1
|
Saba I, Batoo KM, Wani K, Verma R, Hameed S. Exploration of Metal-Doped Iron Oxide Nanoparticles as an Antimicrobial Agent: A Comprehensive Review. Cureus 2024; 16:e69556. [PMID: 39421116 PMCID: PMC11484742 DOI: 10.7759/cureus.69556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Over the past two decades, nanotechnology has captured significant interest, especially in the medical field, where the unique characteristics of nanoscale particles offer substantial advantages. The family of nanosized materials, specifically iron oxide nanoparticles (IONPs), has emerged as promising due to their magnetic properties, biocompatibility, and substantial surface area for therapeutic molecule attachment. The review explores various strategies to enhance the antibacterial properties of IONPs, such as metal doping, which modifies their physicochemical, biological, electrical, and optical properties. Metal-doped IONPs, including those with nickel, copper, zinc, selenium, molybdenum, gold, and others, have shown that they effectively eradicate viruses and bacteria. The mechanisms behind their enhanced antibacterial activity involve generating reactive oxygen species (ROS), inhibiting antibiotic-resistant genes, disrupting cell walls and DNA, dysfunction of efflux pumps, and internalizing nanoparticles. The review also addresses the potential toxicity of IONPs, highlighting factors such as their dimension, form, and outermost layers, which change how they affect the overall condition of cellular structures. Surface coatings using polymers and essential oils are among the strategies being investigated as potential ways to reduce toxicity. This review additionally looks into IONPs' drug delivery potential for antibiotics and antifungals. The integration of IONPs with various pharmaceutical compounds and their controlled release mechanisms are also detailed. The review concludes by offering a positive outlook on the potential enhancements and prospects of IONPs. Challenges in synthesis technologies, size tuning, and surface alteration are acknowledged, emphasizing the need for continued research to fully harness the capabilities of IONPs in biomedical applications.
Collapse
Affiliation(s)
- Iram Saba
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
- Research and Scientific Center, Sultan Bin Abdulaziz Humanitarian City, Riyadh, SAU
| | - Khalid M Batoo
- Medical Physics, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, SAU
| | - Kaiser Wani
- Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, IND
- Biochemistry, College of Science, King Saud University, Riyadh, SAU
| | - Ritesh Verma
- Physics, Amity University Haryana, Gurugram (Manesar), IND
| | - Saif Hameed
- Biotechnology, Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), IND
| |
Collapse
|
2
|
Marine polysaccharide-based hydrogels for critical materials selective removal and recovery: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Al-Tarawneh SF, Dahmash EZ, Alyami H, Abu-Doleh SM, Al-Ali S, Iyire A, Abuthawabeh R. Mechanistic modelling of targeted pulmonary delivery of dactinomycin iron oxide-loaded nanoparticles for lung cancer therapy. Pharm Dev Technol 2022; 27:1057-1068. [PMID: 36416448 DOI: 10.1080/10837450.2022.2152047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the increase in respiratory conditions including lung cancer post covid-19 pandemic, drug-loaded nanoparticulate dry powder inhalers (DPIs) can facilitate targeted lung delivery as a patient-friendly, non-invasive method. The aim of this work was to synthesise and optimise iron oxide nanoparticles (IONPs) containing dactinomycin as a model drug, using Quality by Design principles. Chitosan and sodium alginate were investigated as polymeric coatings. The mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), burst-effect (BE), entrapment-efficiency and the emitted-dose (ED) were investigated in initial screening studies and outcomes used to set up a Design of Experiments. Results revealed that chitosan IONPs were superior to that of sodium alginate in delivering DPI with optimal properties [ED (89.9%), FPF (59.7%), MMAD (1.59 µm) and BE (12.7%)]. Design space for targeted IONPs included formulations containing 2.1-2.5% dactinomycin and 0.5-0.9% chitosan. Differential scanning calorimetry and X-ray diffraction and SEM-EDS analysis revealed effective formation of IONPs, and TEM images revealed the production of spherical IONPs with particle size of 4.4 ± 0.77 nm. This work overcame the light sensitivity of dactinomycin to potentially target the high molecular weight drugs to the lungs, with controlled delivery based on a reduced burst effect.
Collapse
Affiliation(s)
- Shahd F Al-Tarawneh
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Eman Zmaily Dahmash
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hamad Alyami
- Department of Pharmaceutical Sciences, School of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Suha M Abu-Doleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Samer Al-Ali
- Faculty of Science, Isra University, Amman, Jordan
| | - Affiong Iyire
- Aston Pharmacy School, College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Rasha Abuthawabeh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman, Jordan
| |
Collapse
|
4
|
Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics (Basel) 2022; 11:antibiotics11050623. [PMID: 35625267 PMCID: PMC9137518 DOI: 10.3390/antibiotics11050623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
In the context of inefficient antibiotics, antibacterial alternatives are urgently needed to stop the increasing resistance rates in pathogens. This study reports the fabrication and characterization of four promising magnetite-based antibiotic delivery systems for ENT (ear, nose and throat) applications. Magnetite nanoparticles were functionalized with streptomycin and neomycin and some were entrapped in polymeric spheres. The obtained nanomaterials are stable, with spherical morphology, their size ranging from ~2.8 to ~4.7 nm for antibiotic-coated magnetite nanoparticles, and from submicron sizes up to several microns for polymer-coated magnetite–antibiotic composites. Cell viability and antimicrobial tests demonstrated their biocompatibility on human diploid cells and their antibacterial effect against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) opportunistic bacteria. The presence of the polymeric coat proved an enhancement in biocompatibility and a slight reduction in the antimicrobial efficiency of the spheres. Our results support the idea that functional NPs and polymeric microsystems containing functional NPs could be tailored to achieve more biocompatibility or more antimicrobial effect, depending on the bioactive compounds they incorporate and their intended application.
