1
|
Ji L, Huang Q, Qi Y, Wang Z, Kong X, Zhu X, Yang B, Li J, He X, Deng X, Cheng X, Yu H, Shi Y, Lin Z, Zhao X, Wang X, Yu J. Quercetin and Astragaloside IV Mitigate the Developmental Abnormalities Induced by Gestational Exposure to Zinc Oxide Nanoparticles. ACS OMEGA 2024; 9:47802-47810. [PMID: 39651075 PMCID: PMC11618501 DOI: 10.1021/acsomega.4c08235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are extensively utilized in the commercial and biomedical sectors, posing heightened risks of potential cytotoxicity through various mechanisms. Nonetheless, the regulatory framework governing the gestational toxicity of ZnO NPs and the corresponding intervention strategies remain largely obscure. In this study, using the Drosophila model, we observed that gestational exposure to ZnO NPs led to growth and developmental anomalies in a dose-dependent manner when compared with the control (no ZnO NP exposure). Subsequent dietary administration of Quercetin and Astragaloside IV resulted in effective mitigation of the developmental toxicity induced by exposure to ZnO NPs. Moreover, the latter also triggered activation of the ferroptosis pathway. The associated parameters were successfully ameliorated by the administration of Quercetin and Astragaloside IV. Notably, treatment with Ferrostatin-1 also alleviated developmental disorders arising from exposure to ZnO NPs. In conclusion, our investigation demonstrated that exposure to ZnO NPs during gestation interfered with growth and development via the ferroptosis pathway, underscoring the significance of dietary supplementation with Quercetin and Astragaloside IV for protection against developmental toxicity.
Collapse
Affiliation(s)
- Li Ji
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuru Huang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yujuan Qi
- Clinical
Center of Reproductive Medicine, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221000, China
| | - Zihan Wang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiuwen Kong
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoqi Zhu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Binbin Yang
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiaxin Li
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xuxin He
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaonan Deng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinmeng Cheng
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Hao Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yi Shi
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Ziwen Lin
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Xinyuan Zhao
- Department
of Occupational Medicine and Environmental Toxicology, Nantong Key
Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaorong Wang
- Center
for Reproductive Medicine, Affiliated Maternity
and Child Health Care Hospital of Nantong University, Nantong 226018, China
- Nantong
Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong 226018, China
- Nantong
Key Laboratory of Genetics and Reproductive Medicine, Nantong 226018, China
| | - Jun Yu
- Institute
of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Virych P, Virych P, Prokopiuk V, Onishchenko A, Ischenko M, Doroschuk V, Kurovska V, Tkachenko A, Kutsevol N. Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo. Int J Nanomedicine 2024; 19:11719-11743. [PMID: 39553459 PMCID: PMC11566607 DOI: 10.2147/ijn.s485106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy. Methods In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used. The study was carried out using prostate (DU-145, LNCaP, PC-3), breast (MDA-MB-231, MCF-7, MCF-7 Dox) cancer cells and non-malignant (MAEC, BALB/3T3 clone A31) cells. Zinc was visualized with fluorescence in vitro and in vivo. ROS and apoptotic markers were identified by cytometry. Zinc accumulation and histopathological changes in the tumor, liver, kidney, and spleen were evaluated in a rat model. Results ZnO nanoparticles dissociation and release of Zn2+ into the cytosol occurs in 2-3 hours for cancerous and non-cancerous cells. ROS upregulation was detected in all cells. For non-malignant cells, the difference between the initial ROS level was insignificant. The rate of carbohydrate metabolism in cancer cells was reduced by nanosystems. Zinc level in the tumor was upregulated by 25% and 39% after treatment with nanosystems and doxorubicin combined, respectively. The tumor Walker-256 carcinosarcoma volume was reduced twice following mono-treatment with the nanocomplex and 65-fold lower when the nanocomplex was combined with doxorubicin compared with controls. In the liver, kidney and spleen, the zinc level increased by 10-15% but no significant pathological alterations in the tissues were detected. Conclusion D-PAA/ZnO NPs nanosystems were internalized by prostate, breast cancer cells and non-malignant cells via endocytosis after short time, but cytotoxicity against non-cancer cells were significantly lower in vitro and in vivo. D-PAA/ZnO NPs nanocomplex efficiently promoted cell death of tumor cells without showing cytotoxicity against non-malignant cells making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykola Ischenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Doroschuk
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valentyna Kurovska
- Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Padhye-Pendse A, Umrani R, Paknikar K, Jadhav S, Rajwade J. Zinc oxide nanoparticles prevent the onset of diabetic nephropathy by inhibiting multiple pathways associated with oxidative stress. Life Sci 2024; 347:122667. [PMID: 38670449 DOI: 10.1016/j.lfs.2024.122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Zinc deficiency is strongly correlated with prolonged diabetes mellitus and diabetic nephropathy (DN). Previously, glucose-lowering, insulinomimetic, and β-cell proliferative activities of zinc oxide nanoparticles (ZON) have been reported. Considering these pleiotropic effects, we hypothesized that ZON modulates multiple cellular pathways associated with necroptosis, inflammation, and renal fibrosis, which are involved in progressive loss of renal function. AIM This study evaluated the effect of ZON on renal function, leading to the alleviation of DN in streptozotocin (STZ)-induced type 1 diabetic Wistar rats and proposed a probable mechanism for its activity. METHODS Wistar rats (n = 6/group) were used as healthy controls, diabetic controls, diabetic rats treated with ZON (1, 3, and 10 mg/kg), and insulin controls. Urine and serum biochemical parameters, glomerular filtration rate (GFR), and renal histology were also evaluated. Cultured E11 podocytes were evaluated in vitro for markers of oxidative stress, proteins associated with the loss of renal function, and genes associated with renal damage. KEY FINDINGS STZ-treated rats receiving oral doses of ZON showed enhanced renal function, with no histological alterations in the kidney tissue. ZON inhibited the TGF-β/Samd3 pathway in renal fibrosis; blocked Ripk1/Ripk3/Mlkl mediated necroptosis and protected against hyperglycemia-induced pyroptosis. In E11 podocytes, ZON reduced oxidative stress under high glucose conditions and retained podocyte-specific proteins. SIGNIFICANCE A probable mechanism by which ZON prevents DN has been proposed, suggesting its use as a complementary therapeutic agent for the treatment of diabetic complications. To the best of our knowledge, this is the first study to demonstrate the in vitro effects of ZON in cultured podocytes.
