1
|
Zhou Y, Zhang A, Wu J, Guo S, Sun Q. Application and Perspectives: Magnesium Materials in Bone Regeneration. ACS Biomater Sci Eng 2024; 10:3514-3527. [PMID: 38723173 PMCID: PMC11167594 DOI: 10.1021/acsbiomaterials.3c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.
Collapse
Affiliation(s)
| | | | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| |
Collapse
|
2
|
He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology 2022; 20:510. [PMID: 36463225 PMCID: PMC9719660 DOI: 10.1186/s12951-022-01721-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.
Collapse
Affiliation(s)
- Yide He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuanxue Gao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Qianli Ma
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xige Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Xi’an, 710032 China
| | - Yumei Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Wen Song
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
3
|
Vujović S, Desnica J, Stanišić D, Ognjanović I, Stevanovic M, Rosic G. Applications of Biodegradable Magnesium-Based Materials in Reconstructive Oral and Maxillofacial Surgery: A Review. Molecules 2022; 27:molecules27175529. [PMID: 36080296 PMCID: PMC9457564 DOI: 10.3390/molecules27175529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Reconstruction of defects in the maxillofacial region following traumatic injuries, craniofacial deformities, defects from tumor removal, or infections in the maxillofacial area represents a major challenge for surgeons. Various materials have been studied for the reconstruction of defects in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capacity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft tissue regeneration.
Collapse
Affiliation(s)
- Sanja Vujović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanišić
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanović
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Correspondence: (M.S.); (G.R.); Tel.: +381-641-327752 (M.S.); +381-633-92812 (G.R.)
| |
Collapse
|
4
|
Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm (Beijing) 2021; 2:123-144. [PMID: 34766139 PMCID: PMC8491235 DOI: 10.1002/mco2.59] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
As promising biodegradable materials with nontoxic degradation products, magnesium (Mg) and its alloys have received more and more attention in the biomedical field very recently. Having excellent biocompatibility and unique mechanical properties, magnesium-based alloys currently cover a broad range of applications in the biomedical field. The use of Mg-based biomedical devices eliminates the need for biomaterial removal surgery after the healing process and reduces adverse effects induced by the implantation of permanent biomaterials. However, the high corrosion rate of Mg-based implants leads to unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. To overcome these limitations, alloying Mg with suitable alloying elements and surface treatment come highly recommended. In this area, open questions remain on the behavior of Mg-based biomaterials in the human body and the effects of different factors that have resulted in these challenges. In addition to that, many techniques are yet to be verified to turn these challenges into opportunities. Accordingly, this article aims to review major challenges and opportunities for Mg-based biomaterials to minimize the challenges for the development of novel biomaterials made of Mg and its alloys.
Collapse
Affiliation(s)
- Shukufe Amukarimi
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences (IUMS)TehranIran
| |
Collapse
|
5
|
Pang Z, Pan Z, Ma M, Xu Z, Mei S, Jiang Z, Yin F. Nanostructured Coating of Non-Crystalline Tantalum Pentoxide on Polyetheretherketone Enhances RBMS Cells/HGE Cells Adhesion. Int J Nanomedicine 2021; 16:725-740. [PMID: 33542627 PMCID: PMC7853447 DOI: 10.2147/ijn.s286643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
PURPOSE As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.
Collapse
Affiliation(s)
- Zhiying Pang
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhangyi Pan
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Min Ma
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai200032, People’s Republic of China
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai200092, People’s Republic of China
| |
Collapse
|
6
|
Mathew AA, Panonnummal R. 'Magnesium'-the master cation-as a drug-possibilities and evidences. Biometals 2021; 34:955-986. [PMID: 34213669 PMCID: PMC8249833 DOI: 10.1007/s10534-021-00328-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg2+) is the 2nd most abundant intracellular cation, which participates in various enzymatic reactions; there by regulating vital biological functions. Magnesium (Mg2+) can regulate several cations, including sodium, potassium, and calcium; it consequently maintains physiological functions like impulse conduction, blood pressure, heart rhythm, and muscle contraction. But, it doesn't get much attention in account with its functions, making it a "Forgotten cation". Like other cations, maintenance of the normal physiological level of Mg2+ is important. Its deficiency is associated with various diseases, which point out to the importance of Mg2+ as a drug. The roles of Mg2+ such as natural calcium antagonist, glutamate NMDA receptor blocker, vasodilator, antioxidant and anti-inflammatory agent are responsible for its therapeutic benefits. Various salts of Mg2+ are currently in clinical use, but their application is limited. This review collates all the possible mechanisms behind the behavior of magnesium as a drug at different disease conditions with clinical shreds of evidence.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India.