Collapse
|
5
|
Bera S, Mondal D. Antibacterial Efficacies of Nanostructured Aminoglycosides. ACS OMEGA 2022; 7:4724-4734. [PMID: 35187293 PMCID: PMC8851436 DOI: 10.1021/acsomega.1c04399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of broad-spectrum aminoglycoside antibiotics is restricted from various clinical applications due to the emergence of bacterial resistance and the adverse effects such as ototoxicity and nephrotoxicity. The intensive applicability of nanoparticles in modern medicinal chemistry has gained the interest of researchers for modification of aminoglycosides as nanoconjugates either via covalent conjugation or physical interactions to alleviate their undesirable effects and bacterial resistance. In this context, various carbohydrates, polymers, lipids, silver, gold, and silica-attached aminoglycoside nanoparticles have been reported with improvements in physicochemical properties, bioavailability, and biocompatibility in physiological medium. Overall, this review encompassed the synthesis of nanostructured aminoglycosides and their applications in the development of new antibacterial therapeutics.
Collapse
|
6
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
7
|
Synergistic Bacteriostatic Effect of Streptomycin-Coated Nanomagnetic Functional Oxides. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Gad El-Rab SMF, Ashour AA, Basha S, Alyamani AA, Felemban NH, Enan ET. Well-Orientation Strategy Biosynthesis of Cefuroxime-Silver Nanoantibiotic for Reinforced Biodentine™ and Its Dental Application against Streptococcus mutans. Molecules 2021; 26:6832. [PMID: 34833924 PMCID: PMC8622780 DOI: 10.3390/molecules26226832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
Dental caries results from the bacterial pathogen Streptococcus mutans (S. mutans) and is the maximum critical reason for caries formation. Consequently, the present study aims to evaluate the antibacterial activity of a newly synthesized nanoantibiotic-Biodentine formulation. The silver nanoparticles (ROE-AgNPs) were biosynthesized from the usage of Rosmarinus officinalis L. extract (ROE) and conjugated with cefuroxime to form Cefuroxime-ROE-AgNPs. Using Biodentine™ (BIOD), five groups of dental materials were prepared, in which Group A included conventional BIOD, Group B included BIOD with ROE-AgNPs, Groups C and D included BIOD with Cefuroxime-ROE-AgNPs at concentrations of 0.5% and 1.5% cefuroxime, respectively, and Group E included BIOD with 1.5% cefuroxime. The synthesized ROE-AgNPs or Cefuroxime-ROE-AgNPs were characterized for conjugating efficiency, morphology, particle size, and in vitro release. Minimum inhibitory concentration (MIC) of the cefuroxime, ROE-AgNPs, and Cefuroxime-ROE-AgNPs were additionally evaluated against cefuroxime resistant S. mutans, which furthered antibacterial efficacy of the five groups of dental materials. The UV-Visible spectrum showed the ROE-AgNPs or Cefuroxime-ROE-AgNPs peaks and their formation displayed through transmission electron microscopy (TEM), X-ray diffraction (XRD) pattern, and Fourier transforms infrared (FTIR) analysis. The end result of Cefuroxime-ROE-AgNPs showed conjugating efficiency up to 79%. Cefuroxime-ROE-AgNPs displayed the highest antibacterial efficacy against S. mutans as compared to cefuroxime or ROE-AgNPs alone. Moreover, the MIC of ROE-AgNPs and Cefuroxime-ROE-AgNPs was detected against S. mutans to be 25 and 8.5 μg/mL, respectively. Consequently, Cefuroxime-ROE-AgNPs displayed that a decrease in the MIC reached to more than three-fold less than MIC of ROE-AgNPs on the tested strain. Moreover, Cefuroxime-ROE-AgNPs/BIOD was employed as a novel dental material that showed maximum antimicrobial activity. Groups C and D of novel materials showed inhibitory zones of 19 and 26 mm, respectively, against S. mutans and showed high antimicrobial rates of 85.78% and 91.17%, respectively. These data reinforce the utility of conjugating cefuroxime with ROE-AgNPs to retrieve its efficiency against resistant S. mutant. Moreover, the nanoantibiotic delivered an advantageous antibacterial effect to BIOD, and this may open the door for future conjugation therapy of dental materials against bacteria that cause dental caries.
