1
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
2
|
Szachniewicz MM, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Geluk A, Bouwstra JA, Ottenhoff THM. Intradermal versus subcutaneous immunization: Effects of administration route using a lipid-PLGA hybrid nanoparticle tuberculosis vaccine. Eur J Pharm Sci 2025; 205:106995. [PMID: 39710106 DOI: 10.1016/j.ejps.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Tuberculosis (TB) remains a significant global health challenge, latently affecting around a quarter of the global population. The sole licensed TB vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), shows variable efficacy, particularly among adolescents and adults, underscoring the pressing need for more effective vaccination strategies. The administration route is crucial for vaccine efficacy, and administration via the skin, being rich in immune cells, may offer advantages over conventional subcutaneous routes, which lack direct access to abundant antigen-presenting cells. This study compared the immunogenic effects of intradermal versus subcutaneous administration of a candidate TB vaccine delivering a Ag85B-ESAT6-Rv2034 (AER) multiphase fusion recombinant protein, in lipid-poly(D,L-lactic-co-glycolic acid) (lipid-PLGA) nanoparticles in mice. In-depth evaluation of immune responses in splenocytes was performed using 27-marker spectral flow cytometry. Both routes elicited significant T-cell responses. However, intradermal administration uniquely increased polyfunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, associated with protection against TB. Additionally, it significantly increased CD69+ B-cell counts and induced higher AER-specific antibody titers, particularly IgG2a. These results underscore the superior immunogenic potential of intradermal vaccine administration by effectively inducing immune cells associated with TB protection, highlighting its significance in the development of new vaccine strategies.
Collapse
Affiliation(s)
- M M Szachniewicz
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands.
| | - S J F van den Eeden
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - K E van Meijgaarden
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - K L M C Franken
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - S van Veen
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - A Geluk
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - T H M Ottenhoff
- Department of Infectious Diseases, LUCID, Leiden University Medical Center (LUMC), The Netherlands
| |
Collapse
|
3
|
Salmasi Z, Kamali H, Rezaee H, Nazeran F, Jafari Z, Eisvand F, Teymouri M, Khordad E, Mosafer J. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Deliv Transl Res 2025; 15:770-785. [PMID: 39215953 DOI: 10.1007/s13346-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, DOX (Doxorubicin) and Fe3O4 magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g. The NPs showed faster DOX release at pH 5.5 compared to pH 7.4. Also, the cytotoxicity effect of NPs increased compared to Free-DOX alone in C6 glioma cancer cells. For in vivo investigations, the 2.2 Kg rabbits were injected with NPs formulations via a central articular anterior vein in their ears. Furthermore, the images of rabbit organs were depicted via MR (Magnetic resonance) and fluorescent imaging techniques. A negative contrast (dark signal) was observed in T2 (Relaxation Time) weighted MR images of IV (Intravenously)-injected rabbits with NPs compared to the control ones. The organ's florescent images of NPs-injected rabbits showed a high density of red color related to the accumulation of DOX in liver and kidney organs. These data showed that the NPs have no cytotoxicity effect on the heart. Also, the results of histopathological tests of different organs showed that the groups receiving NPs and Free-DOX were almost similar and no significant difference was seen, except for the cardiac tissue in which the pathological effects of NPs were significantly less than the Free-DOX. Additionally, pharmacokinetic studies were also conducted at the sera and whole bloods of IV-injected rabbits with NPs and Free-DOX. The pharmacokinetic parameters showed that NPs could enhance the DOX retention in the serum compared to the Free-DOX. Altogether, we aimed to produce a powerful delivery nanosystem for its potential in dual therapeutic and diagnostic applications which are called theranostic agents.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Rezaee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Nazeran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frarhad Eisvand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, North Khorasan, Iran
| | - Elnaz Khordad
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, P.O. Box 9516915169, Torbat Heydariyeh, Iran.
| |
Collapse
|
4
|
Costa MP, Abdu JOC, Machado Resende Guedes MC, Sarcinelli MA, Fabri RL, Pittella F, Macedo GC, Vilela FMP, Rocha HVA, Tavares GD. Dexamethasone-loaded chitosan-decorated PLGA nanoparticles: A step forward in attenuating the COVID-19 cytokine storm? Colloids Surf B Biointerfaces 2025; 246:114359. [PMID: 39522287 DOI: 10.1016/j.colsurfb.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study aims to develop and characterize poly (lactic-co-glycolic acid) (PLGA) nanoparticles decorated with chitosan (CS) for the encapsulation of dexamethasone (DEX) (NP-DEX-CS), targeting improved efficacy in the treatment of severe acute respiratory syndrome (SARS) associated with COVID-19. The nanoparticles were systematically characterized for size, zeta potential (ZP), morphology, encapsulation efficiency, and in vitro drug release. Incorporation of CS resulted in significant modifications in the nanoparticles' physical properties, notably an increase in size (from 207.3 ± 6.7 nm to 264.4 ± 4.4 nm) and a shift in ZP to positive values (from -11.8 ±1.4 mV to +30.0 ± 1,6 mV). The NP-DEX-CS formulation achieved a high encapsulation efficiency (∼79 %) and a drug loading capacity of 6.53 ± 0.02 %.In addition, the in vitro release rate of DEX from NP-DEX-CS was lower compared to undecorated nanoparticles, with a reduction from approximately 64-37 % within 24 h. Microscopy analyses revealed a smoother surface on the CS-decorated nanoparticles. FTIR and XRD analyses confirmed successful chitosan coating and DEX encapsulation. The CS coating enhanced the tolerability of J774.A1 cells to the nanoparticles, particularly evident at the highest concentration (400ug/mL), resulting in a cell viability ≥70 %. Importantly, the NP-DEX-CS significantly reduced levels of nitric oxide and inflammatory cytokines (IL-1, IL-6, IL-12, and TNF-α). These findings suggest that CS-decorated PLGA nanoparticles hold promise as an effective dexamethasone delivery system for treating SARS related to COVID-19.
Collapse
Affiliation(s)
- Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Maria Clara Machado Resende Guedes
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Gilson Costa Macedo
- Postgraduate Program in Biological Sciences, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Fernanda Maria Pinto Vilela
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | | | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
6
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
7
|
Zhang Y, Jiang M, Wang T. Reactive oxygen species (ROS)-responsive biomaterials for treating myocardial ischemia-reperfusion injury. Front Bioeng Biotechnol 2024; 12:1469393. [PMID: 39286345 PMCID: PMC11402825 DOI: 10.3389/fbioe.2024.1469393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.