| |
Collapse
|
7
|
V S H, Balan M, Hosson JTMD, Krishnan G. Vapour confinement as a strategy to fabricate metal and bimetallic nanostructures. NANOSCALE ADVANCES 2020; 2:4251-4260. [PMID: 36132790 PMCID: PMC9418833 DOI: 10.1039/d0na00467g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/01/2020] [Indexed: 05/26/2023]
Abstract
Metal nanostructures have attracted much attention in biomedical, plasmonic, hydrogen storage, and high-energy battery applications. However, the synthesis of various nanostructures of highly reactive elements (e.g. Mg) is still a difficult task and no single-approach has been reported for synthesizing such nanostructures. In this work, we produced magnesium nanoparticles (NPs), nanowires (NWs) and nanoneedles (NNs) in a single-approach, based on thermal evaporation without any carrier gas. Importantly, we employed rapid heating and cooling via a rapid thermal processing (RTP) furnace to control the nucleation and growth of nanostructures. The testing of Zn and Mg-Zn nanostructures was done to validate our approach and design for other metals and bimetallics. Interestingly, Cu and Ag nanoparticles were produced from metal salts (metal acetates and nitrates) with a reasonable control. The tuning of various nanostructures was possible by interplaying (i) with the curvature/outer diameter of the quartz bottle used for evaporation and (ii) by varying the position of the substrates. More specifically, the curvature of the quartz bottle increased the vapour collisions and effectively reduced the thermal energy of the vapour. Altogether, this favoured the control and confinement of vapour onto substrates and achieved supersaturation. Simultaneously, it led to the formation of various nanostructures without any carrier gas. The presented experimental set up is a versatile, simple, single-step and cost-effective solution for producing high-quality nanostructures.
Collapse
Affiliation(s)
- Haritha V S
- Department of Physics, University of Kerala Kariayavattom Thiruvananthapuram 695581 India
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kochi Kerala 682041 India
| | - Maya Balan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham Kochi Kerala 682041 India
| | - J Th M De Hosson
- Department of Applied Physics, Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Gopi Krishnan
- Renjord AS Asbjørn Øverås veg 12 B 7036 Trondheim Norway
| |
Collapse
|
8
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
9
|
Bioactive Titanium Surfaces: Interactions of Eukaryotic and Prokaryotic Cells of Nano Devices Applied to Dental Practice. Biomedicines 2019; 7:biomedicines7010012. [PMID: 30759865 PMCID: PMC6466189 DOI: 10.3390/biomedicines7010012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background: In recent years, many advances have been made in the fields of bioengineering and biotechnology. Many methods have been proposed for the in vitro study of anatomical structures and alloplastic structures. Many steps forward have been made in the field of prosthetics and grafts and one of the most debated problems lies in the biomimetics and biocompatibility of the materials used. The contact surfaces between alloplastic material and fabric are under study, and this has meant that the surfaces were significantly improved. To ensure a good contact surface with the cells of our body and be able to respond to an attack by a biofilm or prevent the formation, this is the true gold standard. In the dental field, the study of the surfaces of contact with the bone tissue of the implants is the most debated, starting from the first concepts of osteointegration. Method: The study searched MEDLINE databases from January 2008 to November 2018. We considered all the studies that talk about nanosurface and the biological response of the latter, considering only avant-garde works in this field. Results: The ultimate aim of this study is to point out all the progress made in the field of bioengineering and biotechnologies about nanosurface. Surface studies allow you to have alloplastic materials that integrate better with our body and allow more predictable rehabilitations. Particularly in the field of dental implantology the study of surfaces has allowed us to make huge steps forward in times of rehabilitation. Overcoming this obstacle linked to the time of osseointegration, however, today the real problem seems to be linked to the “pathologies of these surfaces”, or the possible infiltration, and formation of a biofilm, difficult to eliminate, being the implant surface, inert. Conclusions: The results of the present investigation demonstrated how nanotechnologies contribute substantially to the development of new materials in the biomedical field, being able to perform a large number of tests on the surface to advance research. Thanks to 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in rehabilitation it is possible to consider all the mechanical characteristics too. Recent published papers highlighted how the close interaction between cells and the biomaterial applied to the human body is the main objective in the final integration of the device placed to manage pathologies or for rehabilitation after a surgical tumor is removed.