Collapse
Affiliation(s)
- Sanaa M. F. Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Amal A. Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia;
| | - Nayef H. Felemban
- Preventive Dentistry Department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
| | - Enas Tawfik Enan
- Dental Biomaterials, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia;
- Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura 35511, Egypt
| |
Collapse
|
9
|
Diouani MF, Sayhi M, Djafar ZR, Ben Jomaa S, Belgacem K, Gharbi H, Ghita M, Popescu LM, Piticescu R, Laouini D. Magnetic Separation and Centri-Chronoamperometric Detection of Foodborne Bacteria Using Antibiotic-Coated Metallic Nanoparticles. BIOSENSORS-BASEL 2021; 11:bios11070205. [PMID: 34201531 PMCID: PMC8301846 DOI: 10.3390/bios11070205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
Quality and food safety represent a major stake and growing societal challenge in the world. Bacterial contamination of food and water resources is an element that pushes scientists to develop new means for the rapid and efficient detection and identification of these pathogens. Conventional detection tools are often bulky, laborious, expensive to buy, and, above all, require an analysis time of a few hours to several days. The interest in developing new, simple, rapid, and nonlaborious bacteriological diagnostic methods is therefore increasingly important for scientists, industry, and regulatory bodies. In this study, antibiotic-functionalized metallic nanoparticles were used to isolate and identify the foodborne bacterial strains Bacillus cereus and Shigella flexneri. With this aim, a new diagnostic tool for the rapid detection of foodborne pathogenic bacteria, gold nanoparticle-based centri-chronoamperometry, has been developed. Vancomycin was first stabilized at the surface of gold nanoparticles and then incubated with the bacteria B. cereus or S. flexneri to form the AuNP@vancomycin/bacteria complex. This complex was separated by centrifugation, then treated with hydrochloric acid and placed at the surface of a carbon microelectrode. The gold nanoparticles of the formed complex catalyzed the hydrogen reduction reaction, and the generated current was used as an analytical signal. Our results show the possibility of the simple and rapid detection of the S. flexneri and B. cereus strains at very low numbers of 3 cells/mL and 12 cells/mL, respectively. On the other hand, vancomycin-capped magnetic beads were easily synthesized and then used to separate the bacteria from the culture medium. The results show that vancomycin at the surface of these metallic nanoparticles is able to interact with the bacteria membrane and then used to separate the bacteria and to purify an inoculated medium.
Collapse
Affiliation(s)
- Mohamed Fethi Diouani
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT03, Tunis-Belvédère 1002, Tunisia
- Campus Universitaire Farhat Hached B.P. n° 94-ROMMANA, Université Tunis El Manar, Tunis 1068, Tunisia
| | - Maher Sayhi
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT03, Tunis-Belvédère 1002, Tunisia
- Campus Universitaire Farhat Hached B.P. n° 94-ROMMANA, Université Tunis El Manar, Tunis 1068, Tunisia
- Faculté des Sciences de Tunis, Campus Universitaire, El Manar, Tunis 2092, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère 1002, Tunisia
| | - Zehaira Romeissa Djafar
- Laboratory of Improvement and Development of Plant and Animal Production (ADPVA), Sétif 19000, Algeria
- Faculty of Sciences, University of Sétif, Sétif 19000, Algeria
| | - Samir Ben Jomaa
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT03, Tunis-Belvédère 1002, Tunisia
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 1054, Tunisia
| | - Kamel Belgacem
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT03, Tunis-Belvédère 1002, Tunisia
| | - Hayet Gharbi
- Laboratory of Epidemiology and Veterinary Microbiology (LEMV), Institut Pasteur de Tunis, LR11IPT03, Tunis-Belvédère 1002, Tunisia
| | - Mihai Ghita
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, Pantelimon, 077145 Ilfov, Romania
| | - Laura-Madalina Popescu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, Pantelimon, 077145 Ilfov, Romania
| | - Roxana Piticescu
- National R&D Institute for Non-Ferrous and Rare Metals, INCDMNR-IMNR, 102 Biruintei Blvd, Pantelimon, 077145 Ilfov, Romania
| | - Dhafer Laouini
- Faculté des Sciences de Tunis, Campus Universitaire, El Manar, Tunis 2092, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Institut Pasteur de Tunis, LR11IPT02, Tunis-Belvédère 1002, Tunisia
| |
Collapse
|
10
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
11
|
Layered double hydroxide–indomethacin hybrid: A promising biocompatible compound for the treatment of neuroinflammatory diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
13
|
Biocompatible superparamagnetic nanoparticles with ibuprofen as potential drug carriers. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2265-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
14
|
Jia H, Draz MS, Ruan Z. Functional Nanomaterials for the Detection and Control of Bacterial Infections. Curr Top Med Chem 2020; 19:2449-2475. [PMID: 31642781 DOI: 10.2174/1568026619666191023123407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/11/2019] [Accepted: 09/13/2019] [Indexed: 12/20/2022]
Abstract
Infections with multidrug-resistant bacteria that are difficult to treat with commonly used antibiotics have spread globally, raising serious public health concerns. Conventional bacterial detection techniques are time-consuming, which may delay treatment for critically ill patients past the optimal time. There is an urgent need for rapid and sensitive diagnosis and effective treatments for multidrug-resistant pathogenic bacterial infections. Advances in nanotechnology have made it possible to design and build nanomaterials with therapeutic and diagnostic capabilities. Functional nanomaterials that can specifically interact with bacteria offer additional options for the diagnosis and treatment of infections due to their unique physical and chemical properties. Here, we summarize the recent advances related to the preparation of nanomaterials and their applications for the detection and treatment of bacterial infection. We pay particular attention to the toxicity of therapeutic nanoparticles based on both in vitro and in vivo assays. In addition, the major challenges that require further research and future perspectives are briefly discussed.