Collapse
Affiliation(s)
- Ying Zhang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mantang Jiang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wang
- Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
- Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ciceu A, Fenyvesi F, Hermenean A, Ardelean S, Dumitra S, Puticiu M. Advancements in Plant-Based Therapeutics for Hepatic Fibrosis: Molecular Mechanisms and Nanoparticulate Drug Delivery Systems. Int J Mol Sci 2024; 25:9346. [PMID: 39273295 PMCID: PMC11394827 DOI: 10.3390/ijms25179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Chronic liver injuries often lead to hepatic fibrosis, a condition characterized by excessive extracellular matrix accumulation and abnormal connective tissue hyperplasia. Without effective treatment, hepatic fibrosis can progress to cirrhosis or hepatocellular carcinoma. Current treatments, including liver transplantation, are limited by donor shortages and high costs. As such, there is an urgent need for effective therapeutic strategies. This review focuses on the potential of plant-based therapeutics, particularly polyphenols, phenolic acids, and flavonoids, in treating hepatic fibrosis. These compounds have demonstrated anti-fibrotic activities through various signaling pathways, including TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR, and hedgehog pathways. Additionally, this review highlights the advancements in nanoparticulate drug delivery systems that enhance the pharmacokinetics, bioavailability, and therapeutic efficacy of these bioactive compounds. Methodologically, this review synthesizes findings from recent studies, providing a comprehensive analysis of the mechanisms and benefits of these plant-based treatments. The integration of novel drug delivery systems with plant-based therapeutics holds significant promise for developing effective treatments for hepatic fibrosis.
Collapse
Affiliation(s)
- Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Ardelean
- Faculty of Pharmacy, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Simona Dumitra
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| | - Monica Puticiu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania
| |
Collapse
|
9
|
Kushawaha SK, Ashawat MS, Soni D, Kumar P, Rimpi, Baldi A. Aurothioglucose encapsulated nanoparticles fostered neuroprotection in streptozotocin-induced Alzheimer's disease. Brain Res 2024; 1834:148906. [PMID: 38570152 DOI: 10.1016/j.brainres.2024.148906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Alzherimer's disease (AD) is an age-dependent ubiquitous ailment worldwide with limited therapies that only alleviate the symptoms of AD but do not cure them entirely because of the restricted blood-brain barrier passage of the drug. Hence with new advanced technology, nanoparticles can offer an opportunity as the active candidate to overcome the above limitations. Aurothioglucose, a synthetic glucose derivative of the gold compound, has been clinically proven to be an effective anti-inflammatory drug for rheumatic arthritis. Recently, several scientific groups have developed gold nanoparticle preparations and tested them for the treatment of dementia. This study was planned to prepare the PLGA nanoparticles of aurothioglucose (ATG) and check the neuroprotective potential against STZ-induced AD in rats. The nanoparticles were prepared using the double emulsion solvent evaporation method and characterized for various parameters such as drug-excipient interaction, particle size, zeta potential, and morphology. Then, rats were injected STZ (3 mg/kg/i.c.v., days 1 and 3) and ATG (5 and 10 mg/kg/s.c.), ATG NPs (2.5 and 5 mg/kg/s.c.) and donepezil (2 mg/kg/p.o) from 15th to 29th day. Behavior parameters were performed using an actophotometer, MWM, and ORT. On the 30th day, all the animals were sacrificed, and the brains were isolated for estimating biochemical, neurochemical, and proinflammatory markers. It was observed that ATG NPs significantly restored all behavior and neurotransmitter alterations caused by STZ. Also, it increased antioxidant levels and decreased inflammatory cytokines significantly, then ATG alone. Thus, the study suggests that ATG loaded PLGA NPs could be used as a novel therapeutic strategy to slow the process of AD.
Collapse
Affiliation(s)
- Shiv Kumar Kushawaha
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, Kathog, Distt. Kangra, Himanchal Pradesh 176031, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, India.
| | - Rimpi
- Department of Pharmaceutical Sciences, PCTE College, Baddowal, Ludhiana 141021, India
| | - Ashish Baldi
- Pharma Innovation Lab, Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India.
| |
Collapse
|
10
|
C Sekhar V, Gulia KK, Deepti A, Chakrapani PSB, Baby S, Viswanathan G. Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences. Mol Neurobiol 2024; 61:3296-3313. [PMID: 37987958 DOI: 10.1007/s12035-023-03741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Therapeutic options to contain seizures, a transitional stage of many neuropathologies, are limited due to the blood-brain barrier (BBB). Herbal nanoparticle formulations can be employed to enhance seizure prognosis. Bacoside A (BM3) and bacopaside I (BM4) were isolated from Bacopa monnieri and synthesized as nanoparticles (BM3NP and BM4NP, respectively) for an effective delivery system to alleviate seizures and associated conditions. After physicochemical characterization, cell viability was assessed on mouse neuronal stem cells (mNSC) and neuroblastoma cells (N2a). Thereafter, anti-seizure effects, mitochondrial membrane potential (MMP), apoptosis, immunostaining and epileptic marker mRNA expression were determined in vitro. The seizure-induced changes in the cortical electroencephalogram (EEG), electromyography (EMG), Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep were monitored in vivo in a kainic acid (KA)-induced rat seizure model. The sizes of BM3NPs and BM4NPs were 165.5 nm and 689.6 nm, respectively. They were biocompatible and also aided in neuroplasticity in mNSC. BM3NPs and BM4NPs depicted more than 50% cell viability in N2a cells, with IC50 values of 1609 and 2962 µg/mL, respectively. Similarly, these nanoparticles reduced the cytotoxicity of N2a cells upon KA treatment. Nanoparticles decreased the expression of epileptic markers like fractalkine, HMGB1, FOXO3a and pro-inflammatory cytokines (P < 0.05). They protected neurons from apoptosis and restored MMP. After administration of BM3NPs and BM4NPs, KA-treated rats attained a significant reduction in the epileptic spikes, sleep latency and an increase in NREM sleep duration. Results indicate the potential of BM3NPs and BM4NPs in neutralizing the KA-induced excitotoxic seizures in neurons.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
- University of Kerala, Thiruvananthapuram, 695034, Kerala, India
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
11
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
12
|
Grijalvo S, Rodriguez-Abreu C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:339-350. [PMID: 36959976 PMCID: PMC10028572 DOI: 10.3762/bjnano.14.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.