Collapse
Affiliation(s)
- Aishwarya Padhye-Pendse
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rinku Umrani
- L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| | | | - Sachin Jadhav
- Agharkar Research Institute, Pune, Maharashtra, India
| | - Jyutika Rajwade
- Agharkar Research Institute, Pune, Maharashtra, India; Savitribai Phule Pune University, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Pescke IK, de Oliveira Rozino L, Zenato K, Cardozo T, Flores WH, Vargas VMF. Lowering the pH leads to the disaggregation of NiO and ZnO nanoparticles and modifies the mutagenic response. J Appl Toxicol 2024; 44:445-454. [PMID: 37828814 DOI: 10.1002/jat.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In a changing environmental scenario, acid rain can have a significant impact on aquatic ecosystems. Acidification is known to produce corrosion in metals, hence increasing their harmful effects on the environment, organisms and human health. The prevalent use of metallic nanoparticles (NPs) in everyday products raises concerns regarding exposure and nanotoxicity even in these acidified conditions. We thus report on the cytotoxic and genotoxic potential of nickel oxide (NiO-NP) and zinc oxide (ZnO-NP) NPs when suspended in aqueous media in light of pH variations (7.5 and 5). A modified microsuspension method of the Salmonella/microsome assay was adopted, and strains (TA97a, TA98, TA100, TA102) were exposed to NPs (10-1280 μg/plate) with and without a metabolization fraction. The acidic condition favored disaggregation and caused a decrease in NPs size. Mutagenicity was observed in all samples and different strains, with greater DNA base pair substitution damage (TA100 and TA102), but extrinsic conditions (pH) suggest different action mechanisms of NiO-NP and ZnO-NP on genetic content. Mutagenic activity was found to increase upon metabolic activation (TA98, TA100, and TA102) demonstrating the bioactivity of NiO-NP and ZnO-NP in relation to metabolites generated by the mammalian p450 system in vitro. Modifications in the Salmonella assay methodology increased cell exposure time. The observed responses recommend this modified assay as one of the methodologies of choice for nanoecotoxicological evaluation. These findings emphasize the significance of incorporating the environmental context when evaluating the toxicity of metal-based NPs.
Collapse
Affiliation(s)
- Ismael Krüger Pescke
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia de Oliveira Rozino
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karoline Zenato
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiane Cardozo
- Grupo de Materiais Nanoestruturados, Universidade Federal do Pampa (UNIPAMPA), Bagé, Brazil
| | | | - Vera Maria Ferrão Vargas
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Fujihara J, Nishimoto N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res 2024; 202:9-23. [PMID: 36976450 DOI: 10.1007/s12011-023-03644-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, Izumo , Shimane, 693-8501, Japan.
| | - Naoki Nishimoto
- Department of Research Planning and Coordination, Shimane Institute for Industrial Technology, 1 Hokuryo, Matsue, Shimane, 690-0816, Japan
| |
Collapse
|
6
|
Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose-response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1808. [PMID: 36416026 PMCID: PMC9699155 DOI: 10.1002/wnan.1808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
The rapid growth of nanomaterial applications has raised safety concerns for human health. A number of studies have been conducted to assess the toxicokinetics, toxicology, dose-response, and risk assessment of different nanomaterials using in vitro and in vivo animal and human models. However, current studies cannot meet the demand for efficient assessment of toxicokinetics, dose-response relationships, or the toxicological risk arising from the rapidly increasing number of newly synthesized nanomaterials. In this article, we review the methods for conducting toxicokinetics, hazard identification, dose-response, exposure, and risk assessment studies of nanomaterials, identify the knowledge gaps, and discuss the challenges remaining. We provide the rationale behind the appropriate design of nanomaterial plasma toxicokinetic and tissue distribution studies, including caveats on the interpretation and correlation of in vitro and in vivo toxicology studies. The potential of using physiologically based pharmacokinetic (PBPK) models to extrapolate toxicokinetic and toxicity findings from in vitro to in vivo and from animals to humans is discussed, and the knowledge gaps of PBPK modeling for nanomaterials are identified. While challenges still exist, there has been progress in the toxicokinetics, hazard identification, and risk assessment of nanomaterials in the past two decades. Recent advancements in the field are highlighted with relevant examples. We also share latest guidelines as well as our perspectives on future studies needed to characterize the toxicokinetics, toxicity, and dose-response relationship in support of nanomaterial risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Jim E. Riviere
- 1Data Consortium, Kansas State University, Olathe, Kansas, USA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Sonntag SR, Gniesmer S, Gapeeva A, Adelung R, Cojocaru A, Mishra YK, Kaps S, Tura A, Grisanti S, Grisanti S, Nassar K. Zinc Oxide Tetrapods Modulate Wound Healing and Cytokine Release In Vitro-A New Antiproliferative Substance in Glaucoma Filtering Surgery. Life (Basel) 2022; 12:1691. [PMID: 36362846 PMCID: PMC9692309 DOI: 10.3390/life12111691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 09/09/2024] Open
Abstract
Glaucoma filtering surgery is applied to reduce intraocular pressure (IOP) in cases of uncontrolled glaucoma. However, postoperative fibrosis reduces the long-term success of both standard trabeculectomy and microstents. The aim of this study was to test the antiproliferative and anti-inflammatory potential of ZnO-tetrapods (ZnO-T) on human Tenon's fibroblasts (HTFs) for glaucoma surgery. The toxicity of ZnO-T on HTFs was determined using an MTT test. For analysis of fibroblast proliferation, migration, and transdifferentiation, cultures were stained for Ki67, alpha-smooth muscle actin (α-SMA), and p-SMAD. A fully quantitative multiplex ELISA was used to determine the concentrations of different cytokines, platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF) in culture supernatants with and without previous ZnO-T treatment. Treatment with higher concentrations (10 and 20 µg/mL) was associated with HTF toxicity, as shown in the wound healing assay. Furthermore, the number of Ki67, α-SMA-positive, and pSMAD-positive cells, as well as IL-6 and HGF in supernatants, were significantly reduced following incubation with ZnO-T. In conclusion, we were able to show the antiproliferative and anti-inflammatory potentials of ZnO-T. Therefore, the use of ZnO-T may provide a new approach to reducing postoperative fibrosis in glaucoma filtering surgery.