Collapse
Affiliation(s)
- Huiqiong Jia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
16
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Shahzad Lodhi M, Qadir Samra Z. Purification of transferrin by magnetic nanoparticles and conjugation with cysteine capped gold nanoparticles for targeting diagnostic probes. Prep Biochem Biotechnol 2019; 49:961-973. [PMID: 31318328 DOI: 10.1080/10826068.2019.1643736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transferrin is an iron binding glycoprotein actively involved in the growth and maintenance of cell cycle. The transferrin receptors expression is increased on growing cancer/tumor cells for absorption of iron through transferrin and participation in biological activity. In this study, a novel method for the purification of transferrin by using magnetic nanoparticles (MNP) is developed and compared with reported method. Magnetic nanoparticles were synthesized by co-precipitation method under hydrothermal conditions in the presence of ammonium hydroxide. MNP were characterized by FTIR, VSM, DLS, TEM, and SEM. Purified transferrin was characterized by SDS-PAGE, MALDI-TOF, ELISA, Western blot, and its activity was further confirmed by iron binding assay and receptor binding assays. Purified transferrin was also conjugated with cysteine capped gold nanoparticles (GNP) and characterized by UV-Vis spectra, TEM, DLS, and fluorescent spectrophotometry. Transferrin conjugated cysteine capped GNP used as a targeted fluorescent probe on gastric cancer, tumor tissue and MDA-MB 231 cancer cells to confirm transferrin receptor binding activity and application as diagnostic probe. The purified transferrin showed stability and activity up to 36 months. The results indicated that the synthesized superamagnetic MNP are good for the purification of transferrin. A good yield of transferrin was purified by this method, good quality and showed active biological activity. GNP conjugated transferrin has a potential to be used in cancer diagnosis as targeted diagnosis probe in vivo and in vitro. Experiments are underway for utilizing transferrin as carrier for targeting drug delivery.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| | - Zahoor Qadir Samra
- Applied Molecular Biotechnology Research Lab (AMBR), Institute of Biochemistry and Biotechnology, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
18
|
Tan BL, Norhaizan ME, Chan LC. An Intrinsic Mitochondrial Pathway Is Required for Phytic Acid-Chitosan-Iron Oxide Nanocomposite (Phy-CS-MNP) to Induce G₀/G₁ Cell Cycle Arrest and Apoptosis in the Human Colorectal Cancer (HT-29) Cell Line. Pharmaceutics 2018; 10:pharmaceutics10040198. [PMID: 30360519 PMCID: PMC6321496 DOI: 10.3390/pharmaceutics10040198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/10/2023] Open
Abstract
Magnetic iron oxide nanoparticles are among the most useful metal nanoparticles in biomedical applications. A previous study had confirmed that phytic acid-chitosan-iron oxide nanocomposite (Phy-CS-MNP) exhibited antiproliferative activity towards human colorectal cancer (HT-29) cells. Hence, in this work, we explored the in vitro cytotoxicity activity and mechanistic action of Phy-CS-MNP nanocomposite in modulating gene and protein expression profiles in HT-29 cell lines. Cell cycle arrest and apoptosis were evaluated by NovoCyte Flow Cytometer. The mRNA changes (cyclin-dependent kinase 4 (Cdk4), vascular endothelial growth factor A (VEGFA), c-Jun N-terminal kinase 1 (JNK1), inducible nitric oxide synthase (iNOS), and matrix metallopeptidase 9 (MMP9)) and protein expression (nuclear factor-kappa B (NF-κB) and cytochrome c) were assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The data from our study demonstrated that treatment with Phy-CS-MNP nanocomposite triggered apoptosis and G0/G1 cell cycle arrest. The transcriptional activity of JNK1 and iNOS was upregulated after treatment with 90 μg/mL Phy-CS-MNP nanocomposite. Our results suggested that Phy-CS-MNP nanocomposite induced apoptosis and cell cycle arrest via an intrinsic mitochondrial pathway through modulation of Bax and Bcl-2 and the release of cytochrome c from the mitochondria into the cytosol.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Lee Chin Chan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
19
|
Niemirowicz-Laskowska K, Głuszek K, Piktel E, Pajuste K, Durnaś B, Król G, Wilczewska AZ, Janmey PA, Plotniece A, Bucki R. Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines. Int J Nanomedicine 2018; 13:3411-3424. [PMID: 29928120 PMCID: PMC6001743 DOI: 10.2147/ijn.s157564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background 1,4-Dihydropyridine (1,4-DHP) and its derivatives are well-known calcium channel blockers with antiarrhythmic and antihypertensive activities. These compounds exhibit pleiotropic effects including antimicrobial activities that rely on their positive charge and amphipathic nature. Use of magnetic nanoparticles (MNPs) as carriers of 1,4-DHP modulates their properties and enables improved formulations with higher efficacy and less toxicity. Methods In this study, the antimicrobial and immunomodulatory activities of novel 1,4-DHP derivatives in free form and immobilized on MNPs were determined by evaluating pathogen outgrowth and proinflammatory cytokine release in experimental settings that involve incubation of various 1,4-DHPs with clinical isolates of bacteria or fungi as well as mammalian cell culture models. Results Conventional immobilization of 1,4-DHP on aminosilane-coated MNPs markedly enhances their antimicrobial activity compared to nonimmobilized molecules, in part because of the higher affinity of these nanosystems for bacterial cell wall components in the presence of human body fluids. Conclusion Optimized nanosystems are characterized by improved biocompatibility and higher anti-inflammatory properties that provide new opportunities for the therapy of infectious diseases.