Collapse
Affiliation(s)
| | - Carlos Rodriguez-Abreu
- CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain
- Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain
| |
Collapse
|
13
|
Stiepel RT, Duggan E, Batty CJ, Ainslie KM. Micro and nanotechnologies: The little formulations that could. Bioeng Transl Med 2023; 8:e10421. [PMID: 36925714 PMCID: PMC10013823 DOI: 10.1002/btm2.10421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
The first publication of micro- and nanotechnology in medicine was in 1798 with the use of the Cowpox virus by Edward Jenner as an attenuated vaccine against Smallpox. Since then, there has been an explosion of micro- and nanotechnologies for medical applications. The breadth of these micro- and nanotechnologies is discussed in this piece, presenting the date of their first report and their latest progression (e.g., clinical trials, FDA approval). This includes successes such as the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines from Pfizer, Moderna, and Janssen (Johnson & Johnson) as well as the most popular nanoparticle therapy, liposomal Doxil. However, the enormity of the success of these platforms has not been without challenges. For example, we discuss why the production of Doxil was halted for several years, and the bankruptcy of BIND therapeutics, which relied on a nanoparticle drug carrier. Overall, the field of micro- and nanotechnology has advanced beyond these challenges and continues advancing new and novel platforms that have transformed therapies, vaccines, and imaging. In this review, a wide range of biomedical micro- and nanotechnology is discussed to serve as a primer to the field and provide an accessible summary of clinically relevant micro- and nanotechnology platforms.
Collapse
Affiliation(s)
- Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Eliza Duggan
- North Carolina School of Science and MathematicsDurhamNorth CarolinaUSA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Kristy M. Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNorth CarolinaUSA
- Department of Microbiology and Immunology, UNC School of MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
14
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
15
|
Arslan FB, Öztürk K, Tavukçuoğlu E, Öztürk SC, Esendağlı G, Çalış S. A novel combination for the treatment of small cell lung cancer: Active targeted irinotecan and stattic co-loaded PLGA nanoparticles. Int J Pharm 2023; 632:122573. [PMID: 36592892 DOI: 10.1016/j.ijpharm.2022.122573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Polymeric nanoparticles are widely used drug delivery systems for cancer treatment due to their properties such as ease of passing through biological membranes, opportunity to modify drug release, specifically targeting drugs to diseased areas, and potential of reducing side effects. Here, we formulated irinotecan and Stattic co-loaded PLGA nanoparticles targeted to small cell lung cancer. Nanoparticles were successfully conjugated with CD56 antibody with a conjugation efficiency of 84.39 ± 1.01%, and characterization of formulated nanoparticles was conducted with in-vitro and in-vivo studies. Formulated particles had sizes in the range of 130-180 nm with PDI values smaller than 0.3. Encapsulation and active targeting of irinotecan and Stattic resulted in increased cytotoxicity and anti-cancer efficiency in-vitro. Furthermore, it was shown with ex-vivo biodistribution studies that conjugated nanoparticles were successfully targeted to CD56-expressing SCLC cells and distributed mainly to tumor tissue and lungs. Compliant with our hypothesis and literature, the STAT3 pathway was successfully inhibited with Stattic solution and Stattic loaded nanoparticles. Additionally, intravenous injection of conjugated co-loaded nanoparticles resulted in decreased side effects and better anti-tumor activity than individual solutions of drugs in SCLC tumor-bearing mice. These results may indicate a new treatment option for clinically aggressive small cell lung cancer.
Collapse
Affiliation(s)
- Fatma Betül Arslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye
| | - Kıvılcım Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100 Ankara, Turkiye
| | - Süleyman Can Öztürk
- Centre for Laboratory Animals Research and Application, Hacettepe University, Ankara, Turkiye
| | - Güneş Esendağlı
- Department of Basic Oncology, Hacettepe University Cancer Institute, 06100 Ankara, Turkiye
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkiye.
| |
Collapse
|
16
|
Li Y, Ke J, Jia H, Ren J, Wang L, Zhang Z, Wang C. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf B Biointerfaces 2023; 222:113131. [PMID: 36646005 DOI: 10.1016/j.colsurfb.2023.113131] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Based on the immune escape and homologous adhesion ability of cancer cells, a drug delivery system (DDS) could overcome the dilemma of immune clearance and non-specific binding by coating the cancer cell membrane (CCM). In this study, a biomimetic DDS based on CCM and poly lactic acid-glycolic acid (PLGA) nanoparticles was successfully constructed for tumor active and homologous targeting therapy. The doped CCM on the surface of the nanoparticle enabled the DDS to achieve immune escape and had an affinity for tumor tissues. The cellular uptake and in vivo distribution tests showed a superior cellular affinity of CCM coated PLGA nanoparticles (CCMNPs) than that of PLGA nanoparticles (PLGANPs). All of those results proved that CCMNPs endowed with drug-loaded nanoparticles had the abilities of immune escape and homologous targeting through the biological functional proteins retained on the coated CCM. In addition, the tumor inhibition rate of CCMNPs in tumor-bearing nude mice was 1.3 and 2.0-fold compared to PLGANPs and PTX injection, which showed the capacity to efficiently and accurately deliver drugs to cancer sites improved the therapeutic effect of tumor and achieved accurately targeted therapy.
Collapse
Affiliation(s)
- Yue Li
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Junfang Ke
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongxin Jia
- School of Pharmacy, Harbin University of Commerce, 150076, PR China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Li Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| | - Chen Wang
- School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
17
|
Rose Lukesh N, Middleton DD, Bachelder EM, Ainslie KM. Particle-Based therapies for antigen specific treatment of type 1 diabetes. Int J Pharm 2023; 631:122500. [PMID: 36529362 PMCID: PMC9841461 DOI: 10.1016/j.ijpharm.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet β-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.
Collapse
Affiliation(s)
- Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
18
|
de Oliveira CR, Droppa-Almeida D, Padilha FF, de Souza RR, de Albuquerque-Júnior RLC. Polymeric Nanoparticles for the Treatment of Prostate Cancer- Technological Prospecting and Critical Analysis. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:8-14. [PMID: 35100962 DOI: 10.2174/1872210516666220131092642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/06/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polymeric nanoparticles have a wide diversity, and due to their toxicity and biodegradability, they have been widely used in the health area. Its use allows stability of some compounds, targeted delivery, and increased half-life, in this context, making some treatment proposals more effective. Prostate cancer, in turn, is among the types of cancer with the highest mortality, and the lack of effective treatment causes several strategies to meet this need. OBJECTIVE The objective of this work was to verify patents that use polymeric nanoparticles for the treatment of prostate cancer. METHODS For that, specific keywords to direct the search were applied in Patent Scope. After obtaining the patents, one was selected for the development of critical analysis in relation to its chemistry and biology. RESULTS A total of five patents were found and, of these, an invention that used PCL-PLGA-PEGCOOH polymeric nanoparticles with two natural compounds, resveratrol and celastrol, providing an alternative method to traditional monotherapies. CONCLUSION The prospective analysis serves to direct us in relation to the technologies currently used in certain fields. Based on several cases of cancer and specifically the countless cases of prostate cancer, five recent patents were found using polymeric nanoparticles. However, only one brought a different aspect of all the treatments used lately. It brought an invention containing two natural compounds being carried with polymeric nanoparticles with promising results.