Collapse
Affiliation(s)
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Anna Gapeeva
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Ala Cojocaru
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
- Phi-Stone AG, 24143 Kiel, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sonderborg, Denmark
| | - Sören Kaps
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Swaantje Grisanti
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Khaled Nassar
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| |
Collapse
|
8
|
Kurban M, Muz İ. Size-dependent adsorption performance of ZnO nanoclusters for drug delivery applications. Struct Chem 2022; 34:1061-1071. [PMID: 36196262 PMCID: PMC9523195 DOI: 10.1007/s11224-022-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mustafa Kurban
- Department of Electrical and Electronics Engineering, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey
| | - İskender Muz
- Department of Mathematics and Science Education, Nevşehir Hacı Bektaş Veli University, 50300 Nevşehir, Turkey
| |
Collapse
|
9
|
Yamaguchi T, Kim HM, Oh JM. Photochemical Consideration in the Interactions between Blood Proteins and Layered Inorganic Materials. Int J Mol Sci 2022; 23:ijms231911367. [PMID: 36232669 PMCID: PMC9570392 DOI: 10.3390/ijms231911367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Interactions between layered double hydroxide (LDH) nanomaterials and plasma proteins according to their particle size and surface charge were evaluated. The LDHs with different particle size (150, 350 and 2000 nm) were prepared by adjusting hydrothermal treatment and urea hydrolysis and subsequent organic coating with citrate, malite and serite was applied to control the surface charge (ζ-potential: −15, 6 and 36 mV). Adsorption isotherms and Stern–Volmer plots for fluorescence quenching indicated that the human blood plasma had weak interactions toward all the types of LDHs. The adsorption isotherms did not show significant differences in the size and surface charges, while the fluorescence quenching ratio increased with the increase in the surface charge, implying that electrostatic interaction played a major role in their interactions. The fluorescence quenching of three types of plasma proteins (human serum albumin, γ-globulin and fibrinogen) by the surface charge-controlled LDHs suggested that the proteins adsorbed on the LDHs with a single layer and additional proteins were weakly adsorbed to surround the LDHs with adsorbed proteins. It was concluded that the LDH nanomaterials are fairly compatible for blood components due to the protein corona while the electrostatic interaction can affect their interaction with the proteins.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
| | - Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center, Daegyeong Division, Korea Institute of Industrial Technology (KITECH), Yeongcheon-si 38822, Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Korea
- Correspondence:
| |
Collapse
|
10
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
11
|
Hong X, Shao N, Yin L, Li C, Tao G, Sun Y, Qian K, Yang J, Xiao P, Yu X, Zhou Z. Exposure to zinc oxide nanoparticles affects testicular structure, reproductive development and spermatogenesis in parental and offspring male rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:751. [PMID: 35957732 PMCID: PMC9358518 DOI: 10.21037/atm-22-3047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
Background This study aimed to comprehensively evaluate the toxicity exerted by zinc oxide nanoparticles (ZnO NPs) on rat testis and its effects on fertility and progeny development. Methods Different concentrations of ZnO NPs were administered by gavage to Sprague Dawley (SD) rats to examine the adverse effects resulting from pre- and post-natal exposure. Systemic distribution of ZnO NPs, developmental performance, sperm parameters, reproductive performance, histopathological examination, and sex hormone levels were determined scheduled in the experimental rats and their male offspring. The comparative in vitro cytotoxicity of the ZnO NPs was determined among C18-4, TM3, and TM4 cells. The toxicity exerted by ZnO NPs on germ cells in vitro and the effects on the expression of cytoskeleton and blood-testis barrier (BTB)-related proteins were also determined. Results After oral gavage, ZnO NPs mainly accumulated in the liver and testes of rats; 350 mg/kg ZnO NPs adversely affected the epididymal weight, sperm motility, and hormone levels but did not affect the fertility of rats. In addition, 350 mg/kg ZnO NPs significantly reduced the reproductive and developmental performance of offspring male rats. Testicular histopathological and electron microscopic ultrastructure examinations showed more significant abnormal structural changes than those observed in parental rats. The results of in vitro cell experiments further showed that ZnO NPs exerted cytotoxic effects on germ cells, and led to DNA damage, nucleoskeleton and cytoskeleton alterations, and could regulate actin changes through changes in LC3B. Conclusions It is possible that ZnO NPs act directly on TM4 cells by penetrating the BTB, causing damage to the cytoskeleton and disrupting the dynamic balance of the BTB, thereby destroying the microenvironment necessary for spermatogenesis, which may lead to poor reproduction in rats.
Collapse
Affiliation(s)
- Xinyu Hong
- School of Public Health, Fudan University, Shanghai, China
| | - Naimin Shao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Lei Yin
- Reprotox Biotech LLC, Albuquerque, New Mexico, USA
| | - Chen Li
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Yuli Sun
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Kelei Qian
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Jun Yang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai, China
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, New Mexico, USA
| | - Zhijun Zhou
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
13
|
Individual and Binary Mixture Toxicity of Five Nanoparticles in Marine Microalga Heterosigma akashiwo. Int J Mol Sci 2022; 23:ijms23020990. [PMID: 35055175 PMCID: PMC8780840 DOI: 10.3390/ijms23020990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a “Trojan horse effect”. Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.