Collapse
Affiliation(s)
| | - Katarzyna Głuszek
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Karlis Pajuste
- Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce
| | - Grzegorz Król
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce
| | | | - Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aiva Plotniece
- Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
20
|
Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018; 7:antibiotics7020046. [PMID: 29890753 PMCID: PMC6023022 DOI: 10.3390/antibiotics7020046] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Ana Paula Miranda Vieira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Taynara Maria Toito de Lima
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
21
|
Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E321. [PMID: 29473883 PMCID: PMC5849018 DOI: 10.3390/ma11020321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
In a recent report, the World Health Organisation (WHO) classified antibiotic resistance as one of the greatest threats to global health, food security, and development. Methicillin-resistant Staphylococcus aureus (MRSA) remains at the core of this threat, with persistent and resilient strains detectable in up to 90% of S. aureus infections. Unfortunately, there is a lack of novel antibiotics reaching the clinic to address the significant morbidity and mortality that MRSA is responsible for. Recently, nanomedicine strategies have emerged as a promising therapy to combat the rise of MRSA. However, these approaches have been wide-ranging in design, with few attempts to compare studies across scientific and clinical disciplines. This review seeks to reconcile this discrepancy in the literature, with specific focus on the mechanisms of MRSA infection and how they can be exploited by bioactive molecules that are delivered by nanomedicines, in addition to utilisation of the nanomaterials themselves as antibacterial agents. Finally, we discuss targeting MRSA biofilms using nano-patterning technologies and comment on future opportunities and challenges for MRSA treatment using nanomedicine.
Collapse
Affiliation(s)
- Alan Hibbitts
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
| | - Cian O'Leary
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
- Trinity Centre of Bioengineering, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland.
- School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
22
|
Chemically Surface Tunable Solubility Parameter for Controllable Drug Delivery-An Example and Perspective from Hollow PAA-Coated Magnetite Nanoparticles with R6G Model Drug. MATERIALS 2018; 11:ma11020247. [PMID: 29415453 PMCID: PMC5848944 DOI: 10.3390/ma11020247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 11/17/2022]
Abstract
Solubility parameter-dependent drug releasing property is essential in practical drug delivery systems (DDS), and how to combine magnetic nanoparticles(NPs) and suitable polymer coating towards DDS is always a crucial and valuable challenge in biomedical application. Herein, a controllable drug delivery model with a surface having a chemically tunable solubility parameter is presented using hollow magnetite/polyacrylic acid (Fe3O4/PAA) nanocomposites as nanocarrier towards DDS. This composite is prepared by simply coating the modified hollow Fe3O4 with PAA. The coating amount of PAA onto the surface of Fe3O4 (measured by TGA) is about 40% (w/w). Then, Rhodamine 6G (R6G) is selected as model drug in drug delivery experiment. The efficiency of drug loading and drug release of these Fe3O4/PAA nanocarriers are evaluated under various temperature, solvent and pH values. As a result, the best drug releasing rate was achieved as 93.0% in pH = 7.4 PBS solution after 14 h. The releasing efficiency is 86.5% in acidic condition, while a lower releasing rate (30.0%) is obtained in aqueous solution, as different forms (polyacrylic acid and polyacrylate) of PAA present different solubility parameters, causing different salt and acid effects in various solvents, swelling property of PAA, and binding force between PAA and R6G. Therefore, by changing the solubility parameter of coating polymers, the drug delivery properties could be effectively tuned. These findings prove that the DDS based on magnetic particle cores and polymer encapsulation could efficiently regulate the drug delivery properties by tuning surface solubility parameter in potential cancer targeting and therapy.
Collapse
|
23
|
Tokajuk G, Niemirowicz K, Deptuła P, Piktel E, Cieśluk M, Wilczewska AZ, Dąbrowski JR, Bucki R. Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int J Nanomedicine 2017; 12:7833-7846. [PMID: 29123396 PMCID: PMC5661836 DOI: 10.2147/ijn.s140661] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology offers new tools for developing therapies to prevent and treat oral infections, particularly biofilm-dependent disorders, such as dental plaques and endodontic and periodontal diseases. Chlorhexidine (CHX) is a well-characterized antiseptic agent used in dentistry with broad spectrum activity. However, its application is limited due to inactivation in body fluid and cytotoxicity toward human cells, particularly at high concentrations. To overcome these limitations, we synthesized nanosystems composed of aminosilane-coated magnetic nanoparticles functionalized with chlorhexidine (MNP@CHX). In the presence of human saliva, MNPs@CHX displayed significantly greater bactericidal and fungicidal activity against planktonic and biofilm-forming microorganisms than free CHX. In addition, CHX attached to MNPs has an increased ability to restrict the growth of mixed-species biofilms compared to free CHX. The observed depolarization of mitochondria in fungal cells treated with MNP@CHX suggests that induction of oxidative stress and oxidation of fungal structures may be a part of the mechanism responsible for pathogen killing. Nanoparticles functionalized by CHX did not affect host cell proliferation or their ability to release the proinflammatory cytokine, IL-8. The use of MNPs as a carrier of CHX has great potential for the development of antiseptic nanosystems.