Collapse
Affiliation(s)
| | - Daniela Droppa-Almeida
- Department of Industrial Biotechnology, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa -Avenida Murilo Dantas, 300, Bairro Farolândia, Aracaju-Sergipe, Brazil
| | - Francine Ferreira Padilha
- Universidade Tiradentes Postgraduate Program in Health and Environment, Universidade Tiradentes, Aracaju-Sergipe, Brazil
| | - Roberto Rodrigues de Souza
- Departamento de Engenharia Química; Universidade Federal de Sergipe; Av. Marechal Rondom, S/N; 49100-000, Aracaju - SE - Brasil
| | | |
Collapse
|
19
|
Marassi V, Zanoni I, Ortelli S, Giordani S, Reschiglian P, Roda B, Zattoni A, Ravagli C, Cappiello L, Baldi G, Costa AL, Blosi M. Native Study of the Behaviour of Magnetite Nanoparticles for Hyperthermia Treatment during the Initial Moments of Intravenous Administration. Pharmaceutics 2022; 14:2810. [PMID: 36559302 PMCID: PMC9782478 DOI: 10.3390/pharmaceutics14122810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle-proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Ilaria Zanoni
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Simona Ortelli
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Stem Sel srl, University of Bologna, 40129 Bologna, Italy
| | - Costanza Ravagli
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Laura Cappiello
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Giovanni Baldi
- Ce.Ri.Col, Colorobbia Consulting S.R.L., 50059 Sovigliana Vinci, Italy
| | - Anna L. Costa
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| | - Magda Blosi
- CNR-ISSMC, Institute of Science, Technology and Sustainability for Ceramics (Former ISTEC), Via Granarolo 64, 48018 Faenza, Italy
| |
Collapse
|
20
|
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022; 14:pharmaceutics14122728. [PMID: 36559223 PMCID: PMC9786338 DOI: 10.3390/pharmaceutics14122728] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-556047523
| | - Fatima D. Alharbi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud S. Alhibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Nouf B. Alanazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bayan Y. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Turki Almugaiteeb
- Taqnia-Research Products Development Company, Riyadh 13244, Saudi Arabia
| | | | - Rami M. Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Fang X, Lan H, Jin K, Gong D, Qian J. Nanovaccines for Cancer Prevention and Immunotherapy: An Update Review. Cancers (Basel) 2022; 14:3842. [PMID: 36010836 PMCID: PMC9405528 DOI: 10.3390/cancers14163842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer immunotherapy has received more and more attention from cancer researchers over the past few decades. Various methods such as cell therapy, immune checkpoint blockers, and cancer vaccines alone or in combination therapies have achieved relatively satisfactory results in cancer therapy. Among these immunotherapy-based methods, cancer vaccines alone have not yet had the necessary efficacy in the clinic. Therefore, nanomaterials have increased the efficacy and ef-fectiveness of cancer vaccines by increasing their half-life and durability, promoting tumor mi-croenvironment (TME) reprogramming, and enhancing their anti-tumor immunity with minimal toxicity. In this review, according to the latest studies, the structure and different types of nanovaccines, the mechanisms of these vaccines in cancer treatment, as well as the advantages and disadvantages of these nanovaccines are discussed.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huanrong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Daojun Gong
- Department of Gastrointestinal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hosptial, Wenzhou Medical University, Xinchang 312500, China
| |
Collapse
|
22
|
Shariati A, Chegini Z, Ghaznavi-Rad E, Zare EN, Hosseini SM. PLGA-Based Nanoplatforms in Drug Delivery for Inhibition and Destruction of Microbial Biofilm. Front Cell Infect Microbiol 2022; 12:926363. [PMID: 35800390 PMCID: PMC9253276 DOI: 10.3389/fcimb.2022.926363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
The biofilm community of microorganisms has been identified as the dominant mode of microbial growth in nature and a common characteristic of different microorganisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. The biofilm structure helps in the protection from environmental threats including host immune system and antimicrobial agents. Thus, the biofilm community has led to a higher prevalence of multidrug-resistant (MDR) strains in recent years. In this regard, the use of a new class of antibiotics, natural compounds, and anti-biofilm enzymes has been considered for the destruction of the microbial biofilm. However, different drawbacks such as low penetration, high susceptibility to degradation, instability, and poor solubility in aqueous solutions limit the use of anti-biofilm agents (ABAs) in a clinical setting. As such, recent studies have been using poly lactic-co-glycolic acid (PLGA)-based nanoplatforms (PLGA NPFs) for delivery of ABAs that have reported promising results. These particles, due to proper drug loading and release kinetics, could suppress microbial attachment, colonization, and biofilm formation for a long time. Additionally, PLGA NPFs, because of the high drug-loading efficiencies, hydrophilic surface, negative charge, and electrostatic interaction, lead to effective penetration of antibiotics to the deeper layer of the biofilm, thereby eliminating the microbial biofilm. Thus, PLGA NPFs could be considered as a potential candidate for coating catheters and other medical material surfaces for inhibition and destruction of the microbial biofilm. However, the exact interaction of PLGA NPFs and the microbial biofilm should be evaluated in animal studies. Additionally, a future goal will be to develop PLGA formulations as systems that can be used for the treatment of the MDR microbial biofilm, since the exact interactions of PLGA NPFs and these biofilm structures are not elucidated. In the present review article, we have discussed various aspects of PLGA usage for inhibition and destruction of the microbial biofilm along with different methods and procedures that have been used for improving PLGA NPF efficacy against the microbial biofilm.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- *Correspondence: Seyed Mostafa Hosseini,
| |
Collapse
|
23
|