Collapse
|
14
|
Wiesmann N, Mendler S, Buhr CR, Ritz U, Kämmerer PW, Brieger J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021; 9:biomedicines9101462. [PMID: 34680579 PMCID: PMC8533365 DOI: 10.3390/biomedicines9101462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022] Open
Abstract
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (S.M.); (C.R.B.); (J.B.)
| |
Collapse
|
15
|
Cellular Uptake and Toxicological Effects of Differently Sized Zinc Oxide Nanoparticles in Intestinal Cells. TOXICS 2021; 9:toxics9050096. [PMID: 33925422 PMCID: PMC8146923 DOI: 10.3390/toxics9050096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Due to their beneficial properties, the use of zinc oxide nanoparticles (ZnO NP) is constantly increasing, especially in consumer-related areas, such as food packaging and food additives, which is leading to an increased oral uptake of ZnO NP. Consequently, the aim of our study was to investigate the cellular uptake of two differently sized ZnO NP (<50 nm and <100 nm; 12–1229 µmol/L) using two human intestinal cell lines (Caco-2 and LT97) and to examine the possible resulting toxic effects. ZnO NP (<50 nm and <100 nm) were internalized by both cell lines and led to intracellular changes. Both ZnO NP caused time- and dose-dependent cytotoxic effects, especially at concentrations of 614 µmol/L and 1229 µmol/L, which was associated with an increased rate of apoptotic and dead cells. ZnO NP < 100 nm altered the cell cycle of LT97 cells but not that of Caco-2 cells. ZnO NP < 50 nm led to the formation of micronuclei in LT97 cells. The Ames test revealed no mutagenicity for both ZnO NP. Our results indicate the potential toxicity of ZnO NP after oral exposure, which should be considered before application.
Collapse
|
16
|
Yu J, Choi SJ. Particle Size and Biological Fate of ZnO Do Not Cause Acute Toxicity, but Affect Toxicokinetics and Gene Expression Profiles in the Rat Livers after Oral Administration. Int J Mol Sci 2021; 22:ijms22041698. [PMID: 33567653 PMCID: PMC7915389 DOI: 10.3390/ijms22041698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
Zinc oxide (ZnO) particles have been used as dietary supplements because zinc is an essential trace element for humans. Along with the rapid development of nanotechnology, the use of ZnO nanoparticles (NPs) is increasing in the food industry, but their oral toxicity potential still remains to be answered. In this study, the effects of particle size and biological fate of ZnO on acute toxicity, toxicokinetics, and gene expression profiles in the livers were investigated after oral administration of ZnO NPs (N-ZnO), bulk-sized ZnO (B-ZnO) or Zn ions in rats. The plasma concentration-time profiles after a single-dose oral administration of ZnOs differed depending on particle/ionic forms and particle size, showing high absorption of Zn ions, followed by N-ZnO and B-ZnO, although in vivo solubility did not differ from particle size. No significant acute toxicity was found after oral administration of ZnOs for 14 days in rats. However, transcriptomic responses in the livers were differently affected, showing that metabolic process and metal biding were up-regulated by Zn ions and N-ZnO, respectively, which were not pronounced in the liver treated with B-ZnO. These findings will be useful to predict the potential oral toxicity of ZnO NPs and further mechanistic and long-term exposure studies are required to assume their safety.
Collapse
Affiliation(s)
| | - Soo-Jin Choi
- Correspondence: ; Tel.: +82-2-970-5634; Fax: +82-2-970-5977
| |
Collapse
|
17
|
Zhao YZ, Lin MT, Lan QH, Zhai YY, Xu HL, Xiao J, Kou L, Yao Q. Silk Fibroin-Modified Disulfiram/Zinc Oxide Nanocomposites for pH Triggered Release of Zn 2+ and Synergistic Antitumor Efficacy. Mol Pharm 2020; 17:3857-3869. [PMID: 32833457 DOI: 10.1021/acs.molpharmaceut.0c00604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) is an FDA-approved anti-alcoholic drug that has recently proven to be effective in cancer treatment. However, the short half-life in the bloodstream and the metal ion-dependent antitumor activity significantly limited the further application of DSF in the clinical field. To this end, we constructed a silk fibroin modified disulfiram/zinc oxide nanocomposites (SF/DSF@ZnO) to solubilize and stabilize DSF, and, more importantly, achieve pH triggered Zn2+ release and subsequent synergistic antitumor activity. The prepared SF/DSF@ZnO nanocomposites were spherical and had a high drug loading. Triggered by the lysosomal pH, SF/DSF@ZnO could induce the rapid release of Zn2+ under the acidic conditions and caused nanoparticulate disassembly along with DSF release. In vitro experiments showed that cytotoxicity of DSF could be enhanced by the presence of Zn2+, and further amplified when encapsulated into SF/DSF@ZnO nanocomposites. It was confirmed that the significantly amplified cytotoxicity of SF/DSF@ZnO was resulted from pH-triggered Zn2+ release, inhibited cell migration, and increased ROS production. In vivo study showed that SF/DSF@ZnO nanocomposites significantly increased the tumor accumulation and prolonged the retention time. In vivo antitumor experiments in the xenograft model showed that SF/DSF@ZnO exerted the highest tumor-inhibition rate among all the drug treatments. Therefore, this exquisite study established silk fibroin-modified disulfiram/zinc oxide nanocomposites, SF/DSF@ZnO, where ZnO not only acted as a delivery carrier but also served as a metal ion reservoir to achieve synergistic antitumor efficacy. The established DSF nanoformulation displayed excellent therapeutic potential in future cancer treatment.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng-Ting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling 317500, China
| | - Qing-Hua Lan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Yao
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 32500, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
18
|
Santacruz-Márquez R, Solorio-Rodríguez A, González-Posos S, García-Zepeda SP, Santoyo-Salazar J, De Vizcaya-Ruiz A, Hernández-Ochoa I. Comparative effects of TiO2 and ZnO nanoparticles on growth and ultrastructure of ovarian antral follicles. Reprod Toxicol 2020; 96:399-412. [DOI: 10.1016/j.reprotox.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 01/23/2023]
