1
|
Grolman E, Sirianni QEA, Dunmore-Buyze J, Cruje C, Drangova M, Gillies ER. Depolymerizing self-immolative polymeric lanthanide chelates for vascular imaging. Acta Biomater 2023; 169:530-541. [PMID: 37507034 DOI: 10.1016/j.actbio.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Medical imaging is widely used clinically and in research to understand disease progression and monitor responses to therapies. Vascular imaging enables the study of vascular disease and therapy, but exogenous contrast agents are generally needed to distinguish the vasculature from surrounding soft tissues. Lanthanide-based agents are commonly employed in MRI, but are also of growing interest for micro-CT, as the position of their k-edges allows them to provide enhanced contrast and also to be employed in dual-energy micro-CT, a technique that can distinguish contrast-enhanced blood vessels from tissues such as bone. Small molecule Gd3+ chelates are available, but are excreted too rapidly. At the same time, a lack of rapid clearance from the body for long-circulating agents presents toxicity concerns. To address these challenges, we describe here the use of self-immolative polymers for the development of new degradable chelates that depolymerize completely from end-to-end following the cleavage of a single end-cap from the polymer terminus. We demonstrate that tuning the end-cap allows the rate of depolymerization to be controlled, while tuning the polymer length enables the polymer to exhibit long circulation times in the blood of mice. After successfully providing one hour of blood contrast, depolymerization led to excretion of the resulting small molecule chelates into the bladder. Despite the high doses required for micro-CT, the agents were well tolerated in mice. Thus, these self-immolative polymeric chelates provide a new platform for the development of medical imaging contrast agents. STATEMENT OF SIGNIFICANCE: Vascular imaging is used clinically to diagnose and monitor vascular disease and in research to understand the progression of disease and study responses to new therapies. For techniques such as magnetic resonance imaging and x-ray computed tomography (CT), long circulating contrast agents are needed to differentiate the vasculature from surrounding tissues. However, if these agents are not rapidly excreted from the body, they can lead to toxicity. We present here a new polymeric system that can chelate hundreds of lanthanide ions for imaging contrast and can circulate for one hour in the blood, but then after end-cap cleavage breaks down completely into small molecules for excretion. The successful application of this system in micro-CT in mice is demonstrated.
Collapse
Affiliation(s)
- Eric Grolman
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Quinton E A Sirianni
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Joy Dunmore-Buyze
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Charmainne Cruje
- Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Maria Drangova
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Elizabeth R Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
2
|
Sawall S. [New contrast agents for photon-counting computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01135-6. [PMID: 37069237 DOI: 10.1007/s00117-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The introduction of energy-selective photon-counting detectors into clinical practice represents the next milestone in computed tomography (CT). In addition to significantly higher resolution, these detectors allow the implicit acquisition of dual or multispectral data in a single measurement through the use of typically freely selectable thresholds. This capability reignited the interest in new contrast agents based on heavy elements, so-called high‑z elements, for clinical CT. OBJECTIVE The present article aims to investigate the potential suitability of different chemical elements as contrast agents and to discuss possible clinical applications, for example, K‑edge imaging or simultaneous application of different contrast agents. CONCLUSION First preclinical experiments as well as experiments in large animals could demonstrate potential advantages of contrast agents based on heavy elements. For example, such contrast agents promise a significant increase in image contrast compared to conventional iodine-based agents.