Zhang X, Yan R, Wei Z, Yang D, Hu Z, Zhang Y, Huang X, Huang H, Wang W. Folate Decorated Multifunctional Biodegradable Nanoparticles for Gastric Carcinoma Active Targeting Theranostics. Int J Nanomedicine 2022; 17:2493-2502. [PMID: 35669001 PMCID: PMC9166902 DOI: 10.2147/ijn.s348380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Gastric cancer remains a major clinical issue and little progress has been made in the treatment of gastric cancer patients during recent decades. Nanoparticles provide a versatile platform for the diagnosis and treatment of gastric cancer. Methods We prepared 7-ethyl-10-hydroxycamptothecin (SN-38) 125I-radiolabelled biodegradable nanoparticles with folate surface modification (125I-SN-38-FA-NPs) as a novel nanoplatform for targeted gastric carcinoma theranostics. We characterized this system in terms of particle size, morphology, radiostability, and release properties and examined the in vitro cytotoxicity and cellular uptake properties of 125I-SN-38-FA-NPs in MNK 7 and NCI-N7 cells. The pharmacokinetics and biodistribution of 125I-SN-38-FA-NPs were imaged by single photon emission computer tomography (SPECT). An MNK7 tumor-bearing model were established and the in vivo antitumor activity of 125I-SN-38-FA-NPs was evaluated. Results SN-38 was readily radiolabeled with 125I and exhibited high radiostability. Poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were formed by solvent exchange, and displayed spherical morphology of 100 nm in diameter as characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A 2.5-fold greater uptake of 125I-radiolabelled SN-38-loaded folate-decorated PLGA nanoparticles (125I-SN-38-FA-NPs) than 125I-radiolabelled SN-38-loaded PLGA nanoparticles (125I-SN-38-NPs) were record in MKN7 tumor cells. NPs and folate-decorated PLGA nanoparticles (FA-NPs) also had good biocompatibility in methyl thiazolyl tetrazolium (MTT) assays. Pharmacokinetic, biodistribution and SPECT imaging studies showed that 125I-SN-38-FA-NPs had prolonged circulation, were distributed in the reticuloendothelial system, and had high uptake in tumors with a higher tumor accumulation of 125I-SN-38-FA-NPs than 125I-SN-38-NPs recorded at 24 h postinjection. In vivo SN-38-FA-NPs significantly inhibited tumor growth without causing obvious side effects. Conclusion Folate receptor alpha (FOLR1) targeted drug-loaded nanoparticles enable SPECT imaging and chemotherapy, and provide a novel nanoplatform for gastric carcinoma active targeting theranostics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Xin Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Hejing Huang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
24
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
25
|
Fang N, Liu J, Hou J, Zhong Y, Luo Y, Hu L, Zhang W, Wang J, Xu J, Zhou J, Zhang Y, Ran H, Guo D. Magnet-Guided Bionic System with LIFU Responsiveness and Natural Thrombus Tropism for Enhanced Thrombus-Targeting Ability. Int J Nanomedicine 2022; 17:2019-2039. [PMID: 35558339 PMCID: PMC9087377 DOI: 10.2147/ijn.s357050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Arterial thrombosis is a serious threat to human health. Recently, many thrombus-targeted nanoparticles (NPs) have been constructed for detecting thrombi or monitoring thrombolysis, but their thrombus-targeting performance is limited. Considering this drawback, we designed a specific bionic system with enhanced thrombus-targeting ability. Materials and Methods In the bionic system, gelatin was chosen as a carrier, and Fe3O4 served as a magnetic navigation medium and a magnetic resonance (MR) imaging agent. The CREKA peptide, which targets fibrin, was conjugated to the surface of gelatin to prepare targeted NPs (TNPs), which were then engulfed by macrophages to construct the bionic system. At the targeted site, the bionic system released its interior TNPs under low-intensity focused ultrasound (LIFU) irradiation. Moreover, the targeting performance was further improved by the conjugated CREKA peptide. Results In this study, we successfully constructed a bionic system and demonstrated its targeting ability in vitro and in vivo. The results indicated that most TNPs were released from macrophages under LIFU irradiation at 2 W/cm2 for 10 min in vitro. Additionally, the enhanced thrombus-targeting ability, based on the natural tropism of macrophages toward inflammatory thrombi, magnetic navigation and the CREKA peptide, was verified ex vivo and in vivo. Moreover, compared with the bionic system group, the group treated with TNPs had significantly decreased liver and spleen signals in MR images and significantly enhanced liver and spleen signals in fluorescence images, indicating that the bionic system is less likely to be cleared by the reticuloendothelial system (RES) than TNPs, which may promote the accumulation of the bionic system at the site of the thrombus. Conclusion These results suggest that the magnet-guided bionic system with LIFU responsiveness is an excellent candidate for targeting thrombi and holds promise as an innovative drug delivery system for thrombolytic therapy.
Collapse
Affiliation(s)
- Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jia Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yu Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Correspondence: Dajing Guo, Email
| |
Collapse
|
26
|
Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022; 27:1775. [PMID: 35335138 PMCID: PMC8954912 DOI: 10.3390/molecules27061775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (C.M.); (M.S.M.); (M.C.); (A.S.)
| | | |
Collapse
|
27
|
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J Control Release 2022; 343:777-797. [DOI: 10.1016/j.jconrel.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
28
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
29
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
30
|
A biodegradable long-term contraceptive implant with steady levonorgestrel release based on PLGA microspheres embedded in PCL-coated implant. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Gundersen ET, Førde JL, Tislevoll BS, Leitch C, Barratt G, Gjertsen BT, Herfindal L. Repurposing chlorpromazine for anti-leukaemic therapy by nanoparticle encapsulation. Int J Pharm 2021; 612:121296. [PMID: 34793932 DOI: 10.1016/j.ijpharm.2021.121296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Treatment of acute myeloid leukaemia (AML) relies on decades-old drugs, and while recent years have seen some breakthroughs, AML is still characterised by poor prognosis and survival rate. Drug repurposing can expedite the preclinical development of new therapies, and by nanocarrier encapsulation, the number of potentially viable drug candidates can be further expanded. The anti-psychotic drug chlorpromazine (CPZ) has been identified as a candidate for repurposing for AML therapy. Nanoencapsulation may improve the suitability of CPZ for the treatment of AML by reducing its effect on the central nervous system. Using the emulsion-evaporation technique, we have developed PEGylated PLGA nanoparticles loaded with CPZ for AML therapy. The nanoparticles were characterised to be between 150 and 300 nm by DLS, of spherical morphology by TEM, with a drug loading of at least 6.0% (w/w). After an initial burst release of adsorbed drug, the remaining 80% of the drug was retained in the PLGA nanoparticles for at least 24 h. The CPZ-loaded nanoparticles had equal cytotoxic potential towards AML cells to free CPZ, but acted more slowly, in line with the protracted drug release. Crucially, nanoparticles injected intravenously into zebrafish larvae did not accumulate in the brain, and nanoencapsulation also prevented CPZ from crossing an artificial membrane model. This demonstrates that the purpose for nanoencapsulation of CPZ is fulfilled, namely avoiding effects on the central nervous system while retaining the anti-AML activity of the drug.
