1
|
Utkan G, Yumusak G, Tunali BC, Ozturk T, Turk M. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. ACS OMEGA 2023; 8:31188-31200. [PMID: 37663476 PMCID: PMC10468768 DOI: 10.1021/acsomega.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Despite the huge and efficient functionalities of reduced graphene oxide (RGO) for bioengineering applications, the use of harsh chemicals and unfavorable techniques in their production remains a major challenge. Microbial production of reduced graphene oxide (RGO) using specific bacterial strains has gained interest as a sustainable and efficient method. The reduction of GO to RGO by selected bacterial strains was achieved through their enzymatic activities and resulted in the removal of oxygen functional groups from GO, leading to the formation of RGO with enhanced structural integrity. The use of microorganisms offers a sustainable approach, utilizing renewable carbon sources and mild reaction conditions. This study investigates the production of RGO using three different bacterial strains: Lactococcus lactis (L. Lactis), Lactobacillus plantarum (L. plantarum), and Escherichia coli (E. coli) and evaluates its toxicity for safe utilization. The aim is to assess the quality of the produced RGO and evaluate its toxicity for potential applications. Thus, this study focused on the microbial production of reduced graphene oxides well as the investigation of their cellular interactions. Graphite-derived graphene oxide was used as a starting material and microbially reduced GO products were characterized using the FTIR, Raman, XRD, TGA, and XPS methods to determine their physical and chemical properties. FTIR shows that the epoxy and some of the alkoxy and carboxyl functional groups were reduced by E. coli and L. lactis, whereas the alkoxy groups were mostly reduced by L. plantarum. The ID/IG ratio from Raman spectra was found as 2.41 for GO. A substantial decrease in the ratio as well as defects was observed as 1.26, 1.35, and 1.46 for ERGO, LLRGO, and LPRGO after microbial reduction. The XRD analysis also showed a significant reduction in the interlayer spacing of the GO from 0.89 to 0.34 nm for all the reduced graphene oxides. TGA results showed that reduction of GO with L. lactis provided more reduction than other bacteria and formed a structure closer to graphene. Similarly, analysis with XPS showed that L lactis provides the most effective reduction with a C/O ratio of 3.70. In the XPS results obtained with all bacteria, it was observed that the C/O ratio increased because of the microbial reduction. Toxicity evaluations were performed to assess the biocompatibility and safety of the produced RGO. Cell viability assays were conducted using DLD-1 and CHO cell lines to determine the potential cytotoxic effects of RGO produced by each bacterial strain. Additionally, apoptotic, and necrotic responses were examined to understand the cellular mechanisms affected by RGO exposure. The results indicated that all the RGOs have concentration-dependent cytotoxicity. A significant amount of cell viability of DLD-1 cells was observed for L. lactis reduced graphene oxide. However, the highest cell viability of CHO cells was observed for L. plantarum reduced graphene oxide. All reduced graphene oxides have low apoptotic and necrotic responses in both cell lines. These findings highlight the importance of considering the specific bacterial strain used in RGO production as it can influence the toxicity and cellular response of the resulting RGO. The toxicity and cellular response to the final RGO can be affected by the particular bacterial strain that is employed to produce it. This information will help to ensure that RGO is used safely in a variety of applications, including tissue engineering, drug delivery systems, and biosensors, where comprehension of its toxicity profile is essential.