|
19
|
Qin X, Tang Q, Jiang X, Zhang J, Wang B, Liu X, Zhang Y, Zou Z, Chen C. Zinc Oxide Nanoparticles Induce Ferroptotic Neuronal Cell Death in vitro and in vivo. Int J Nanomedicine 2020; 15:5299-5315. [PMID: 32884256 PMCID: PMC7436556 DOI: 10.2147/ijn.s250367] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Zinc oxide nanoparticles (ZnONPs) are one of the most important nanomaterials that are widely used in the food, cosmetic and medical industries. Humans are often exposed to ZnONPs via inhalation, and they may reach the brain where neurotoxic effects could occur via systemic distribution. However, the mechanisms underlying how ZnONPs produce neurotoxic effects in the brain remain unclear. In this study, we aimed to investigate the novel mechanism involved in ZnONPs-induced neurotoxicity. Methods and Results We demonstrated for the first time that pulmonary exposure to ZnONPs by intratracheal instillation could trigger ferroptosis, a new form of cell death, in the neuronal cells of mouse cerebral cortex. A similar phenomenon was also observed in cultured neuron-like PC-12 cell line. By using a specific inhibitor of ferroptosis ferrostatin-1 (Fer-1), our results showed that inhibition of ferroptosis by Fer-1 could significantly alleviate the ZnONPs-induced neuronal cell death both in vivo and in vitro. Mechanistic investigation revealed that ZnONPs selectively activated the JNK pathway and thus resulted in the ferroptotic phenotypes, JNK inhibitor SP600125 could reverse lipid peroxidation upregulation and ferroptotic cell death induced by ZnONPs in PC-12 cells. Conclusion Taken together, this study not only demonstrates that pulmonary exposure of ZnONPs can induce JNK-involved ferroptotic cell death in mouse cortex and PC-12 cells, but also provides a clue that inhibition of ferroptosis by specific agents or drugs may serve as a feasible approach for reducing the untreatable neurotoxicity induced by ZnONPs.
Collapse
Affiliation(s)
- Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuemei Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yandan Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
20
|
Elechalawar CK, Hossen MN, McNally L, Bhattacharya R, Mukherjee P. Analysing the nanoparticle-protein corona for potential molecular target identification. J Control Release 2020; 322:122-136. [PMID: 32165239 PMCID: PMC7675788 DOI: 10.1016/j.jconrel.2020.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022]
Abstract
When nanoparticles are introduced into biological systems, host proteins tend to associate on the particle surface to form a protein layer termed the "protein corona" (PC). Identifying the proteins that constitute the PC can yield useful information about nanoparticle processing, bio-distribution, toxicity and clearance. Similarly, characterizing and identifying proteins within the PC from patient samples provides opportunities to probe disease proteomes and identify molecules that influence the disease process. Thus, nanoparticles represent unique probing tools for discovery of molecular targets for diseases. Here, we report a first review on target identification using nanoparticles in biological samples based on analysing physico chemical interactions. We also summarize the evolution of the PC surrounding various nano-systems, comment on PC signature, address PC complexity in fluids, and outline challenges associated with analysing the PC. In addition, the influence on PC formation of various nanoparticle parameters is summarized; nanoparticle characteristics considered include size, charge, temperature, and surface modifications for both organic and inorganic nanomaterials. We also discuss the advantages of nanotechnology, over other more invasive and laborious methods, for identifying potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
| | - Md Nazir Hossen
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lacey McNally
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
21
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|
22
|
Singh N, Das MK, Ramteke A, R. P. Oxidative stress mediated hepatotoxicity induced by ZNP and modulatory role of fruit extract on male Wistar rat. Toxicol Rep 2020; 7:492-500. [PMID: 32309148 PMCID: PMC7155234 DOI: 10.1016/j.toxrep.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 01/24/2023] Open
Abstract
Zinc oxide nanoparticles (ZNP) are being used in various fields viz cosmetics industry as UV protectants, in the food packaging industry due to their anti-bacterial properties, in agriculture as micronutrients, etc. Increased applications of ZNPs in our day to day life, leading to the contamination of the surrounding environment posing a direct or indirect health risk. Various reports suggest that fruits and vegetables are a rich source of phytochemicals having antioxidant properties which help in neutralizing ROS generated on metal toxicity of the body. The present study focuses to study the ameliorative effect of apple (Pyrus malus) extract (E) on ZNP induced toxicity. Therefore, animals were grouped, six in each, exposed to various doses of ZNP (50 and 250 mg/kg), ZNP (50 and 250 mg/kg)+E. The studied parameters was: food intake, water intake, antioxidants assay, zinc accumulation, and histological alterations and was compared to control. Investigation revealed that ZNP induces toxicity as revealed by the alteration in the studied parameter, whereas those exposed to ZNP along with Pyrus malus fruit extract try to reduce the toxicity induced by nanoparticles but at low doses only. This ameliorative effect of fruit extract might be due to the presence of antioxidants scavenging the free radicals generated by ZNPs suggesting that antioxidant-rich fruit may have a protective role and have the potential to reduce the nanoparticles mediated oxidative stress.
Collapse
Affiliation(s)
- Neelu Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Monoj Kumar Das
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Anand Ramteke
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Paulraj R.