Collapse
Affiliation(s)
- Edvin Tang Gundersen
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Benedicte Sjo Tislevoll
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Calum Leitch
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gillian Barratt
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Châtenay-Malabry, France
| | - Bjørn Tore Gjertsen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
32
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
33
|
Brar B, Ranjan K, Palria A, Kumar R, Ghosh M, Sihag S, Minakshi P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.699266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently occurring tumor in the human population. CRCs are usually adenocarcinomatous and originate as a polyp on the inner wall of the colon or rectum which may become malignant in the due course of time. Although the therapeutic options of CRC are limited, the early diagnosis of CRC may play an important role in preventive and therapeutic interventions to decrease the mortality rate. The CRC-affected tissues exhibit several molecular markers that may be exploited as the novel strategy to develop newer approaches for the treatment of the disease. Nanotechnology consists of a wide array of innovative and astonishing nanomaterials with both diagnostics and therapeutic potential. Several nanomaterials and nano formulations such as Carbon nanotubes, Dendrimer, Liposomes, Silica Nanoparticles, Gold nanoparticles, Metal-organic frameworks, Core-shell polymeric nano-formulations, Nano-emulsion System, etc can be used to targeted anticancer drug delivery and diagnostic purposes in CRC. The light-sensitive photosensitizer drugs loaded gold and silica nanoparticles can be used to diagnose as well as the killing of CRC cells by the targeted delivery of anticancer drugs to cancer cells. This review is focused on the recent advancement of nanotechnology in the diagnosis and treatment of CRC.
Collapse
|
34
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
35
|
Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One 2021; 16:e0251821. [PMID: 34143792 PMCID: PMC8213178 DOI: 10.1371/journal.pone.0251821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
Collapse
Affiliation(s)
- Adrianna Glinkowska Mares
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gaia Pacassoni
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Josep Samitier Marti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
36
|
Nath P, Hamadna SS, Karamchand L, Foster J, Kopelman R, Amar JG, Ray A. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 2021; 146:3933-3941. [PMID: 33982697 PMCID: PMC8210662 DOI: 10.1039/d1an00456e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | | | | | - John Foster
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jacques G Amar
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
37
|
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines. Vaccines (Basel) 2021; 9:vaccines9060558. [PMID: 34073648 PMCID: PMC8226647 DOI: 10.3390/vaccines9060558] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/15/2023] Open
Abstract
Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry.
Collapse
|
38
|
Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094305] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that accounts for about 60% of all diagnosed cases of dementia worldwide. Although there are currently several drugs marketed for its treatment, none are capable of slowing down or stopping the progression of AD. The role of the blood-brain barrier (BBB) plays a key role in the design of a successful treatment for this neurodegenerative disease. Nanosized particles have been proposed as suitable drug delivery systems to overcome BBB with the purpose of increasing bioavailability of drugs in the brain. Biodegradable poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) have been particularly regarded as promising drug delivery systems as they can be surface-tailored with functionalized molecules for site-specific targeting. In this review, a thorough discussion about the most recent functionalization strategies based on PLGA-NPs for AD and their mechanisms of action is provided, together with a description of AD pathogenesis and the role of the BBB in brain targeting.
Collapse
|
39
|
Aminolroayaei F, Shahbazi‐Gahrouei D, Shahbazi‐Gahrouei S, Rasouli N. Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnol 2021; 15:247-256. [PMID: 34694670 PMCID: PMC8675832 DOI: 10.1049/nbt2.12021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Nanotheranostics has attracted much attention due to its widespread application in molecular imaging and cancer therapy. Molecular imaging using nanoparticles has attracted special attention in the diagnosis of cancer at early stages. With the progress made in nanotheranostics, studying drug release, accumulation in the target tissue, biodistribution, and treatment effectiveness are other important factors. However, according to the studies conducted in this regard, each nanoparticle has some advantages and limitations that should be examined and then used in clinical applications. The main goal of this review is to explore the recent advancements in nanotheranostics for cancer therapy and diagnosis. Then, it is attempted to present recent studies on nanotheranostics used as a contrast agent in various imaging modalities and a platform for cancer therapy.
Collapse
Affiliation(s)
- Fahimeh Aminolroayaei
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | | | | | - Naser Rasouli
- Department of Medical PhysicsSchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
40
|
Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev 2021; 42:227-258. [PMID: 33891325 DOI: 10.1002/med.21809] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Colon cancer is an adenocarcinoma, which subsequently develops into malignant tumors, if not treated properly. The current colon cancer therapy mainly revolves around chemotherapy, radiotherapy and surgery, but the search continues for more effective interventions. With the advancement of nanoparticles (NPs), it is now possible to diagnose and treat colon cancers with different types, shapes, and sizes of NPs. Nanoformulations such as quantum dots, iron oxide, polymeric NPs, dendrimers, polypeptides, gold NPs, silver NPs, platinum NPs, and cerium oxide have been either extensively used alone or in combination with other nanomaterials or drugs in colon cancer diagnosis, and treatments. These nanoformulations possess high biocompatibility and bioavailability, which makes them the most suitable candidates for cancer treatment. The size and shape of NPs are critical to achieving an effective drug delivery in cancer treatment and diagnosis. Most NPs currently are under different testing phases (in vitro, preclinical, and clinical), whereas some of them have been approved for therapeutic applications. We have comprehensively reviewed the recent advances in the applications of NPs-based formulations in colon cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Firdos A Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem Albalawi
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Student of the volunteer/training program at IRMC
| | - Faheem H Pottoo
- College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
41
|
Advances in nano-biomaterials and their applications in biomedicine. Emerg Top Life Sci 2021; 5:169-176. [PMID: 33825835 DOI: 10.1042/etls20200333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Nanotechnology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.