Collapse
Affiliation(s)
- Guldem Utkan
- SUNUM
Nanotechnology Research Center,Sabanci University, Istanbul 34956,Turkey
| | - Gorkem Yumusak
- Department
of Metallurgical and Materials Engineering, Faculty of Engineering, Marmara University, Istanbul 34722,Turkey
| | - Beste Cagdas Tunali
- Department
of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale 71450,Turkey
| | - Tarik Ozturk
- Food
Institute, Marmara Research Center, TUBITAK, Kocaeli 41470,Turkey
| | - Mustafa Turk
- Department
of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale 71450,Turkey
| |
Collapse
|
2
|
Baselga M, Iruzubieta P, Castiella T, Monzón M, Monleón E, Berga C, Schuhmacher AJ, Junquera C. Spheresomes are the main extracellular vesicles in low-grade gliomas. Sci Rep 2023; 13:11180. [PMID: 37430101 DOI: 10.1038/s41598-023-38084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
Cancer progression and its impact on treatment response and prognosis is deeply regulated by tumour microenvironment (TME). Cancer cells are in constant communication and modulate TME through several mechanisms, including transfer of tumour-promoting cargos through extracellular vesicles (EVs) or oncogenic signal detection by primary cilia. Spheresomes are a specific EV that arise from rough endoplasmic reticulum-Golgi vesicles. They accumulate beneath cell membrane and are released to the extracellular medium through multivesicular spheres. This study describes spheresomes in low-grade gliomas using electron microscopy. We found that spheresomes are more frequent than exosomes in these tumours and can cross the blood-brain barrier. Moreover, the distinct biogenesis processes of these EVs result in unique cargo profiles, suggesting different functional roles. We also identified primary cilia in these tumours. These findings collectively contribute to our understanding of glioma progression and metastasis.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
| | - Pablo Iruzubieta
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Tomás Castiella
- Department of Pathological Anatomy, Legal Medicine, and Toxicology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Marta Monzón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain.
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain.
| | - Carmen Berga
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018, Zaragoza, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), 50009, Zaragoza, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
3
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
4
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
5
|
Rahimi S, Chen Y, Zareian M, Pandit S, Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev 2022; 189:114467. [PMID: 35914588 DOI: 10.1016/j.addr.2022.114467] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; State Key Laboratory of Bio-based Material and Green Paper-making, Qilu University of Technology, Jinan, China
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Szczepaniak J, Sosnowska M, Wierzbicki M, Witkowska-Pilaszewicz O, Strojny-Cieslak B, Jagiello J, Fraczek W, Kusmierz M, Grodzik M. Reduced Graphene Oxide Modulates the FAK-Dependent Signaling Pathway in Glioblastoma Multiforme Cells In Vitro. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175843. [PMID: 36079225 PMCID: PMC9457042 DOI: 10.3390/ma15175843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 05/27/2023]
Abstract
Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced β-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Olga Witkowska-Pilaszewicz
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Barbara Strojny-Cieslak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Joanna Jagiello
- Graphene and Composites Research Group, Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 01-919 Warsaw, Poland
| | - Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Marcin Kusmierz
- Analytical Laboratory, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
7
|
Coreas R, Castillo C, Li Z, Yan D, Gao Z, Chen J, Bitounis D, Parviz D, Strano MS, Demokritou P, Zhong W. Biological Impacts of Reduced Graphene Oxide Affected by Protein Corona Formation. Chem Res Toxicol 2022; 35:1244-1256. [PMID: 35706338 PMCID: PMC9842398 DOI: 10.1021/acs.chemrestox.2c00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Applications of reduced graphene oxide (rGO) in many different areas have been gradually increasing owing to its unique physicochemical characteristics, demanding more understanding of their biological impacts. Herein, we assessed the toxicological effects of rGO in mammary epithelial cells. Because the as-synthesized rGO was dissolved in sodium cholate to maintain a stable aqueous dispersion, we hypothesize that changing the cholate concentration in the dispersion may alter the surface property of rGO and subsequently affect its cellular toxicity. Thus, four types of rGO were prepared and compared: rGO dispersed in 4 and 2 mg/mL sodium cholate, labeled as rGO and concentrated-rGO (c-rGO), respectively, and rGO and c-rGO coated with a protein corona through 1 h incubation in culture media, correspondingly named pro-rGO and pro-c-rGO. Notably, c-rGO