Collapse
Affiliation(s)
- Grażyna Tokajuk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok.,Department of Intergrated Dentistry, Medical University of Białystok
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok.,Department of Materials and Biomedical Engineering, Białystok University of Technology
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| | - Mateusz Cieśluk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| | | | - Jan R Dąbrowski
- Department of Materials and Biomedical Engineering, Białystok University of Technology
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| |
Collapse
|
24
|
Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep 2017; 7:4610. [PMID: 28676673 PMCID: PMC5496903 DOI: 10.1038/s41598-017-04653-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/18/2017] [Indexed: 01/11/2023] Open
Abstract
Fungal infections caused by Candida spp. represent an emerging problem during treatment of immunocompromised patients and those hospitalized with serious principal diseases. The ever-growing number of fungal strains exhibiting drug resistance necessitates the development of novel antimicrobial therapies including those based on membrane-permeabilizing agents and nanomaterials as drug carriers. In this study, the fungicidal activities of LL-37 peptide, ceragenin CSA-13 and its magnetic derivatives (MNP@LL-37, MNP@CSA-13) against laboratory and clinical strains of C. albicans, C. glabrata and C. tropicalis were evaluated. These experiments confirm the high anti-fungal activity of these well-characterized agents mediated by their interaction with the fungal membrane and demonstrate elevated activity following immobilization of LL-37 and CSA-13 on the surface of magnetic nanoparticles (MNPs). Furthermore, MNP-based nanosystems are resistant to inhibitory factors present in body fluids and effectively inhibit formation of fungal biofilm. Simultaneously, synthesized nanostructures maintain immunomodulatory properties, described previously for free LL-37 peptide and CSA-13 substrate and they do not interfere with the proliferation and viability of osteoblasts, confirming their high biocompatibility.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222, Białystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-317, Kielce, Poland
| | - Grażyna Tokajuk
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, 15-269, Białystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222, Białystok, Poland
| | - Grzegorz Michalak
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222, Białystok, Poland
| | - Xiaobo Gu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Alina Kułakowska
- Department of Neurology, Medical University of Białystok, 15-276, Białystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222, Białystok, Poland.
| |
Collapse
|
25
|
Wang C, Zhang K, Zhou Z, Li Q, Shao L, Hao RZ, Xiao R, Wang S. Vancomycin-modified Fe 3O 4@SiO 2@Ag microflowers as effective antimicrobial agents. Int J Nanomedicine 2017; 12:3077-3094. [PMID: 28450783 PMCID: PMC5399987 DOI: 10.2147/ijn.s132570] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanomaterials combined with antibiotics exhibit synergistic effects and have gained increasing interest as promising antimicrobial agents. In this study, vancomycin-modified magnetic-based silver microflowers (Van/Fe3O4@SiO2@Ag microflowers) were rationally designed and prepared to achieve strong bactericidal ability, a wide antimicrobial spectrum, and good recyclability. High-performance Fe3O4@SiO2@Ag microflowers served as a multifunction-supporting matrix and exhibited sufficient magnetic response property due to their 200 nm Fe3O4 core. The microflowers also possessed a highly branched flower-like Ag shell that provided a large surface area for effective Ag ion release and bacterial contact. The modified-vancomycin layer was effectively bound to the cell wall of bacteria to increase the permeability of the cell membrane and facilitate the entry of the Ag ions into the bacterium, resulting in cell death. As such, the fabricated Van/Fe3O4@SiO2@Ag microflowers were predicted to be an effective and environment-friendly antibacterial agent. This hypothesis was verified through sterilization of Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentrations of 10 and 20 μg mL-1, respectively. The microflowers also showed enhanced effect compared with bare Fe3O4@SiO2@Ag microflowers and free-form vancomycin, confirming the synergistic effects of the combination of the two components. Moreover, the antimicrobial effect was maintained at more than 90% after five cycling assays, indicating the high stability of the product. These findings reveal that Van/Fe3O4@SiO2@Ag microflowers exhibit promising applications in the antibacterial fields.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences & Bio-Engineering, Beijing University of Technology
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Kehan Zhang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Zhe Zhou
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Qingjun Li
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Liting Shao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Rong Zhang Hao
- Institute for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| | - Shengqi Wang
- College of Life Sciences & Bio-Engineering, Beijing University of Technology
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing Institute of Radiation Medicine, Beijing
| |
Collapse
|
26
|
Barahuie F, Dorniani D, Saifullah B, Gothai S, Hussein MZ, Pandurangan AK, Arulselvan P, Norhaizan ME. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system. Int J Nanomedicine 2017; 12:2361-2372. [PMID: 28392693 PMCID: PMC5376211 DOI: 10.2147/ijn.s126245] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell.