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Corresponding author.
| |
Collapse
|
23
|
Hassanian M, Aryapour H, Goudarzi A, Javan MB. Are zinc oxide nanoparticles safe? A structural study on human serum albumin using in vitro and in silico methods. J Biomol Struct Dyn 2020; 39:330-335. [PMID: 31994452 DOI: 10.1080/07391102.2019.1711189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With due attention to adsorption of proteins on the nanoparticles surface and the formation of nanoparticle-protein corona, investigation of nanoparticles toxicity on the structure of proteins is important. Therefore, this work was done to evaluate toxicity of Zinc oxide nanoparticles (ZnO NPs) on the structure of human serum albumin (HSA) through in vitro and in silico studies. First, ZnO NPs were synthesized using hydrothermal method and their size and morphology were determined by SEM and TEM methods and then to study its toxicity on the HSA structure were used UV-Vis and fluorescence spectroscopy. Also, in order to investigate interaction mechanism of ZnO NP with HSA at the atomistic level was used molecular dynamics (MD) simulation. The obtained images from SEM and TEM showed that ZnO NPs were nanosheet with size of less than 40 nm. The results of spectroscopic studies showed ZnO NPs lead to significant conformational changes in the protein's absorption and emission spectra. Moreover, MD results indicated the minor structure changes in HSA due to interaction with ZnO NP during the 100 ns simulation, and the formation of nanoparticle-protein corona complex is mainly because of electrostatic interactions between charge groups of HSA and ZnO NP.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marziyeh Hassanian
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Alireza Goudarzi
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Masoud Bezi Javan
- Department of Physics, Faculty of Science, Golestan University, Gorgan, Iran
| |
Collapse
|
24
|
Sharma P, Jang NY, Lee JW, Park BC, Kim YK, Cho NH. Application of ZnO-Based Nanocomposites for Vaccines and Cancer Immunotherapy. Pharmaceutics 2019; 11:E493. [PMID: 31561470 PMCID: PMC6835776 DOI: 10.3390/pharmaceutics11100493] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.
Collapse
Affiliation(s)
- Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Na-Yoon Jang
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jae-Won Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Bum Chul Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
- Research Institute of Engineering and Technology, Korea University, Seoul 02481, Korea.
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea.
- Research Institute of Engineering and Technology, Korea University, Seoul 02481, Korea.
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul 03080, Korea.
| |
Collapse
|
25
|
Song WJ, Jeong MS, Choi DM, Kim KN, Wie MB. Zinc Oxide Nanoparticles Induce Autophagy and Apoptosis via Oxidative Injury and Pro-Inflammatory Cytokines in Primary Astrocyte Cultures. NANOMATERIALS 2019; 9:nano9071043. [PMID: 31330912 PMCID: PMC6669602 DOI: 10.3390/nano9071043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
Abstract
The present study examined the potential toxic concentrations of zinc oxide nanoparticles (ZnO NPs) and associated autophagy and apoptosis-related injuries in primary neocortical astrocyte cultures. Concentrations of ZnO NPs ≥3 μg/mL induced significant toxicity in the astrocytes. At 24 h after exposure to the ZnO NPs, transmission electron microscopy revealed swelling of the endoplasmic reticulum (ER) and increased numbers of autophagolysosomes in the cultured astrocytes, and increased levels of LC3 (microtubule-associated protein 1 light chain 3)-mediated autophagy were identified by flow cytometry. Apoptosis induced by ZnO NP exposure was confirmed by the elevation of caspase-3/7 activity and 4′,6′-diamidino-2-phenylindole (DAPI) staining. Significant (p < 0.05) changes in the levels of glutathione peroxidase, superoxide dismutase, tumor necrosis factor (TNF-α), and interleukin-6 were observed by enzyme-linked immunoassay (ELISA) assay following the exposure of astrocyte cultures to ZnO NPs. Phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) dual activation was induced by ZnO NPs in a dose-dependent manner. Additionally, the Akt (protein kinase B) inhibitor BML257 and the mTOR (mammalian target of rapamycin) inhibitor rapamycin contributed to the survival of astrocytes. Inhibitors of cyclooxygenase-2 and lipoxygenase attenuated ZnO NP-induced toxicity. Calcium-modulating compounds, antioxidants, and zinc/iron chelators also decreased ZnO NP-induced toxicity. Together, these results suggest that ZnO NP-induced autophagy and apoptosis may be associated with oxidative stress and the inflammatory process in primary astrocyte cultures.
Collapse
Affiliation(s)
- Woo-Ju Song
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Myung-Seon Jeong
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Dong-Min Choi
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korean Basic Science Institute, Chuncheon 24341, Korea
| | - Myung-Bok Wie
- Department of Veterinary Toxicology, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
26
|
Lee H, Park K. In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Cultured Statens Seruminstitut Rabbit Cornea Cells. Toxicol Res 2019; 35:287-294. [PMID: 31341558 PMCID: PMC6629441 DOI: 10.5487/tr.2019.35.3.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
The possibility of eye exposure for workers participating in manufacturing of nanoparticles or consumers using products containing nanoparticles has been reported, but toxicity studies on the eye are scarce. In this study, cytotoxicity of five nanoparticles including silver, ceria, silica, titanium and zinc were tested using Statens Seruminstitut Rabbit Cornea (SIRC) cells. When cells were treated with nanoparticles with concentrations of 1–100 μg/mL for 24 hr, zinc oxide nanoparticles showed higher toxicity to cornea cells. LC50 of zinc oxide nanoparticles was less than 25 μg/mL but those of other nanoparticles could not be calculated in this test, which means more than 100 μg/mL. Generation of reactive oxygen species was observed, and expression of apoptosis related biomarkers including Bax and Bcl-2 were changed after treatment of zinc oxide nanoparticles, while no other significant toxicity- related changes were observed in cornea cells treated with Ag, CeO2, SiO2 and TiO2 nanoparticles.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
27
|
DeLong RK, Cheng YH, Pearson P, Lin Z, Coffee C, Mathew EN, Hoffman A, Wouda RM, Higginbotham ML. Translating Nanomedicine to Comparative Oncology-the Case for Combining Zinc Oxide Nanomaterials with Nucleic Acid Therapeutic and Protein Delivery for Treating Metastatic Cancer. J Pharmacol Exp Ther 2019; 370:671-681. [PMID: 31040175 DOI: 10.1124/jpet.118.256230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
The unique anticancer, biochemical, and immunologic properties of nanomaterials are becoming a new tool in biomedical research. Their translation into the clinic promises a new wave of targeted therapies. One nanomaterial of particular interest are zinc oxide (ZnO) nanoparticles (NPs), which has distinct mechanisms of anticancer activity including unique surface, induction of reactive oxygen species, lipid oxidation, pH, and also ionic gradients within cancer cells and the tumor microenvironment. It is recognized that ZnO NPs can serve as a direct enzyme inhibitor. Significantly, ZnO NPs inhibit extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) associated with melanoma progression, drug resistance, and metastasis. Indeed, direct intratumoral injection of ZnO NPs or a complex of ZnO with RNA significantly suppresses ERK and AKT phosphorylation. These data suggest ZnO NPs and their complexes or conjugates with nucleic acid therapeutic or anticancer protein may represent a potential new strategy for the treatment of metastatic melanoma, and potentially other cancers. This review focuses on the anticancer mechanisms of ZnO NPs and what is currently known about its biochemical effects on melanoma, biologic activity, and pharmacokinetics in rodents and its potential for translation into large animal, spontaneously developing models of melanoma and other cancers, which represent models of comparative oncology.