and pro-c-rGO exhibited higher toxicity than rGO and pro-rGO and also caused higher reactive oxygen species production, more lipid membrane peroxidation, and more significant disruption of mitochondrial-based ATP synthesis. In all toxicological assessments, pro-c-rGO induced more severe adverse impacts than c-rGO. Further examination of the material surface, protein adsorption, and cellular uptake showed that the surface of c-rGO was coated with a lower content of surfactant and adsorbed more proteins, which may result in the higher cellular uptake observed with pro-c-rGO than pro-rGO. Several proteins involved in cellular redox mediation were also more enriched in pro-c-rGO. These results support the strong correlation between dispersant coating and corona formation and their subsequent cellular impacts. Future studies in this direction could reveal a deeper understanding of the correlation and the specific cellular pathways involved and help gain knowledge on how the toxicity of rGO could be modulated through surface modification, guiding the sustainable applications of rGO.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States
| | - Carmen Castillo
- Department of Biochemistry, University of California – Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California – Riverside, California 92521, United States
| | - Dong Yan
- Nanofabrication Facility, University of California – Riverside, California 92521, United States
| | - Ziting Gao
- Department of Chemistry, University of California – Riverside, California 92521, United States
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology, Harvard University, Boston, Massachusetts 02115, United States
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public Health Initiative for Sustainable Nanotechnology, Harvard University, Boston, Massachusetts 02115, United States
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California – Riverside, California 92521, United States,Department of Chemistry, University of California – Riverside, California 92521, United States
| |
Collapse
|
8
|
The Influence of Diamond Nanoparticles on Fibroblast Cell Line L929, Cytotoxicity and Bacteriostaticity of Selected Pathogens. COATINGS 2022. [DOI: 10.3390/coatings12020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main problem with using modified allotrophic forms of carbon with nanodiamond particles in the production of food packaging is establishing the boundary between safety, as it affects the human body, and the adequate and effective action of the substances. One vital area of concern is the transmission of pathogens in food into the body. The aim of this study was to evaluate the cytotoxicity and bacteriostatic biological activity of two different modifications of diamond nanoparticles: pure detonation nanodiamond particles (DND) obtained by Danienko and plasma-chemically modified detonation nanodiamond particles obtained by the microwave plasma activated chemical vapor deposition method in a rotary chamber (MDP1) An indirect method was used to evaluate the cytotoxicity effect in accordance with ISO 10993–5. The viability of the L929 fibroblast cell line used as a control was 98.5%, for DND 95.14%, and the lowest level of viability for MDP1 was 88.63%. Escherichia coli and Staphylococcus aureus bacteria were used in bacteriostatic tests and the degree of cytotoxicity of the tested materials was classified as low. The in vitro cytotoxicity results indicate no toxic effect on L929 cells nor any effect on any of the samples tested against the bacterial strains us
Collapse
|
9
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
10
|
The Preliminary Study on the Proapoptotic Effect of Reduced Graphene Oxide in Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222212593. [PMID: 34830472 PMCID: PMC8620501 DOI: 10.3390/ijms222212593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most common cancer diagnosed in women, however traditional therapies have several side effects. This has led to an urgent need to explore novel drug approaches to treatment strategies such as graphene-based nanomaterials such as reduced graphene oxide (rGO). It was noticed as a potential drug due to its target selectivity, easy functionalisation, chemisensitisation, and high drug-loading capacity. rGO is widely used in many fields, including biological and biomedical, due to its unique physicochemical properties. However, the possible mechanisms of rGO toxicity remain unclear. In this paper, we present findings on the cytotoxic and antiproliferative effects of rGO and its ability to induce oxidative stress and apoptosis of breast cancer cell lines. We indicate that rGO induced time- and dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cell lines, but not in T-47D, MCF-7, Hs 578T cell lines. In rGO-treated MDA-MB-231 and ZR-75-1 cell lines, we noticed increased induction of apoptosis and necrosis. In addition, rGO has been found to cause oxidative stress, reduce proliferation, and induce structural changes in breast cancer cells. Taken together, these studies provide new insight into the mechanism of oxidative stress and apoptosis in breast cancer cells.
