1
|
Ceballos-Gutiérrez A, Rodríguez-Hernández A, Álvarez-Valadez MDR, Limón-Miranda S, Andrade F, Figueroa-Gutiérrez A, Díaz-Reval I, Apolinar-Iribe A, Castro-Sánchez L, Alamilla J, Sánchez-Pastor E, Virgen-Ortiz A. ZnO Nanoparticles Induce Dyslipidemia and Atherosclerotic Lesions Leading to Changes in Vascular Contractility and Cannabinoid Receptors Expression as Well as Increased Blood Pressure. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2319. [PMID: 34578635 PMCID: PMC8472382 DOI: 10.3390/nano11092319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022]
Abstract
ZnO nanoparticles (ZnONPs) have been shown to have therapeutic potential in some diseases such as diabetes and cancer. However, concentration-dependent adverse effects have also been reported. Studies which evaluate the effects of ZnONPs on the cardiovascular system are scarce. This study aimed to evaluate the cardiovascular effects of a low dose of ZnONPs administered chronically in healthy rats. Changes in dyslipidemia biomarkers, blood pressure, aortic wall structure, vascular contractility, and expression of cannabinoid receptors in the aorta wall were evaluated. Healthy rats were divided into two groups: control or treated (one, two, and three months). The treated rats received an oral dose of 10 mg/kg/day. The results showed that treatment with ZnONPs induced dyslipidemia from the first month, increasing atherosclerosis risk, which was confirmed by presence of atherosclerotic alterations revealed by aorta histological analysis. In in vitro assays, ZnONPs modified the aorta contractile activity in response to the activation of cannabinoid receptors (CB1 and CB2). The expression of CB1 and CB2 was modified as well. Moreover, ZnONPs elicited an increase in blood pressure. In conclusion, long-time oral administration of ZnONPs induce dyslipidemia and atherosclerosis eliciting alterations in aorta contractility, CB1 and CB2 receptors expression, and an increase in blood pressure in healthy rats.
Collapse
Affiliation(s)
| | | | | | - Saraí Limón-Miranda
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Unidad Regional Sur, Universidad de Sonora, Navojoa 85880, Mexico;
| | | | | | - Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | | | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Universidad de Colima, Colima 28045, Mexico; (L.C.-S.); (J.A.)
| | - Enrique Sánchez-Pastor
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| | - Adolfo Virgen-Ortiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.d.R.Á.-V.); (I.D.-R.)
| |
Collapse
|
2
|
Mohamed Mowafy S, Awad Hegazy A, A Mandour D, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol 2021; 45:307-318. [PMID: 34459708 DOI: 10.1080/01913123.2021.1970660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of copper oxide nanoparticles (CUONPs) on a large-scale application is a reason for many health problems and morbidities involving most body tissues, particularly those of the nervous system. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects, such as antioxidant, anticancer, and memory-improving activities. This study was conducted to elaborate the effects of CUONP exposureon the cerebellar cortical tissues of rats and explore the potential protecting role of crocin through biochemical, light microscopic, and ultrastructural examinations. Twenty four adult male albino rats were randomly divided into four equal groups: Group I (negative control); Group II (crocin-treated group; 30mg/kg body weight (BW) intraperitoneal (IP) crocin daily); Group III (CUONP-treatedgroup; 0.5-mg/kg BW IP CUONP daily); and Group IV (CUONP/crocin-treated group). After 14 days of the experiment, venous blood samples were collected to determine red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels. Besides, serum malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) were measured. Cerebellar tissue samples were examined under light and electron microscopy along with a histomorphological analysis. CUONPs induced oxidative/antioxidative imbalance as evidenced by a significant increase in serum MDA levels and decreased GPx and TAC activities. CUONPs caused a significant decrease in RBC and Hb levels and an increase in WBC count. Histopathological alterations in the cerebellar cortex were observed. The administration of crocin showed some protection against the toxic effects of CUONPs. Crocin is suggested to have a mitigating role on oxidative stress and structure alterations in the cerebellar tissues induced by CUONPs.
Collapse
Affiliation(s)
- Sarah Mohamed Mowafy
- Department of Anatomy and Embryology, Faculty of Medicine, PortSaid University, Egypt
| | - Abdelmonem Awad Hegazy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|
4
|
Current Updates On the In vivo Assessment of Zinc Oxide Nanoparticles Toxicity Using Animal Models. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett 2018; 298:112-124. [PMID: 29920308 PMCID: PMC6239923 DOI: 10.1016/j.toxlet.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022]
Abstract
As the number of nanomaterial workers increase there is need to consider whether biomonitoring of exposure should be used as a routine risk management tool. Currently, no biomonitoring of nanomaterials is mandated by authoritative or regulatory agencies. However, there is a growing knowledge base to support such biomonitoring, but further research is needed as are investigations of priorities for biomonitoring. That research should be focused on validation of biomarkers of exposure and effect. Some biomarkers of effect are generally nonspecific. These biomarkers need further interpretation before they should be used. Overall biomonitoring of nanomaterial workers may be important to supplement risk assessment and risk management efforts.