Collapse
|
42
|
Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. Int J Pharm 2021; 597:120340. [PMID: 33545284 DOI: 10.1016/j.ijpharm.2021.120340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
Biocompatible nanoparticles composed of poly(lactic-co-glycolic acid) (PLGA) are used as drug and vaccine delivery systems because of their tunability in size and sustained release of cargo molecules. While the use of toxic stabilizers such as polyvinyl alcohol (PVA) limit the utility of PLGA, stabilizer-free PLGA nanoparticles are rarely used because they can be challenging to prepare. Here, we developed a tunable, stabilizer-free PLGA nanoparticle formulation capable of encapsulating plasmid DNA and demonstrated the formation of an elastin-like polymer PLGA hybrid nanoparticle with exceptional stability and biocompatibility. A suite of PLGAs were fabricated using solvent evaporation methods and assessed for particle size and stability in water. We find that under physiological conditions (PBS at 37˚C), the most stable PLGA formulation (P4) was found to contain a greater L:G ratio (65:35), lower MW, and carboxyl terminus. Subsequent experiments determined P4 nanoparticles were as stable as those made with PVA, yet significantly less cytotoxic. Variation in particle size was achieved through altering PLGA stoichiometry while maintaining the ability to encapsulate DNA and were modified with elastin-like polymers for increased immune tolerance. Overall, a useful method for tunable, stabilizer-free PLGA nanoparticle formulation was developed for use in drug and vaccine delivery, and immune targeting.
Collapse
|
43
|
Abou Assi R, Abdulbaqi IM, Siok Yee C. The Evaluation of Drug Delivery Nanocarrier Development and Pharmacological Briefing for Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Pharmaceuticals (Basel) 2021; 14:215. [PMID: 33806527 PMCID: PMC8001129 DOI: 10.3390/ph14030215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Current research indicates that the next silent epidemic will be linked to chronic liver diseases, specifically non-alcoholic fatty liver disease (NAFLD), which was renamed as metabolic-associated fatty liver disease (MAFLD) in 2020. Globally, MAFLD mortality is on the rise. The etiology of MAFLD is multifactorial and still incompletely understood, but includes the accumulation of intrahepatic lipids, alterations in energy metabolism, insulin resistance, and inflammatory processes. The available MAFLD treatment, therefore, relies on improving the patient's lifestyle and multidisciplinary pharmacotherapeutic options, whereas the option of surgery is useless without managing the comorbidities of the MAFLD. Nanotechnology is an emerging approach addressing MAFLD, where nanoformulations are suggested to improve the safety and physicochemical properties of conventional drugs/herbal medicines, physical, chemical, and physiological stability, and liver-targeting properties. A wide variety of liver nanosystems were constructed and delivered to the liver, only those that addressed the MAFLD were discussed in this review in terms of the nanocarrier classes, particle size, shape, zeta potential and offered dissolution rate(s), the suitable preparation method(s), excipients (with synergistic effects), and the suitable drug/compound for loading. The advantages and challenges of each nanocarrier and the focus on potential promising perspectives in the production of MAFLD nanomedicine were also highlighted.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
| | - Ibrahim M. Abdulbaqi
- Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun-Kupri, Kirkuk 36001, Iraq;
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Chan Siok Yee
- Thoughts Formulation Laboratory, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden 11800, Penang, Malaysia;
| |
Collapse
|
44
|
Fuchs N, Meta M, Schuppan D, Nuhn L, Schirmeister T. Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery. Cells 2020; 9:E2021. [PMID: 32887380 PMCID: PMC7565055 DOI: 10.3390/cells9092021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CatS) is a secreted cysteine protease that cleaves certain extracellular matrix proteins, regulates antigen presentation in antigen-presenting cells (APC), and promotes M2-type macrophage and dendritic cell polarization. CatS is overexpressed in many solid cancers, and overall, it appears to promote an immune-suppressive and tumor-promoting microenvironment. While most data suggest that CatS inhibition or knockdown promotes anti-cancer immunity, cell-specific inhibition, especially in myeloid cells, appears to be important for therapeutic efficacy. This makes the design of CatS selective inhibitors and their targeting to tumor-associated M2-type macrophages (TAM) and DC an attractive therapeutic strategy compared to the use of non-selective immunosuppressive compounds or untargeted approaches. The selective inhibition of CatS can be achieved through optimized small molecule inhibitors that show good pharmacokinetic profiles and are orally bioavailable. The targeting of these inhibitors to TAM is now more feasible using nanocarriers that are functionalized for a directed delivery. This review discusses the role of CatS in the immunological tumor microenvironment and upcoming possibilities for a nanocarrier-mediated delivery of potent and selective CatS inhibitors to TAM and related APC to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| |
Collapse
|
45
|
Yin WM, Li YW, Gu YQ, Luo M. Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:902-910. [PMID: 32398683 PMCID: PMC7470800 DOI: 10.1038/s41401-020-0417-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy is rapidly changing the paradigm of cancer care and treatment by evoking host immunity to kill cancer cells. As clinical approval of checkpoint inhibitors (e.g., ipilimumab and pembrolizumab) has been accelerated by a dramatic improvement of long-term survival in a small subset of patients compared to conventional chemotherapy, growing interesting research has focused on immunotherapy. However, majority of patients have not benefited from checkpoint therapies that only partially remove the inhibition of T cell functions. Insufficient systemic T cell responses, low immunogenicity and the immunosuppressive environment of tumors, create great challenges on therapeutic efficiency. Nanotechnology can integrate multiple functions within controlled size and shape, and has been explored as a unique avenue for the development of cancer immunotherapy. In this review, we mainly address how nanoengineered vaccines can induce robust T cell responses against tumors, as well as how nanomedicine can remodel the tumor immunosuppressive microenvironment to boost antitumor immune responses.