Collapse
|
11
|
Effects of Metallic and Carbon-Based Nanomaterials on Human Pancreatic Cancer Cell Lines AsPC-1 and BxPC-3. Int J Mol Sci 2021; 22:ijms222212100. [PMID: 34829982 PMCID: PMC8623931 DOI: 10.3390/ijms222212100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, due to its asymptomatic development and drug-resistance, is difficult to cure. As many metallic and carbon-based nanomaterials have shown anticancer properties, we decided to investigate their potential use as anticancer agents against human pancreatic adenocarcinoma. The objective of the study was to evaluate the toxic properties of the following nanomaterials: silver (Ag), gold (Au), platinum (Pt), graphene oxide (GO), diamond (ND), and fullerenol (C60(OH)40) against the cell lines BxPC-3, AsPC-1, HFFF-2, and HS-5. The potential cytotoxic properties were evaluated by the assessment of the cell morphology, cell viability, and cell membrane damage. The cancer cell responses to GO and ND were analysed by determination of changes in the levels of 40 different pro-inflammatory proteins. Our studies revealed that the highest cytotoxicity was obtained after the ND treatment. Moreover, BxPC-3 cells were more sensitive to ND than AsPC-1 cells due to the ND-induced ROS production. Furthermore, in both of the cancer cell lines, ND caused an increased level of IL-8 and a decreased level of TIMP-2, whereas GO caused only decreased levels of TIMP-2 and ICAM-1 proteins. This work provides important data on the toxicity of various nanoparticles against pancreatic adenocarcinoma cell lines.
Collapse
|
12
|
Mousavi SM, Yousefi K, Hashemi SA, Afsa M, BahranI S, Gholami A, Ghahramani Y, Alizadeh A, Chiang WH. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2800. [PMID: 34835565 PMCID: PMC8622722 DOI: 10.3390/nano11112800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023]
Abstract
Dental tissue engineering (TE) is undergoing significant modifications in dental treatments. TE is based on a triad of stem cells, signaling molecules, and scaffolds that must be understood and calibrated with particular attention to specific dental sectors. Renewable and eco-friendly carbon-based nanomaterials (CBMs), including graphene (G), graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots (GQD), carbon nanotube (CNT), MXenes and carbide, have extraordinary physical, chemical, and biological properties. In addition to having high surface area and mechanical strength, CBMs have greatly influenced dental and biomedical applications. The current study aims to explore the application of CBMs for dental tissue engineering. CBMs are generally shown to have remarkable properties, due to various functional groups that make them ideal materials for biomedical applications, such as dental tissue engineering.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| | - Khadije Yousefi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
- Department of Dental Materials and Biomaterials Research Centre, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Marzie Afsa
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
| | - Sonia BahranI
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran; (K.Y.); (M.A.)
| | - Yasmin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Ali Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan;
| |
Collapse
|
13
|
MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells. Molecules 2021; 26:molecules26195804. [PMID: 34641347 PMCID: PMC8510190 DOI: 10.3390/molecules26195804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary and aggressive tumour in brain cancer. Novel therapies, despite achievements in chemotherapy, radiation and surgical techniques, are needed to improve the treatment of GBM tumours and extend patients’ survival. Gene delivery therapy mostly uses the viral vector, which causes serious adverse events in gene therapy. Graphene-based complexes can reduce the potential side effect of viral carries, with high efficiency of microRNA (miRNA) or antisense miRNA delivery to GBM cells. The objective of this study was to use graphene-based complexes to induce deregulation of miRNA level in GBM cancer cells and to regulate the selected gene expression involved in apoptosis. The complexes were characterised by Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy and zeta potential. The efficiency of miRNA delivery to the cancer cells was analysed by flow cytometry. The effect of the anticancer activity of graphene-based complexes functionalised by the miRNA sequence was analysed using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) assays at the gene expression level. The results partly explain the mechanisms of miRNA deregulation stress, which is affected by graphene-based complexes together with the forced transport of mimic miR-124, miR-137 and antisense miR-21, -221 and -222 as an anticancer supportive therapy.