Collapse
Affiliation(s)
- Stefan Sawall
- Röntgenbildgebung und CT (E025), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
- Medizinische Fakultät, Universität Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
3
|
Kosuge H, Nakamura M, Oyane A, Tajiri K, Murakoshi N, Sakai S, Sato A, Taninaka A, Chikamori T, Shigekawa H, Aonuma K. Potential of Gold Nanoparticles for Noninvasive Imaging and Therapy for Vascular Inflammation. Mol Imaging Biol 2022; 24:692-699. [PMID: 34580810 PMCID: PMC9581827 DOI: 10.1007/s11307-021-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/23/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Macrophages contribute to the progression of vascular inflammation, making them useful targets for imaging and treatment of vascular diseases. Gold nanoparticles (GNPs) are useful as computed tomography (CT) contrast agents and light absorbers in photothermal therapy. In this study, we aimed to assess the viability of macrophages incubated with GNPs after near-infrared (NIR) laser light exposure and to evaluate the utility of intravenously injected GNPs for in vivo imaging of vascular inflammation in mice using micro-CT. PROCEDURES Mouse macrophage cells (RAW 264.7) were incubated with GNPs and assessed for GNP cellular uptake and cell viability before and after exposure to NIR laser light. For in vivo imaging, macrophage-rich atherosclerotic lesions were induced by carotid ligation in hyperlipidemic and diabetic FVB mice (n = 9). Abdominal aortic aneurysms (AAAs) were created by angiotensin II infusion in ApoE-deficient mice (n = 9). These mice were scanned with a micro-CT imaging system before and after the intravenous injection of GNPs. RESULTS The CT attenuation values of macrophages incubated with GNPs were significantly higher than those of cells incubated without GNPs (p < 0.04). Macrophages incubated with and without GNPs showed similar viability. The viability of macrophages incubated with GNPs (100 μg/ml or 200 μg/ml) was decreased by high-intensity NIR laser exposure but not by low-intensity NIR laser exposure. In vivo CT images showed higher CT attenuation values in diseased carotid arteries than in non-diseased contralateral arteries, although the difference was not statistically significant. The CT attenuation values of the perivascular area in AAAs of mice injected with GNPs were significantly higher than those of mice without injection (p = 0.0001). CONCLUSIONS Macrophages with GNPs had reduced viability upon NIR laser exposure. GNPs intravenously injected into mice accumulated in sites of vascular inflammation, allowing detection of carotid atherosclerosis and AAAs in CT imaging. Thus, GNPs have potential as multifunctional biologically compatible particles for the detection and therapy of vascular inflammation.
Collapse
Affiliation(s)
- Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan.
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Sato
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8573, Tsukuba, Japan
| | - Taishiro Chikamori
- Department of Cardiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8573, Tsukuba, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
4
|
PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Sci Rep 2021; 11:16603. [PMID: 34400681 PMCID: PMC8367985 DOI: 10.1038/s41598-021-95716-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
Vascular research is largely performed in rodents with the goal of developing treatments for human disease. Micro-computed tomography (micro-CT) provides non-destructive three-dimensional imaging that can be used to study the vasculature of rodents. However, to distinguish vasculature from other soft tissues, long-circulating contrast agents are required. In this study, we demonstrated that poly(ethylene glycol) (PEG)-coated gadolinium nanoparticles can be used as a vascular contrast agent in micro-CT. The coated particles could be lyophilized and then redispersed in an aqueous solution to achieve 100 mg/mL of gadolinium. After an intravenous injection of the contrast agent into mice, micro-CT scans showed blood pool contrast enhancements of at least 200 HU for 30 min. Imaging and quantitative analysis of gadolinium in tissues showed the presence of contrast agent in clearance organs including the liver and spleen and very low amounts in other organs. In vitro cell culture experiments, subcutaneous injections, and analysis of mouse body weight suggested that the agents exhibited low toxicity. Histological analysis of tissues 5 days after injection of the contrast agent showed cytotoxicity in the spleen, but no abnormalities were observed in the liver, lungs, kidneys, and bladder.
Collapse
|
5
|
An in-silico method to predict and quantify the effect of gold nanoparticles in X-ray imaging. Phys Med 2021; 89:160-168. [PMID: 34380106 DOI: 10.1016/j.ejmp.2021.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Over the last few years studies are conducted, highlighting the feasibility of Gold Nanoparticles (GNPs) to be used in clinical CT imaging and as an efficient contrast agent for cancer research. After ensuring that GNPs formulations are appropriate for in vivo or clinical use, the next step is to determine the parameters for an X-ray system's optimal contrast for applications and to extract quantitative information. There is currently a gap and need to exploit new X-ray imaging protocols and processing algorithms, through specific models avoiding trial-and-error procedures and provide an imaging prognosis tool. Such a model can be used to confirm the accumulation of GNPs in target organs before radiotherapy treatments with a system easily available in hospitals, as low energy X-rays. METHODS In this study a complete, easy-to-use, simulation platform is designed and built, where simple parameters, as the X-ray's specifications and experimentally defined biodistributions of specific GNPs are imported. The induced contrast and images can be exported, and accurate quantification can be performed. This platform is based on the GATE Monte Carlo simulation toolkit, based on the GEANT4 toolkit and the MOBY phantom, a realistic 4D digital mouse. RESULTS We have validated this simulation platform to predict the contrast induction and minimum detectable concentration of GNPs on any given X-ray system. The study was applied to preclinical studies but is also expandable to clinical studies. CONCLUSIONS According to our knowledge, no other such validated simulation model currently exists, and this model could help radiology imaging with GNPs to be truly deployed.