Collapse
|
10
|
Li M, Wan P, Wang W, Yang K, Zhang Y, Han Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci Rep 2019; 9:933. [PMID: 30700724 PMCID: PMC6353919 DOI: 10.1038/s41598-018-37091-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/02/2018] [Indexed: 02/07/2023] Open
Abstract
Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as peri-prosthetic osteolysis. In this study, our objective was to study the role of zoledronic acid (ZA), as a highly potent and nitrogen-containing bisphosphonate, in promoting osteogenesis and inhibiting osteoclastogenesis properties of magnesium (Mg)-based implants. ZA was chemically associated with calcium phosphate (CaP) deposited on magnesium-strontium (Mg-Sr) alloy, which was confirmed by the morphological observation, phase composition and drug releasing via SEM, XRD spectrum and High Performance Liquid Chromatography (HPLC), respectively. The in vitro performances indicated that ZA-CaP bilayer coating Mg-Sr alloy could enhance the proliferation and the osteogenic differentiation as well as the mineralization of pre-osteoblasts, however, induce the apoptosis and inhibit the osteoclast differentiation. We further investigated the possible molecular mechanisms by using Quantitative real-time PCR (qRT-PCR) and Western Blotting, and the results showed that ZA-CaP bilayer coating Mg-Sr alloy could regulate the osteogenesis and osteoclastogenesis through the Estrogen Receptor α (ERα) and NF-κB signaling pathway. Moreover, ZA-CaP bilayer coating Mg-Sr alloy could regulate the cross talk of osteoblast-osteoclast and increase the ratio of OPG: RANKL in the co-culture system through OPG/RANKL/RANK signaling pathway, which promoting the balance of bone remodeling process. Therefore, these promising results suggest the potential clinical applications of ZA pretreated Mg-Sr alloys for bone defect repairs and periprosthetical osteolysis due to the excessive differentitation and maturation of osteoclasts.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Peng Wan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Weidan Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
11
|
Glenske K, Donkiewicz P, Köwitsch A, Milosevic-Oljaca N, Rider P, Rofall S, Franke J, Jung O, Smeets R, Schnettler R, Wenisch S, Barbeck M. Applications of Metals for Bone Regeneration. Int J Mol Sci 2018; 19:E826. [PMID: 29534546 PMCID: PMC5877687 DOI: 10.3390/ijms19030826] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 02/06/2023] Open
Abstract
The regeneration of bone tissue is the main purpose of most therapies in dental medicine. For bone regeneration, calcium phosphate (CaP)-based substitute materials based on natural (allo- and xenografts) and synthetic origins (alloplastic materials) are applied for guiding the regeneration processes. The optimal bone substitute has to act as a substrate for bone ingrowth into a defect, as well as resorb in the time frame needed for complete regeneration up to the condition of restitution ad integrum. In this context, the modes of action of CaP-based substitute materials have been frequently investigated, where it has been shown that such materials strongly influence regenerative processes such as osteoblast growth or differentiation and also osteoclastic resorption due to different physicochemical properties of the materials. However, the material characteristics needed for the required ratio between new bone tissue formation and material degradation has not been found, until now. The addition of different substances such as collagen or growth factors and also of different cell types has already been tested but did not allow for sufficient or prompt application. Moreover, metals or metal ions are used differently as a basis or as supplement for different materials in the field of bone regeneration. Moreover, it has already been shown that different metal ions are integral components of bone tissue, playing functional roles in the physiological cellular environment as well as in the course of bone healing. The present review focuses on frequently used metals as integral parts of materials designed for bone regeneration, with the aim to provide an overview of currently existing knowledge about the effects of metals in the field of bone regeneration.