Collapse
Affiliation(s)
- Farahnaz Barahuie
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Zabol University of Medical Sciences, Zabol, Iran
| | - Dena Dorniani
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
Niemirowicz K, Piktel E, Wilczewska AZ, Markiewicz KH, Durnaś B, Wątek M, Puszkarz I, Wróblewska M, Niklińska W, Savage PB, Bucki R. Core-shell magnetic nanoparticles display synergistic antibacterial effects against Pseudomonas aeruginosa and Staphylococcus aureus when combined with cathelicidin LL-37 or selected ceragenins. Int J Nanomedicine 2016; 11:5443-5455. [PMID: 27799768 PMCID: PMC5077129 DOI: 10.2147/ijn.s113706] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Core–shell magnetic nanoparticles (MNPs) are promising candidates in the development of new treatment methods against infections, including those caused by antibiotic-resistant pathogens. In this study, the bactericidal activity of human antibacterial peptide cathelicidin LL-37, synthetic ceragenins CSA-13 and CSA-131, and classical antibiotics vancomycin and colistin, against methicillin-resistant Staphylococcus aureus Xen 30 and Pseudomonas aeruginosa Xen 5, was assessed alone and in combination with core–shell MNPs. Fractional inhibitory concentration index and fractional bactericidal concentration index were determined by microdilution methods. The potential of combined therapy using nanomaterials and selected antibiotics was confirmed using chemiluminescence measurements. Additionally, the ability of tested agents to prevent bacterial biofilm formation was evaluated using crystal violet staining. In most conditions, synergistic or additive effects were observed when combinations of core–shell MNPs with ceragenins or classical antibiotics were used. Our study revealed that a mixture of membrane-active agents such as LL-37 peptide or ceragenin CSA-13 with MNPs potentialized their antibacterial properties and might be considered as a method of delaying and overcoming bacterial drug resistance.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok
| | | | | | - Bonita Durnaś
- Department of Physiology, Pathophysiology and Immunology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce
| | | | - Irena Puszkarz
- Department of Physiology, Pathophysiology and Immunology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw; Department of Microbiology, Central Clinical Hospital in Warsaw, Warsaw
| | - Wiesława Niklińska
- Department of Histology and Embryology, Medical University of Bialystok, Białystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok; Department of Physiology, Pathophysiology and Immunology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce
| |
Collapse
|
28
|
Antifungal activity of berberine hydrochloride and palmatine hydrochloride against Microsporum canis -induced dermatitis in rabbits and underlying mechanism. Altern Ther Health Med 2015; 15:177. [PMID: 26054937 PMCID: PMC4460627 DOI: 10.1186/s12906-015-0680-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/20/2015] [Indexed: 02/06/2023]
Abstract
Background Phellodendron amurense, exhibits antifungal activity mainly by bioactive components including berberine hydrochloride and palmatine hydrochloride. This study was conducted to evaluate the antifungal effects of berberine hydrochloride, palmatine hydrochloride, and a mixture of both substances against Microsporum canis in vivo and in vitro. Methods The minimal inhibitory concentrations (MICs) of monomers and clotrimazole were determined using 1.5 % tryptic soy agar. The effects of these drugs on Microsporum canis growth was detected by determining dry weight. Transmission electron microscopy (TEM) was performed to observe the effect of chemicals on cell ultrastructure. Differential mRNA expressions of eight genes of M. canis treated with berberine or palmatine or their combination at different time points were determined by real-time PCR. NADH enzyme concentration was also detected. Clinical evaluation via in-vivo antifungal assay was also performed. Skin histology PAS staining was also carried out. Results Results showed that MICs of berberine, palmatine and clotrimazole were 1, 1, and 0.015 mg/mL, respectively. No significant difference was observed among the growth curves of the three groups before 18 h was reached. TEM showed that these drugs could destroy the cell membrane and organelles of M. canis at different time points. After 30 h of incubation, relative mRNA expressions of the genes in the combined group were significantly higher than those in the other groups including the clotrimazole group (P < 0.05); Palmatine initially induced the mRNA up-regulation of PGAL4, FSH1, PQ-LRP, NADH1 and NDR in M. canis; by contrast, berberine maintained a high expression level of these genes to shorten fungal life cycle and eradicate M. canis. Clinical results showed that combined treatment was more effective than single administration of each monomer or clotrimazole. Hence, berberine mixed with palmatine significantly elicited antifungal activities and could be used to treat M. canis in rabbits. Conclusion These results provide a comprehensive view of the mechanism of berberine and palmatine in anti-M. canis activity.
Collapse
|
29
|
Niemirowicz K, Surel U, Wilczewska AZ, Mystkowska J, Piktel E, Gu X, Namiot Z, Kułakowska A, Savage PB, Bucki R. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J Nanobiotechnology 2015; 13:32. [PMID: 25929281 PMCID: PMC4458011 DOI: 10.1186/s12951-015-0093-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023] Open
Abstract
Background Ceragenins, synthetic mimics of endogenous antibacterial peptides, are promising candidate antimicrobial agents. However, in some settings their strong bactericidal activity is associated with toxicity towards host cells. To modulate ceragenin CSA-13 antibacterial activity and biocompatibility, CSA-13-coated magnetic nanoparticles (MNP-CSA-13) were synthesized. Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterize MNP-CSA-13 physicochemical properties. Bactericidal action and ability of these new compounds to prevent Pseudomonas. aeruginosa biofilm formation were assessed using a bacteria killing assay and crystal violet staining, respectively. Release of hemoglobin from human red blood cells was measured to evaluate MNP-CSA-13 hemolytic activity. In addition, we used surface activity measurements to monitor CSA-13 release from the MNP shell. Zeta potentials of P. aeruginosa cells and MNP-CSA-13 were determined to assess the interactions between the bacteria and nanoparticles. Morphology of P. aeruginosa subjected to MNP-CSA-13 treatment was evaluated using atomic force microscopy (AFM) to determine structural changes indicative of bactericidal activity. Results Our studies revealed that the MNP-CSA-13 nanosystem is stable and may be used as a pH control system to release CSA-13. MNP-CSA-13 exhibits strong antibacterial activity, and the ability to prevent bacteria biofilm formation in different body fluids. Additionally, a significant decrease in CSA-13 hemolytic activity was observed when the molecule was immobilized on the nanoparticle surface. Conclusion Our results demonstrate that CSA-13 retains bactericidal activity when immobilized on a MNP while biocompatibility increases when CSA-13 is covalently attached to the nanoparticle.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Urszula Surel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | | | - Joanna Mystkowska
- Department of Materials and Biomedical Engineering, Białystok University of Technology, 15-351, Białystok, Poland.