Collapse
|
14
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
15
|
Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models. MATERIALS 2021; 14:ma14154250. [PMID: 34361444 PMCID: PMC8348526 DOI: 10.3390/ma14154250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
There are numerous applications of graphene in biomedicine and they can be classified into several main areas: delivery systems, sensors, tissue engineering and biological agents. The growing biomedical field of applications of graphene and its derivates raises questions regarding their toxicity. We will demonstrate an analysis of the toxicity of two forms of graphene using four various biological models: zebrafish (Danio rerio) embryo, duckweed (Lemna minor), human HS-5 cells and bacteria (Staphylococcus aureus). The toxicity of pristine graphene (PG) and graphene oxide (GO) was tested at concentrations of 5, 10, 20, 50 and 100 µg/mL. Higher toxicity was noted after administration of high doses of PG and GO in all tested biological models. Hydrophilic GO shows greater toxicity to biological models living in the entire volume of the culture medium (zebrafish, duckweed, S. aureus). PG showed the highest toxicity to adherent cells growing on the bottom of the culture plates—human HS-5 cells. The differences in toxicity between the tested graphene materials result from their physicochemical properties and the model used. Dose-dependent toxicity has been demonstrated with both forms of graphene.
Collapse
|
16
|
Wang W, Chen JX, Hou Y, Bartolo P, Chiang WH. Investigations of Graphene and Nitrogen-Doped Graphene Enhanced Polycaprolactone 3D Scaffolds for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:929. [PMID: 33917418 PMCID: PMC8067503 DOI: 10.3390/nano11040929] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
Scaffolds play a key role in tissue engineering applications. In the case of bone tissue engineering, scaffolds are expected to provide both sufficient mechanical properties to withstand the physiological loads, and appropriate bioactivity to stimulate cell growth. In order to further enhance cell-cell signaling and cell-material interaction, electro-active scaffolds have been developed based on the use of electrically conductive biomaterials or blending electrically conductive fillers to non-conductive biomaterials. Graphene has been widely used as functioning filler for the fabrication of electro-active bone tissue engineering scaffolds, due to its high electrical conductivity and potential to enhance both mechanical and biological properties. Nitrogen-doped graphene, a unique form of graphene-derived nanomaterials, presents significantly higher electrical conductivity than pristine graphene, and better surface hydrophilicity while maintaining a similar mechanical property. This paper investigates the synthesis and use of high-performance nitrogen-doped graphene as a functional filler of poly(ɛ-caprolactone) (PCL) scaffolds enabling to develop the next generation of electro-active scaffolds. Compared to PCL scaffolds and PCL/graphene scaffolds, these novel scaffolds present improved in vitro biological performance.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Jun-Xiang Chen
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan;
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan;
| |
Collapse
|
17
|
Zhang J, Cao HY, Wang JQ, Wu GD, Wang L. Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction. Front Cell Dev Biol 2021; 9:616888. [PMID: 33816465 PMCID: PMC8012771 DOI: 10.3389/fcell.2021.616888] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Graphene has been widely used for various biological and biomedical applications due to its unique physiochemical properties. This study aimed to evaluate the cardiotoxicity of graphene oxide (GO) and reduced GO (rGO) in vitro and in vivo, as well as to investigate the underlying toxicity mechanisms. Methods GO was reduced by gamma irradiation to prepare rGO and then characterized by UV/visible light absorption spectroscopy. Rat myocardial cells (H9C2) were exposed to GO or rGO with different absorbed radiation doses. The in vitro cytotoxicity was evaluated by MTT assay, cell apoptosis assay, and lactate dehydrogenase (LDH) activity assay. The effects of GO and rGO on oxidative damage and mitochondrial membrane potential were also explored in H9C2 cells. For in vivo experiments, mice were injected with GO or rGO. The histopathological changes of heart tissues, as well as myocardial enzyme activity and lipid peroxidation indicators in heart tissues were further investigated. Results rGO was developed from GO following different doses of gamma irradiation. In vitro experiments in H9C2 cells showed that compared with control cells, both GO and rGO treatment inhibited cell viability, promoted cell apoptosis, and elevated the LDH release. With the increasing radiation absorbed dose, the cytotoxicity of rGO gradually increased. Notably, GO or rGO treatment increased the content of ROS and reduced the mitochondrial membrane potential in H9C2 cells. In vivo experiments also revealed that GO or rGO treatment damaged the myocardial tissues and changed the activities of several myocardial enzymes and the lipid peroxidation indicators in the myocardial tissues. Conclusion GO exhibited a lower cardiotoxicity than rGO due to the structure difference, and the cardiotoxicity of GO and rGO might be mediated by lipid peroxidation, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Hong-Yan Cao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Ji-Qun Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Guo-Dong Wu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. Int J Mol Sci 2021; 22:ijms22020515. [PMID: 33419226 PMCID: PMC7825604 DOI: 10.3390/ijms22020515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.