Collapse
Affiliation(s)
- R K DeLong
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yi-Hsien Cheng
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Paige Pearson
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Calli Coffee
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Amanda Hoffman
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raelene M Wouda
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Lynn Higginbotham
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
28
|
Huang X, Chen C, Yi C, Zheng X. [Smart drug delivery systems based on nanoscale ZnO]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2018; 35:324-328. [PMID: 29745542 PMCID: PMC9935103 DOI: 10.7507/1001-5515.201707029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 11/03/2022]
Abstract
In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.
Collapse
Affiliation(s)
- Xiao Huang
- School of Sports and Health Science, Tongren University, Tongren, Guizhou 554300,
| | - Chun Chen
- College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou 554300, P.R.China
| | - Caixia Yi
- School of Sports and Health Science, Tongren University, Tongren, Guizhou 554300, P.R.China
| | - Xi Zheng
- School of Sports and Health Science, Tongren University, Tongren, Guizhou 554300, P.R.China
| |
Collapse
|
29
|
Ickrath P, Wagner M, Scherzad A, Gehrke T, Burghartz M, Hagen R, Radeloff K, Kleinsasser N, Hackenberg S. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121590. [PMID: 29258234 PMCID: PMC5751007 DOI: 10.3390/ijerph14121590] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NP) are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC). Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM) was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin.
Collapse
Affiliation(s)
- Pascal Ickrath
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Martin Wagner
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Thomas Gehrke
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Marc Burghartz
- Department of Otorhinolaryngology, Head and Neck Surgery, Katharinenhospital Stuttgart, 70174 Stuttgart, Germany.
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Katrin Radeloff
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, 4021 Linz, Austria.
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Würzburg, Germany.
| |
Collapse
|
30
|
Yu J, Kim HJ, Go MR, Bae SH, Choi SJ. ZnO Interactions with Biomatrices: Effect of Particle Size on ZnO-Protein Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E377. [PMID: 29113140 PMCID: PMC5707594 DOI: 10.3390/nano7110377] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been widely used for food fortification, because zinc is essential for many enzyme and hormone activities and cellular functions, but public concern about their potential toxicity is increasing. Interactions between ZnO and biomatrices might affect the oral absorption, distribution, and toxicity of ZnO, which may be influenced by particle size. In this study, ZnO interactions with biomatrices were investigated by examining the physicochemical properties, solubility, protein fluorescence quenching, particle-protein corona, and intestinal transport with respect to the particle size (bulk vs. nano) in simulated gastrointestinal (GI) and plasma fluids and in rat-extracted fluids. The results demonstrate that the hydrodynamic radii and zeta potentials of bulk ZnO and nano ZnO in biofluids changed in different ways, and that nano ZnO induced higher protein fluorescence quenching than bulk ZnO. However, ZnO solubility and its intestinal transport mechanism were unaffected by particle size. Proteomic analysis revealed that albumin, fibrinogen, and fibronectin play roles in particle-plasma protein corona, regardless of particle size. Furthermore, nano ZnO was found to interact more strongly with plasma proteins. These observations show that bulk ZnO and nano ZnO interact with biomatrices in different ways and highlight the need for further study of their long-term toxicity.
Collapse
Affiliation(s)
- Jin Yu
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Hyeon-Jin Kim
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Mi-Ran Go
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Song-Hwa Bae
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea.
| |
Collapse
|
31
|
Abstract
Cynk jest jednym z głównych pierwiastków śladowych organizmu, spełniającym rolę katalityczną, strukturalną i regulacyjną. Jest niezbędny do podziałów komórkowych i różnicowania powstających komórek, uczestniczy w homeostazie, reakcjach odpornościowych, w apoptozie i starzeniu się organizmu. Cynk jest również składnikiem wielu enzymów i białek oraz odgrywa ważną rolę w spermatogenezie i syntezie hormonów steroidowych. Niedostateczna podaż cynku dotyczy ok. 30% ludności świata. Oprócz niedostatecznej podaży z pokarmem, przyczyną niedoboru cynku mogą być niektóre schorzenia oraz nieprawidłowe wchłanianie tego pierwiastka. Schorzenia, wynikające z niedoboru tego pierwiastka, mogą występować zarówno u dzieci, jak i dorosłych. Suplementacja diety preparatami cynku w wielu przypadkach jest niezbędna, jednak samodzielne jego stosowanie, bez stwierdzonego niedoboru i bez konsultacji z lekarzem, może doprowadzić do występowania działań niepożądanych w wyniku jego nadużywania, w tym także niebezpiecznych interakcji z innymi stosowanymi preparatami i żywnością.