Collapse
Affiliation(s)
- Kristina Glenske
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | | | - Nada Milosevic-Oljaca
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | | | - Sven Rofall
- Botiss Biomaterials, D-12109 Berlin, Germany.
| | - Jörg Franke
- Clinic for Trauma Surgery and Orthopedics, Elbe Kliniken Stade-Buxtehude, D-21682 Stade, Germany.
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| | | | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, D-35392 Giessen, Germany.
| | - Mike Barbeck
- Botiss Biomaterials, D-12109 Berlin, Germany.
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg- Eppendorf, D-20246 Hamburg, Germany.
| |
Collapse
|
12
|
Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact Mater 2017; 2:185-198. [PMID: 29744429 PMCID: PMC5935516 DOI: 10.1016/j.bioactmat.2017.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/29/2023] Open
Abstract
Nanomaterials such as nanostructured surfaces, nanoparticles, and nanocomposites represent new viable sources for future therapeutics for cardiovascular diseases. The special properties of nanomaterials such as their intrinsic physiochemical properties, surface energy and surface topographies could actively enhance desirable cellular responses within the cardiovascular system, projecting a growing potential for clinical translation. Recent progress on nanomaterials opened up new opportunities for treating cardiovascular diseases. Successful translation of nanomaterials into cardiovascular applications requires a comprehensive understanding of both nanomaterials and biomedicine, and, thus, it is critical to stress current advancements on both sides. In this review, the authors introduced crucial fabrication techniques for promising nanomaterials for cardiovascular applications. This review highlighted the key elements to consider for their fabrication, properties and applications. The important concerns relevant to cardiovascular nanomaterials, such as cellular responses to nanomaterials and the toxicity of nanomaterials, are also discussed. This review provided an overview of necessary knowledge and key concerns on nanomaterials specific for treating cardiovascular diseases, from the perspectives of both material science and biomedicine. Reviewed current progress of nanomaterials and their cardiovascular applications. Mainly focused on nanostructured surfaces, nanoparticles and nanocomposites. Discussed important topics of nanomaterials for cardiovascular applications. Comparatively reviewed the fabrication of nanomaterials. Informative to researchers in the field of biomaterials and nanomaterials.
Collapse
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dana Rutherford
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tiffany Vuong
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Huinan Liu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
13
|
Xu Y, Meng H, Yin H, Sun Z, Peng J, Xu X, Guo Q, Xu W, Yu X, Yuan Z, Xiao B, Wang C, Wang Y, Liu S, Lu S, Wang Z, Wang A. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction. Exp Ther Med 2017; 15:93-102. [PMID: 29375677 PMCID: PMC5766073 DOI: 10.3892/etm.2017.5389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/31/2017] [Indexed: 11/28/2022] Open
Abstract
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo, quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.
Collapse
Affiliation(s)
- Yichi Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China.,School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Heyong Yin
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhen Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaolong Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Yu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Cheng Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhaoxu Wang
- Testing Department of Biomaterials and Tissue Engineering Products, Chinese National Institutes for Food and Drug Control, Beijing 100050, P.R. China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
14
|
He LY, Zhang XM, Liu B, Tian Y, Ma WH. Effect of magnesium ion on human osteoblast activity. ACTA ACUST UNITED AC 2017; 49:S0100-879X2016000700604. [PMID: 27383121 PMCID: PMC4942226 DOI: 10.1590/1414-431x20165257] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
Magnesium, a promising biodegradable metal, has been reported in several studies to increase bone formation. Although there is some information regarding the concentrations of magnesium ions that affect bone remodeling at a cellular level, little is known about the effect of magnesium ions on cell gap junctions. Therefore, this study aimed to systematically investigate the effects of different concentrations of magnesium on bone cells, and further evaluate its effect on gap junctions of osteoblasts. Cultures of normal human osteoblasts were treated with magnesium ions at concentrations of 1, 2 and 3 mM, for 24, 48 and 72 h. The effects of magnesium ions on viability and function of normal human osteoblasts and on gap junction intercellular communication (GJIC) in osteoblasts were investigated. Magnesium ions induced significant (P<0.05) increases in cell viability, alkaline phosphate activity and osteocalcin levels of human osteoblasts. These stimulatory actions were positively associated with the concentration of magnesium and the time of exposure. Furthermore, the GJIC of osteoblasts was significantly promoted by magnesium ions. In conclusion, this study demonstrated that magnesium ions induced the activity of osteoblasts by enhancing GJIC between cells, and influenced bone formation. These findings may contribute to a better understanding of the influence of magnesium on bone remodeling and to the advance of its application in clinical practice.