Collapse
|
6
|
Engels E, Bakr S, Bolst D, Sakata D, Li N, Lazarakis P, McMahon SJ, Ivanchenko V, Rosenfeld AB, Incerti S, Kyriakou I, Emfietzoglou D, Lerch MLF, Tehei M, Corde S, Guatelli S. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models. Phys Med Biol 2020; 65:225017. [PMID: 32916674 DOI: 10.1088/1361-6560/abb7c2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles have demonstrated significant radiosensitization of cancer treatment with x-ray radiotherapy. To understand the mechanisms at the basis of nanoparticle radiosensitization, Monte Carlo simulations are used to investigate the dose enhancement, given a certain nanoparticle concentration and distribution in the biological medium. Earlier studies have ordinarily used condensed history physics models to predict nanoscale dose enhancement with nanoparticles. This study uses Geant4-DNA complemented with novel track structure physics models to accurately describe electron interactions in gold and to calculate the dose surrounding gold nanoparticle structures at nanoscale level. The computed dose in silico due to a clinical kilovoltage beam and the presence of gold nanoparticles was related to in vitro brain cancer cell survival using the local effect model. The comparison of the simulation results with radiobiological experimental measurements shows that Geant4-DNA and local effect model can be used to predict cell survival in silico in the case of x-ray kilovoltage beams.
Collapse
Affiliation(s)
- Elette Engels
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cuccione E, Chhour P, Si-Mohamed S, Dumot C, Kim J, Hubert V, Da Silva CC, Vandamme M, Chereul E, Balegamire J, Chevalier Y, Berthezène Y, Boussel L, Douek P, Cormode DP, Wiart M. Multicolor spectral photon counting CT monitors and quantifies therapeutic cells and their encapsulating scaffold in a model of brain damage. Nanotheranostics 2020; 4:129-141. [PMID: 32483519 PMCID: PMC7256015 DOI: 10.7150/ntno.45354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale & aim: Various types of cell therapies are currently under investigation for the treatment of ischemic stroke patients. To bridge the gap between cell administration and therapeutic outcome, there is a need for non-invasive monitoring of these innovative therapeutic approaches. Spectral photon counting computed tomography (SPCCT) is a new imaging modality that may be suitable for cell tracking. SPCCT is the next generation of clinical CT that allows the selective visualization and quantification of multiple contrast agents. The aims of this study are: (i) to demonstrate the feasibility of using SPCCT to longitudinally monitor and quantify therapeutic cells, i.e. bone marrow-derived M2-polarized macrophages transplanted in rats with brain damage; and (ii) to evaluate the potential of this approach to discriminate M2-polarized macrophages from their encapsulating scaffold. Methods: Twenty one rats received an intralesional transplantation of bone marrow-derived M2-polarized macrophages. In the first set of experiments, cells were labeled with gold nanoparticles and tracked for up to two weeks post-injection in a monocolor study via gold K-edge imaging. In the second set of experiments, the same protocol was repeated for a bicolor study, in which the labeled cells are embedded in iodine nanoparticle-labeled scaffold. The amount of gold in the brain was longitudinally quantified using gold K-edge images reconstructed from SPCCT acquisition. Animals were sacrificed at different time points post-injection, and ICP-OES was used to validate the accuracy of gold quantification from SPCCT imaging. Results: The feasibility of therapeutic cell tracking was successfully demonstrated in brain-damaged rats with SPCCT imaging. The imaging modality enabled cell monitoring for up to 2 weeks post-injection, in a specific and quantitative manner. Differentiation of labeled cells and their embedding scaffold was also feasible with SPCCT imaging, with a detection limit as low as 5,000 cells in a voxel of 250 × 250 × 250 µm in dimension in vivo. Conclusion: Multicolor SPCCT is an innovative translational imaging tool that allows monitoring and quantification of therapeutic cells and their encapsulating scaffold transplanted in the damaged rat brain.