Collapse
|
19
|
Nasiłowska B, Bogdanowicz Z, Hińcza K, Mierczyk Z, Góźdź S, Djas M, Kowiorski K, Bombalska A, Kowalik A. Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results. MATERIALS 2020; 13:ma13194464. [PMID: 33050094 PMCID: PMC7578968 DOI: 10.3390/ma13194464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
This paper presents the results of the interaction of graphene oxide (GO) on MDA-MB-231 and SW-954 cancer cell lines. The tests were carried out in two variants. In the first one, GO was sprayed on a Petri dish and then, the cancer cell lines were cultured. In the second variant, the cells were covered with an aerosol containing GO. In both variants, cancer cell lines were incubated and tested every 24, 48, and 72 h. After each time period, cell viability and surface morphology were measured. The tests after 72 h showed that coating with GO aerosol caused a reduction in cell viability by 52.7% and 26.4% for MDA-MB-231 and SW-954 cancer cell lines, respectively, with respect to a reference sample (without the influence of GO aerosol). Tests where GO is a culture medium demonstrated a decrease in cell viability by approximately 4.3% compared to a reference sample for both considered cell lines.
Collapse
Affiliation(s)
- Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
- Correspondence:
| | - Zdzisław Bogdanowicz
- Faculty of Mechanical Engineering, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
| | - Kinga Hińcza
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland;
- Department of Prophylaxis and Cancer Epidemiology, Collegium Medicum, Jan Kochanowski University, Al. IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Małgorzata Djas
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Krystian Kowiorski
- Łukasiewicz Research Network—Institute of Electronic Materials Technology, Department of Chemical Synthesis and Flake Graphene; Wólczyńska 133, Warsaw 01-919, Poland; (M.D.); (K.K.)
| | - Aneta Bombalska
- Institute of Optoelectronics, Military University of Technology, gen. S. Kaliskiego 2, 00-908 Warsaw, Poland; (Z.M.); (A.B.)
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Center, Kielce, S. Artwińskiego 3, 25-735 Kielce, Poland; (K.H.); (A.K.)
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| |
Collapse
|
20
|
Matulewicz K, Kaźmierski Ł, Wiśniewski M, Roszkowski S, Roszkowski K, Kowalczyk O, Roy A, Tylkowski B, Bajek A. Ciprofloxacin and Graphene Oxide Combination-New Face of a Known Drug. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4224. [PMID: 32977453 PMCID: PMC7579301 DOI: 10.3390/ma13194224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Drug modification with nanomaterials is a new trend in pharmaceutical studies and shows promising results, especially considering carbon-based solutions. Graphene and its derivatives have attracted much research interest for their potential applications in biomedical areas as drug modifiers. The following work is a comprehensive study regarding the toxicity of ciprofloxacin (CIP) modified by graphene oxide (GO). The influence on the morphology, viability, cell death pathway and proliferation of T24 and 786-0 cells was studied. The results show that ciprofloxacin modified with graphene oxide (CGO) shows the highest increase in cytotoxic potential, especially in the case of T24 cells. We discovered a clear connection between CIP modification with GO and the increase in its apoptotic potential. Our results show that drug modification with carbon-based nanomaterials might be a promising strategy to improve the qualities of existing drugs. Nevertheless, it is important to remember that cytotoxicity effects are highly dependent on dose and nanomaterial size. It is necessary to conduct further research to determine the optimal dose of GO for drug modification.