Collapse
Affiliation(s)
- P Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1090 Tusculum Avenue, MS C-14, Cincinnati, OH 45226, USA.
| | - V Leso
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - M Niang
- University of Cincinnati, Cincinnati, OH, USA
| | - I Iavicoli
- Department of Public Health, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Ansar S, Abudawood M, Alaraj ASA, Hamed SS. Hesperidin alleviates zinc oxide nanoparticle induced hepatotoxicity and oxidative stress. BMC Pharmacol Toxicol 2018; 19:65. [PMID: 30340509 PMCID: PMC6195725 DOI: 10.1186/s40360-018-0256-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
Background Nanoparticles are widely utilized in many products such as cosmetics and sunscreens. The present study was undertaken to evaluate the effect of hesperidin (HSP) on nano zinc oxide particles (nZnO) induced oxidative stress in rat livers. Methods Rats were randomly divided into 4 groups of 6 rats each and exposed to single administration of nZnO intraperitoneally (600 mg/kg bwt) and HSP (100 mg/kg bwt) by gavage. Group I served as the control; group II was given nZnO only; groups III received HSP only and group IV received nZnO 1 h after pretreatment with HSP for 7 days. Results Compared to the controls, nZnO administration enhanced alanine aminotransferase (AST) and aspartate aminotransferase (ALT) levels (p < 0.05) with reduction in the levels of glutathione (GSH), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD) and increase in levels of malondialdehyde (MDA) while HSP attenuated nZnO-induced hepatotoxicity for above mentioned parameters. Conclusions The induced toxicity in the liver was corrected by pretreatment with HSP. The findings of this study suggest that HSP pretreatment can potentially be used to prevent nZnO-induced biochemical alterations toxicity. Further, protection by HSP on biochemical results was confirmed by histopathological changes. The present study suggests that HSP can protect against nZnO-induced oxidative damage in the rat livers.
Collapse
Affiliation(s)
- Sabah Ansar
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia.
| | - Manal Abudawood
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal S A Alaraj
- Clinical Laboratory Sciences, Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Sherifa S Hamed
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, University of Alexandria, Moharram Bey, Alexandria, 21511, Egypt
| |
Collapse
|
7
|
Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. NANOMATERIALS 2018; 8:nano8090634. [PMID: 30134524 PMCID: PMC6164883 DOI: 10.3390/nano8090634] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases, including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity and protein corona effects are considered as key factors that have a crucial impact on their safe or toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport, accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable information about effects of NPs on various organs in order to reveal their efficacy and impact on health. This review covers the existing knowledge base on the subject that hopefully prepares us better to address these challenges.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran P.O. Box 1449614525, Iran.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran P.O Box 14965/161, Iran.
| | - Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran P.O. Box 13145-158, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branches, Islamic Azad University of Tehran, Tehran P.O. Box 1916893813, Iran.
| | - Mohammad Mahboubi
- Department of Midwifery and Reproductive Health, Faculty of Nursing and Midwifery, Abadan School of Medical Sciences, Abadan P.O. Box 517, Iran.
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman P.O. Box 7616911319, Iran.
| | - Saranaz Jangjoo
- School of Medicine, International Branch, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018; 130:90-112. [PMID: 30149885 PMCID: PMC6588191 DOI: 10.1016/j.addr.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Humoral and cellular host defense mechanisms including diverse phagocytes, leukocytes, and immune cells have evolved over millions of years to protect the body from microbes and other external and internal threats. These policing forces recognize engineered sub-micron drug delivery systems (DDS) as such a threat, and react accordingly. This leads to impediment of the therapeutic action, extensively studied and discussed in the literature. Here, we focus on side effects of DDS interactions with host defenses. We argue that for nanomedicine to reach its clinical potential, the field must redouble its efforts in understanding the interaction between drug delivery systems and the host defenses, so that we can engineer safer interventions with the greatest potential for clinical success.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Makan Khoshnejad
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob W Myerson
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priyal N Patel
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob S Brenner
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Targeted Therapeutics and Translational Nanomedicine (CT3N), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|