Collapse
Affiliation(s)
- Elisa Cuccione
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
- VOXCAN, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Salim Si-Mohamed
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Chloé Dumot
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Violaine Hubert
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Claire Crola Da Silva
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| | - Marc Vandamme
- VOXCAN, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France
| | | | - Joëlle Balegamire
- LAGEPP, University of Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| | - Yves Chevalier
- LAGEPP, University of Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre, 69622 Villeurbanne, France
| | - Yves Berthezène
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Loïc Boussel
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - Philippe Douek
- CREATIS, CNRS UMR 5220 - INSERM U1206 - University of Lyon 1 - INSA Lyon, Lyon, France
- Hospices Civils de Lyon, Radiology Department, Lyon, France
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Marlène Wiart
- CarMeN Laboratory, Institut National de la Santé et de la Recherche Médicale U1060, INRA U1397, Université Lyon 1, INSA Lyon, F-69600 Oullins, France
| |
Collapse
|
8
|
Mannheim JG, Kara F, Doorduin J, Fuchs K, Reischl G, Liang S, Verhoye M, Gremse F, Mezzanotte L, Huisman MC. Standardization of Small Animal Imaging-Current Status and Future Prospects. Mol Imaging Biol 2019; 20:716-731. [PMID: 28971332 DOI: 10.1007/s11307-017-1126-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The benefit of small animal imaging is directly linked to the validity and reliability of the collected data. If the data (regardless of the modality used) are not reproducible and/or reliable, then the outcome of the data is rather questionable. Therefore, standardization of the use of small animal imaging equipment, as well as of animal handling in general, is of paramount importance. In a recent paper, guidance for efficient small animal imaging quality control was offered and discussed, among others, the use of phantoms in setting up a quality control program (Osborne et al. 2016). The same phantoms can be used to standardize image quality parameters for multi-center studies or multi-scanners within center studies. In animal experiments, the additional complexity due to animal handling needs to be addressed to ensure standardized imaging procedures. In this review, we will address the current status of standardization in preclinical imaging, as well as potential benefits from increased levels of standardization.
Collapse
Affiliation(s)
- Julia G Mannheim
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany.
| | - Firat Kara
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kerstin Fuchs
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Sayuan Liang
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
| | | | - Felix Gremse
- Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marc C Huisman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wang Z, Chen L, Chu Z, Huang C, Huang Y, Jia N. Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:106-118. [DOI: 10.1016/j.msec.2018.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 11/28/2022]
|
10
|
Krasilnikova AA, Solovieva AO, Ivanov AA, Brylev KA, Pozmogova TN, Gulyaeva MA, Kurskaya OG, Alekseev AY, Shestopalov AM, Shestopalova LV, Poveshchenko AF, Efremova OA, Mironov YV, Shestopalov MA. A comparative study of hydrophilic phosphine hexanuclear rhenium cluster complexes' toxicity. Toxicol Res (Camb) 2017; 6:554-560. [PMID: 30090524 PMCID: PMC6060950 DOI: 10.1039/c7tx00083a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 12/16/2022] Open
Abstract
The octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to the difficulty in controlling the hydrolysis of the initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring the fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that the cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with the fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6].
Collapse
Affiliation(s)
- Anna A Krasilnikova
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Anastasiya O Solovieva
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Anton A Ivanov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Tatiana N Pozmogova
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Marina A Gulyaeva
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Olga G Kurskaya
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Alexander Y Alekseev
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Alexander M Shestopalov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
| | - Lidiya V Shestopalova
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Alexander F Poveshchenko
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
| | - Olga A Efremova
- Department of Chemistry , University of Hull , Cottingham Road , Hull , HU6 7RX , UK . ; Tel: +44 (0)1482 465417
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| | - Michael A Shestopalov
- Research Institute of Experimental and Clinical Medicine , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation . ; ; Tel: +7 383 330 92 53
- Scientific Institute of Clinical and Experimental Lymphology , 2 Timakova Str. , 630060 Novosibirsk , Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS , 3 Acad. Lavrentiev Ave. , 630090 Novosibirsk , Russian Federation
- Novosibirsk State University , 2 Pirogova Str. , 630090 Novosibirsk , Russian Federation
| |
Collapse
|
11
|
Silvestri A, Zambelli V, Ferretti AM, Salerno D, Bellani G, Polito L. Design of functionalized gold nanoparticle probes for computed tomography imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:405-414. [DOI: 10.1002/cmmi.1704] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Alessandro Silvestri
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
- Department of Chemistry; University of Milan; Via C. Golgi 19 20133 Milan Italy
| | - Vanessa Zambelli
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Anna M. Ferretti
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
| | - Domenico Salerno
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Giacomo Bellani
- Department of Medicine and Surgery; University of Milano-Bicocca; Via Cadore 48 20900 Monza Italy
| | - Laura Polito
- CNR - ISTM; Nanotechnology Lab.; Via G. Fantoli 16/15 20138 Milan Italy
| |
Collapse
|