm filter may not contribute to sterility when preparing CyA ophthalmic solutions.
Collapse
Affiliation(s)
- Masakazu Ozaki
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan.
| | - Toshihiko Kobayashi
- Division of Laboratory, Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Aki Fujinaga
- Division of Laboratory, Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Mitsuaki Nishioka
- Division of Laboratory, Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Kyoko Shikichi
- Division of Laboratory, Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Satoshi Okano
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Yasuhito Sakai
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Sayumi Fujii
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Nobuaki Matsui
- Department of Pharmacy, Fukuyama City Hospital, 5-23-1, Zao-cho, 721- 8511, Fukuyama, Hiroshima, Japan
| | - Miwako Takasago
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Naoto Okada
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Takahiro Yamasaki
- Division of Laboratory, Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
- Department of Oncology and Laboratory Medicine, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| | - Takashi Kitahara
- Pharmacy Department , Yamaguchi University Hospital, 1-1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
- Department of Clinical Pharmacology, Yamaguchi University Graduate School of Medicine, 1- 1-1, Minami-kogushi, 755-8505, Ube, Yamaguchi, Japan
| |
Collapse
|
7
|
Rahman SNR, Goswami A, Sree A, Jala A, Borkar RM, Shunmugaperumal T. Dual Delivery of Cyclosporin A and Etodolac Using Polymeric Nanocapsules in a Rabbit Eye Model: Ocular Biodistribution and Pharmacokinetic Study. J Ocul Pharmacol Ther 2022; 38:734-744. [PMID: 36355052 DOI: 10.1089/jop.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: Commercially available eye drops are loaded only with a single drug. By using the polymeric nanocapsules, dual delivery of 0.05% w/w cyclosporin A (CsA) and 0.2% w/w etodolac (Edc) was achieved. An ultraperformance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed for determining simultaneously the biodistribution and pharmacokinetic profile of CsA and Edc in ocular tissues. Methods: After one single drop instillation of nanocapsules into healthy right eyes of rabbits, the eyeballs were enucleated at 5, 15, 30, 60, and 90 min time periods to separate the 5 different ocular tissues. A liquid/liquid extraction method was used for ocular sample extraction using darunavir as internal standard. Using 3 diverse conditions such as bench-top, autosampler, and freeze-thaw, the stability of the analytes at 3 quality control samples in ocular tissues was also checked. Results: Intra- and interday precisions for both CsA and Edc in multiple ocular tissues were <10.32%, and the accuracy was <11.98%. The % bias and % RSD values for CsA and Edc were found within the acceptable limit of ±15%. The highest Cmax values were attained in cornea for both the drugs at 60 min postinstillation time point. Despite molecular size and structural differences, both CsA and Edc after liberation from nanocapsule drops can permeate into the tissues of the anterior as well as posterior segments of the eye. Conclusion: The biodistribution and pharmacokinetic data might help and strengthen our understanding of synergetic anti-inflammatory activity of CsA and Edc from nanocapsules after its ocular topical application for managing keratoconjunctivitis sicca.
Collapse
Affiliation(s)
- Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Amoolya Sree
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
8
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
9
|
Zou F, Zhao H, Ma A, Song D, Zhang X, Zhao X. Preparation of an isorhamnetin phospholipid complex for improving solubility and anti-hyperuricemia activity. Pharm Dev Technol 2022; 27:842-852. [PMID: 36083162 DOI: 10.1080/10837450.2022.2123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
To improve the solubility and anti-hyperuricemia activity of the insoluble natural flavonoid isorhamnetin (ISO), an isorhamnetin phospholipid complex (ISO-PC) was prepared. ISO-PC was prepared through solvent evaporation and its prescription process was optimized. The formation of ISO-PC was verified via multiple characterization methods. Parameters such as drug loading, solubility, octanol-water partition coefficient, stability, and in vivo anti-hyperuricemia activity of ISO-PC were investigated. The complexation efficiency of ISO-PC was 95.1% ± 0.56%. The characterization results confirmed that ISO-PC was bound by intermolecular interactions between ISO and phospholipids. Compared to ISO, the solubility of ISO-PC in water and 1-octanol increased by 122 and 16.5 times, respectively. Additionally, the octanol-water partition coefficient decreased to 1.08. Pharmacodynamic studies have reported that ISO-PC has a more significant effect on reducing serum uric acid levels and renal protection. In conclusion, the findings of this study suggested that ISO-PC could be used as a promising formulation to improve the solubility and the anti-hyperuricemia activity of ISO.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Honghui Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aijinxiu Ma
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danni Song
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangrong Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|