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| | - Xiaobo Gu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Zbigniew Namiot
- Department of Physiology, Medical University of Białystok, 15-230, Białystok, Poland.
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, 15-230, Bialystok, Poland.
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland. .,Department of Physiology, Pathophysiology and Microbiology of Infections, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-317, Kielce, Poland.
| |
Collapse
|
30
|
El Zowalaty ME, Hussein Al Ali SH, Husseiny MI, Geilich BM, Webster TJ, Hussein MZ. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine 2015; 10:3269-74. [PMID: 25995633 PMCID: PMC4425314 DOI: 10.2147/ijn.s74469] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of Fe(2+) and Fe(3+) iron salts in alkali media. MNPs were coated by chitosan (CS) to produce CS-MNPs. Streptomycin (Strep) was loaded onto the surface of CS-MNPs to form a Strep-CS-MNP nanocomposite. MNPs, CS-MNPs, and the nanocomposites were subsequently characterized using X-ray diffraction and were evaluated for their antibacterial activity. The antimicrobial activity of the as-synthesized nanoparticles was evaluated using different Gram-positive and Gram-negative bacteria, as well as Mycobacterium tuberculosis. For the first time, it was found that the nanoparticles showed antimicrobial activities against the tested microorganisms (albeit with a more pronounced effect against Gram-negative than Gram-positive bacteria), and thus, should be further studied as a novel nano-antibiotic for numerous antimicrobial and antituberculosis applications. Moreover, since these nanoparticle bacteria fighters are magnetic, one can easily envision magnetic field direction of these nanoparticles to fight unwanted microorganism presence on demand. Due to the ability of magnetic nanoparticles to increase the sensitivity of imaging modalities (such as magnetic resonance imaging), these novel nanoparticles can also be used to diagnose the presence of such microorganisms. In summary, although requiring further investigation, this study introduces for the first time a new type of magnetic nanoparticle with microorganism theranostic properties as a potential tool to both diagnose and treat diverse microbial and tuberculosis infections.
Collapse
Affiliation(s)
- Mohamed Ezzat El Zowalaty
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia ; Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Samer Hassan Hussein Al Ali
- Laboratory of Molecular Biomedicine, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia ; Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Mohamed I Husseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt ; Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Benjamin M Geilich
- Department of Bioengineering, Northeastern University, Boston, MA, USA ; Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology; Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
31
|
Li LH, Li M, Li D, He P, Xia H, Zhang Y, Mao C. Chemical functionalization of bone implants with nanoparticle-stabilized chitosan and methotrexate for inhibiting both osteoclastoma formation and bacterial infection. J Mater Chem B 2014; 2:5952-5961. [PMID: 25177491 DOI: 10.1039/c4tb00666f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A great challenge in orthopedic tumor operation faced by orthopedic implants is the high recurrence and metastasis of bone tumor as well as the bacterial infection associated with the implants. Thus ideal titanium (Ti)-based bone implants should be able to not only inhibit cancer cell adhesion and proliferation, promote cancer cell apoptosis, but also resist bacterial infections. Towards this end, we developed a new approach to modify the surface of Ti-based bone implants so that they can restrain functions of osteoclastoma (Giant cell tumor of bone) cancer cells (GCTs) and inhibit the adhesion of bacteria. First, the surface of pristine Ti substrates was functionalized with dopamine (DA) to form DA-Ti substrates. Then nanoparticles electrostatically assembled from poly-lysine (PLL) and heparin (Hep) were chemically immobilized onto the DA-Ti substrates to form PLL/Hep-Ti substrates. Chitosan (CH) and methotrexate (MTX) were then electrostatically immobilized onto the PLL/Hep-Ti substrates to generate CH-MTX-Ti substrates. The successful functionalization of the Ti substrates was confirmed by X-ray photoelectron spectroscopy. GCTs cultured on differently functionalized Ti substrates were investigated in terms of cell adhesion, cytoskeleton, proliferation, cytotoxicity and apoptosis. The growth of Staphylococcus aureus bacteria in the presence of different substrates was also assayed. Our results showed that CH-MTX-Ti substrates not only significantly inhibited the adhesion, proliferation and viability of GCTs, promoted the apoptosis of GCTs, but also prevented the adhesion of the bacteria and the subsequent formation of bacterial biofilms, when compared to other Ti substrates. Thus CH-MTX-Ti substrates are expected to be used as orthopedic prostheses in bone tumor surgery that can inhibit both osteoclastoma formation and bacterial infections.
Collapse
Affiliation(s)
- Li-Hua Li
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Dan Li
- Department of Biomedical Engineering, School of Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Peng He
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Hong Xia
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, Guangdong 510010, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK73019, USA
| |
Collapse
|