Collapse
Affiliation(s)
- L Y He
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, The Key Laboratory for Orthopedic Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
| | - X M Zhang
- Department of Orthopedic Surgery, Hebei National Defense Construction Hospital, Shijiazhuang, Hebei Province, China
| | - B Liu
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, The Key Laboratory for Orthopedic Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
| | - Y Tian
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, The Key Laboratory for Orthopedic Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
| | - W H Ma
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, The Key Laboratory for Orthopedic Biomechanics of Hebei Province, Shijiazhuang, Hebei Province, China
| |
Collapse
|
15
|
Nelson C, Khan Y, Laurencin CT. Nanofiber-microsphere (nano-micro) matrices for bone regenerative engineering: a convergence approach toward matrix design. Regen Biomater 2014; 1:3-9. [PMID: 26816620 PMCID: PMC4669008 DOI: 10.1093/rb/rbu002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/24/2022] Open
Abstract
Bone is an essential organ for health and quality of life. Due to current shortfalls in therapy for bone tissue engineering, scientists have sought the application of synthetic materials as bone graft substitutes. As a composite organic/inorganic material with significant extra cellular matrix (ECM), one way to improve bone graft substitutes may be to engineer a synthetic matrix that is influenced by the physical appearance of natural ECM networks. In this work, the authors evaluate composite, hybrid scaffolds for bone tissue engineering based on composite ceramic/polymer microsphere scaffolds with synthetic ECM-mimetic networks in their pore spaces. Using thermally induced phase separation, nanoscale fibers were deposited in the pore spaces of structurally sound microsphere-based scaffold with a density proportionate to the initial polymer concentration. Porosimetry and mechanical testing indicated no significant changes in overall pore characteristics or mechanical integrity as a result of the fiber deposition process. These scaffolds displayed adequate mechanical integrity on the scale of human trabecular bone and supported the adhesion and proliferation of cultured mouse calvarial osteoblasts. Drawing from natural cues, these scaffolds may represent a new avenue forward for advanced bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Clarke Nelson
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yusuf Khan
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA, Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA, Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
16
|
Willumeit R, Möhring A, Feyerabend F. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions. Int J Mol Sci 2014; 15:7639-50. [PMID: 24857908 PMCID: PMC4057696 DOI: 10.3390/ijms15057639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.
Collapse
Affiliation(s)
- Regine Willumeit
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Anneke Möhring
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Frank Feyerabend
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| |
Collapse
|
17
|
Castiglioni S, Cazzaniga A, Albisetti W, Maier JAM. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013; 5:3022-33. [PMID: 23912329 PMCID: PMC3775240 DOI: 10.3390/nu5083022] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 01/25/2023] Open
Abstract
A tight control of magnesium homeostasis seems to be crucial for bone health. On the basis of experimental and epidemiological studies, both low and high magnesium have harmful effects on the bones. Magnesium deficiency contributes to osteoporosis directly by acting on crystal formation and on bone cells and indirectly by impacting on the secretion and the activity of parathyroid hormone and by promoting low grade inflammation. Less is known about the mechanisms responsible for the mineralization defects observed when magnesium is elevated. Overall, controlling and maintaining magnesium homeostasis represents a helpful intervention to maintain bone integrity.
Collapse
Affiliation(s)
- Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Via GB Grassi 74, Milan I-20157, Italy; E-Mails: (S.C.); (A.C.)
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Via GB Grassi 74, Milan I-20157, Italy; E-Mails: (S.C.); (A.C.)
| | - Walter Albisetti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Commenda 10, Milan I-20157, Italy; E-Mail:
| | - Jeanette A. M. Maier
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Via GB Grassi 74, Milan I-20157, Italy; E-Mails: (S.C.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-02-5031-9648; Fax: +39-02-5031-9659
| |
Collapse
|