Collapse
|
32
|
Wang D, Li H, Liu Z, Zhou J, Zhang T. Acute toxicological effects of zinc oxide nanoparticles in mice after intratracheal instillation. INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HEALTH 2017; 23:11-19. [PMID: 28145155 DOI: 10.1080/10773525.2016.1278510] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnO NPs) are increasingly being used in industry. OBJECTIVE To evaluate the acute toxicology of ZnO NPs in Mice. METHODS ZnO NPs were intratracheally instilled into mice at different dose (200, 400, 800 μg/kg), which was 1, 2, or 4 times of accumulative intake in one week according to the threshold limit value. Acute toxicity was assessed by animal mortality, organ/body weight ratios, hematology, blood biochemistry, and histopathology as well as by the determination of cells, proteins, and lactate dehydrogenase activity in bronchoalveolar lavage fluid. RESULTS Exposure to ZnO NPs also resulted in bodyweight loss and a higher level of total cell number, total protein, and hydroxyproline content in BALF. Nitric oxide and malondialdehyde levels in the lung homogenates were also increased. In addition, inflammatory and hyperplastic changes in the lungs were observed. CONCLUSION Threshold limit value (5 mg/m3) may unfit for ZnO NPs.
Collapse
Affiliation(s)
- Dejun Wang
- a Department of Occupational and Environmental Health , School of Public Health, Peking University Health Science Center , Beijing , PR China.,b Institute of Occupational and Environmental Health , Shandong Center for Disease Control and Prevention , Jinan , PR China
| | - Haibo Li
- c College of Pharmacy , Third Military Medical University , Chongqing , PR China
| | - Zihong Liu
- a Department of Occupational and Environmental Health , School of Public Health, Peking University Health Science Center , Beijing , PR China
| | - Jingyang Zhou
- b Institute of Occupational and Environmental Health , Shandong Center for Disease Control and Prevention , Jinan , PR China
| | - Tianliang Zhang
- b Institute of Occupational and Environmental Health , Shandong Center for Disease Control and Prevention , Jinan , PR China
| |
Collapse
|
33
|
Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells. PLoS One 2016; 11:e0155865. [PMID: 27196542 PMCID: PMC4873213 DOI: 10.1371/journal.pone.0155865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.
Collapse
|
34
|
Landa P, Prerostova S, Petrova S, Knirsch V, Vankova R, Vanek T. The Transcriptomic Response of Arabidopsis thaliana to Zinc Oxide: A Comparison of the Impact of Nanoparticle, Bulk, and Ionic Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14537-45. [PMID: 26560974 DOI: 10.1021/acs.est.5b03330] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The impact of nanosize was evaluated by comparing of the transcriptomic response of Arabidopsis thaliana roots to ZnO nanoparticles (nZnO), bulk ZnO, and ionic Zn(2+). Microarray analyses revealed 416 up- and 961 down-regulated transcripts (expression difference >2-fold, p [FDR] < 0.01) after a seven-day treatment with nZnO (average particle size 20 nm, concentration 4 mg L(-1)). Exposure to bulk ZnO resulted in 816 up- and 2179 down-regulated transcripts. The most dramatic changes (1711 transcripts up- and 3242 down-regulated) were caused by the presence of ionic Zn(2+) (applied as ZnSO4.7H20 at a concentration of 14.14 mg L(-1), corresponding to the amount of Zn contained in 4 mg L(-1) ZnO). Genes involved in stress response (e.g., to salt, osmotic stress or water deprivation) were the most relatively abundant group of gene transcripts up-regulated by all three Zn treatments while genes involved in cell organization and biogenesis (e.g., tubulins, arabinogalactan proteins) and DNA or RNA metabolism (e.g., histones) were the most relatively abundant groups of down-regulated transcripts. The similarity of the transcription profiles and the increasing number of changed transcripts correlating with the increased concentration of Zn(2+) in cultivation medium indicated that released Zn(2+) may substantially contribute to the toxic effect of nZnO because particle size has not demonstrated a decisive role.
Collapse
Affiliation(s)
- Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague , Vinicna 5, 128 44 Prague 2, Czech Republic
| | - Sarka Petrova
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v.v.i. , Rozvojova 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| |
Collapse
|
35
|
Konduru NV, Murdaugh KM, Swami A, Jimenez RJ, Donaghey TC, Demokritou P, Brain JD, Molina RM. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation. Nanotoxicology 2015; 10:720-7. [PMID: 26581431 DOI: 10.3109/17435390.2015.1113322] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.
Collapse
Affiliation(s)
- Nagarjun V Konduru
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Kimberly M Murdaugh
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Archana Swami
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Renato J Jimenez
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Thomas C Donaghey
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Philip Demokritou
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Joseph D Brain
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| | - Ramon M Molina
- a Department of Environmental Health , Harvard T. H. Chan School of Public Health, Molecular and Integrative Physiological Sciences Program and Center for Nanotechnology and Nanotoxicology , Boston , MA , USA
| |
Collapse
|
36
|
Cytotoxicity, Uptake Behaviors, and Oral Absorption of Food Grade Calcium Carbonate Nanomaterials. NANOMATERIALS 2015; 5:1938-1954. [PMID: 28347104 PMCID: PMC5304802 DOI: 10.3390/nano5041938] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
Abstract
Calcium is the most abundant mineral in human body and essential for the formation and maintenance of bones and teeth as well as diverse cellular functions. Calcium carbonate (CaCO3) is widely used as a dietary supplement; however, oral absorption efficiency of CaCO3 is extremely low, which may be overcome by applying nano-sized materials. In this study, we evaluated the efficacy of food grade nano CaCO3 in comparison with that of bulk- or reagent grade nano CaCO3 in terms of cytotoxicity, cellular uptake, intestinal transport, and oral absorption. Cytotoxicity results demonstrated that nano-sized CaCO3 particles were slightly more toxic than bulk materials in terms of oxidative stress and membrane damage. Cellular uptake behaviors of CaCO3 nanoparticles were different from bulk CaCO3 or Ca2+ ions in human intestinal epithelial cells, showing efficient cellular internalization and elevated intracellular Ca2+ levels. Meanwhile, CaCO3 nanoparticles were efficiently transported by microfold (M) cells in vitro model of human intestinal follicle-associated epithelium, in a similar manner as Ca2+ ions did. Biokinetic study revealed that the biological fate of CaCO3 particles was different from Ca2+ ions; however, in vivo, its oral absorption was not significantly affected by particle size. These findings provide crucial information to understand and predict potential toxicity and oral absorption efficiency of food grade nanoparticles.
Collapse
|