Collapse
|
46
|
Dirauf M, Grune C, Weber C, Schubert US, Fischer D. Poly(ethylene glycol) or poly(2-ethyl-2-oxazoline) – A systematic comparison of PLGA nanoparticles from the bottom up. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Fan C, Oduk Y, Zhao M, Lou X, Tang Y, Pretorius D, Valarmathi MT, Walcott GP, Yang J, Menasche P, Krishnamurthy P, Zhu W, Zhang J. Myocardial protection by nanomaterials formulated with CHIR99021 and FGF1. JCI Insight 2020; 5:132796. [PMID: 32453715 DOI: 10.1172/jci.insight.132796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3β antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yasin Oduk
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Zhao
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yawen Tang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mani T Valarmathi
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Philippe Menasche
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Cardiovascular Surgery, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wuqiang Zhu
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, and School of Engineering, the University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
48
|
Dong Q, Wan C, Yang H, Zheng D, Xu L, Zhou Z, Xie S, Du J, Li F. Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near-infrared triggered synergistic therapy of Her2-positve breast cancer. J Biomater Appl 2020; 35:430-445. [PMID: 32515640 DOI: 10.1177/0885328220929616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A multifunctional targeted nanoplatform combining photothermal therapy and chemotherapy has emerged as a promising strategy for comprehensive therapies of breast cancer. In this study, we constructed human epidermal growth factor receptor 2 (Her2)-targeted gold nanoshelled poly(lactic- co-glycolic acid) hybrid nanocapsules encapsulating perfluorooctyl bromide, superparamagnetic iron oxide nanoparticles, and doxorubicin (Her2-GPDH nanocapsules) as theranostic agent for bimodal ultrasound/magnetic resonance imaging and synergistic photothermal-chemotherapy of Her2-postive breast cancer cells. Her2–GPDH nanocomposites possessed well-defined spherical morphology, and the average diameter was about 296 nm with good dispersion. Targeting assays demonstrated that Her2–GPDH nanocapsules exhibited higher targeting binding to Her2-positive SKBR3 cells than Her2-negative MDA-MB-231cells. The encapsulation efficiency and the loading content of doxorubicin in Her2–GPDH nanocapsules were 39 ± 1.45% and 3.8 ± 0.52%, respectively, and the agent exhibited pH-responsive and near-infrared light-triggered stepwise release behavior of doxorubicin. In vitro, the agent had potential to serve as feasible candidate for ultrasound imaging and T2-weighted magnetic resonance imaging with a relatively high relaxivity. Cell experiments confirmed that the agent had significant photothermal cytotoxicity on SKBR3 cells, and the combined photothermal–chemotherapy could significantly enhance the anti-tumor effect. In summary, the present Her2–GPDH nanocapsules, a novel multifunctional nanoplatform, will offer a new way for early bimodal molecular-level diagnosis and synergistic treatment of Her2-positve breast cancer.
Collapse
Affiliation(s)
- Qi Dong
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Caifeng Wan
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Dongdong Zheng
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xu
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Shaowei Xie
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenghua Li
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
49
|
Mello FV, de Moraes GN, Maia RC, Kyeremateng J, Iram SH, Santos-Oliveira R. The Effect of Nanosystems on ATP-Binding Cassette Transporters: Understanding the Influence of Nanosystems on Multidrug Resistance Protein-1 and P-glycoprotein. Int J Mol Sci 2020; 21:E2630. [PMID: 32290047 PMCID: PMC7178121 DOI: 10.3390/ijms21072630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cancer multidrug resistance is involved in the failure of several treatments during cancer treatment. It is a phenomenon that has been receiving great attention in the last years due to the sheer amount of mechanisms discovered and involved in the process of resistance which hinders the effectiveness of many anti-cancer drugs. Among the mechanisms involved in the multidrug resistance, the participation of ATP-binding cassette (ABC) transporters is the main one. The ABC transporters are a group of plasma membrane and intracellular organelle proteins involved in the process of externalization of substrates from cells, which are expressed in cancer. They are involved in the clearance of intracellular metabolites as ions, hormones, lipids and other small molecules from the cell, affecting directly and indirectly drug absorption, distribution, metabolism and excretion. Other mechanisms responsible for resistance are the signaling pathways and the anti- and pro-apoptotic proteins involved in cell death by apoptosis. In this study we evaluated the influence of three nanosystem (Graphene Quantum Dots (GQDs), mesoporous silica (MSN) and poly-lactic nanoparticles (PLA)) in the main mechanism related to the cancer multidrug resistance such as the Multidrug Resistance Protein-1 and P-glycoprotein. We also evaluated this influence in a group of proteins involved in the apoptosis-related resistance including cIAP-1, XIAP, Bcl-2, BAK and Survivin proteins. Last, colonogenic and MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assays have also been performed. The results showed, regardless of the concentration used, GQDs, MSN and PLA were not cytotoxic to MDA-MB-231 cells and showed no impairment in the colony formation capacity. In addition, it has been observed that P-gp membrane expression was not significantly altered by any of the three nanomaterials. The results suggest that GQDs nanoparticles would be suitable for the delivery of other multidrug resistance protein 1 (MRP1) substrate drugs that bind to the transporter at the same binding pocket, while MSN can strongly inhibit doxorubicin efflux by MRP1. On the other hand, PLA showed moderate inhibition of doxorubicin efflux by MRP1 suggesting that this nanomaterial can also be useful to treat MDR (Multidrug resistance) due to MRP1 overexpression.
Collapse
Affiliation(s)
- Francisco V.C. Mello
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil;
| | - Gabriela N. de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), CEP 20230130 Rio de Janeiro, Brazil; (G.N.d.M.); (R.C.M.)
| | - Raquel C. Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), CEP 20230130 Rio de Janeiro, Brazil; (G.N.d.M.); (R.C.M.)
| | - Jennifer Kyeremateng
- Department of Chemistry & Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.K.); (S.H.I.)
| | - Surtaj Hussain Iram
- Department of Chemistry & Biochemistry, College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA; (J.K.); (S.H.I.)
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rua Helio de Almeida 75, Ilha do Fundão, CEP 21941-614 Rio de Janeiro, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Campo Grande, CEP 23070200 Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Keshavarz Shahbaz S, Foroughi F, Soltaninezhad E, Jamialahmadi T, Penson PE, Sahebkar A. Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection. Expert Opin Drug Deliv 2020; 17:767-780. [PMID: 32223341 DOI: 10.1080/17425247.2020.1748006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Allograft transplantation is an effective end-point therapy to replace the function of an impaired organ. The main problem associated with allotransplantation is the induction of immune responses that results in acute and chronic graft rejection. To modulate the response of the immune system, transplant recipients generally take high dose immunosuppressant drugs for life. These drugs are associated with serious side effects such as infection with opportunistic pathogens and the development of neoplasia. AREAS COVERED We reviewed the obstacles to successful transplantation and PLGA-based strategies to reduce immune-mediated allograft rejection. EXPERT OPINION Biomaterial-based approaches using micro- and nanoparticles such as poly (lactic-co-glycolic acid) (PLGA) can be used to achieve controlled release of drugs. This approach decreases the required effective dose of drugs and enables local delivery of these agents to specific tissues and cells, whilst decreasing systemic effects.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences , Qazvin, Iran
| | - Ehsan Soltaninezhad
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran.,Department of Nutrition, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA , Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|