Collapse
Affiliation(s)
- Karolina Matulewicz
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
| | - Łukasz Kaźmierski
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
- Department of Oncology, Collegium Medicum, Nicolaus Copernicus University, Lukasiewicza str. 1, 85-821 Bydgoszcz, Poland;
| | - Marek Wiśniewski
- Department of Chemistry of Materials Adsorption and Catalysis, Nicolaus Copernicus University, Gagarina str. 7, 87-100 Torun, Poland;
| | - Szymon Roszkowski
- Faculty of Agronomy and Bioengineering, Poznan of Life Sciences, Wojska Polskiego str. 28, 60-637 Poznan, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Collegium Medicum, Nicolaus Copernicus University, Lukasiewicza str. 1, 85-821 Bydgoszcz, Poland;
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare, Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
| | - Archi Roy
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans, 26. Ed. E4. (C. Sescelades), 43007 Tarragona, Spain;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, C/Marcellí Domingo s/n, 43007 Tarragona, Spain;
| | - Anna Bajek
- Chair of Urology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Karlowicza str. 24, 85-092 Bydgoszcz, Poland; (Ł.K.); (A.B.)
| |
Collapse
|
21
|
Lu P, Zehtab Yazdi A, Han XX, Al Husaini K, Haime J, Waye N, Chen P. Mechanistic Insights into the Cytotoxicity of Graphene Oxide Derivatives in Mammalian Cells. Chem Res Toxicol 2020; 33:2247-2260. [PMID: 32786550 DOI: 10.1021/acs.chemrestox.9b00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Graphene oxide derivatives (GODs) have superb physical/chemical properties with promise for applications in biomedicine. Shape, size, and chemistry of the GODs are identified as the key parameters that impact any biological system. In this work, the GODs with a wide range of shapes (sheets, helical/longitudinal ribbons, caps, dots), sizes (10 nm to 20 μm), and chemistry (partially to fully oxidized) are synthesized, and their cytotoxicity in normal cells (NIH3T3) and colon cancer cells (HCT116) are evaluated. The mechanisms by which the GODs induce cytotoxicity are comprehensively investigated, and the toxic effects of the GODs on the NIH3T3 and the HCT116 cells are compared. While the GODs show no toxicity under the size of 50 nm, they impose moderate toxic effects at the sizes of 100 nm to 20 μm (max viability >57%). For the GODs with the similar size (100-200 nm), the helical ribbon-like structure is found to be much less toxic than the longitudinal ribbon structure (max viability 83% vs 18%) and the tubular structure (0% viability for the oxidized carbon nanotubes). It is also evident that the level of oxidation of the GOD is inversely related to the toxicity. Although the extent of GOD-induced cytotoxicity (reduction of cell viability) to the two cell lines is similar, their toxicity mechanisms are interestingly found to be substantially different. In the HCT116 cancer cells, cell membrane leakage leads to DNA damage followed by cell death, whereas in the NIH3T3 normal cells, increases in oxidative stress and physical interference between the GODs and the cells are identified as the main toxicity sources.
Collapse
Affiliation(s)
- Phillip Lu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Alireza Zehtab Yazdi
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Xiao Xia Han
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Khalsa Al Husaini
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Jessica Haime
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Naomi Waye
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
22
|
Alam K, Jo YY, Park CK, Cho H. Synthesis of Graphene Oxide Using Atmospheric Plasma for Prospective Biological Applications. Int J Nanomedicine 2020; 15:5813-5824. [PMID: 32821103 PMCID: PMC7418166 DOI: 10.2147/ijn.s254860] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION This paper presents a novel technique for the synthesis of graphene oxide (GO) with various surface features using high-density atmospheric plasma deposition. Furthermore, to investigate the use of hydrophobic, super-hydrophobic, and hydrophilic graphene in biological applications, we synthesized hydrophobic, super-hydrophobic, and hydrophilic graphene oxides by additional heat treatment and argon plasma treatment, respectively. In contrast to conventional fabrication procedures, reduced graphene oxide (rGO) formed under low pressure and high-temperature environment using a new synthesis method-developed and described in this study-offers a convenient deposition method on any kind surface with controlled wettability. METHODS High density at atmospheric plasma is used for the synthesis of rGO and GO and its biocompatibility based on various wetting properties was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the viability of cells in response to rGO and GO with various surface features was investigated. Structural integrity was characterized by Raman spectroscopy, FESEM and FE-TEM. Wettability was measured via contact angle method and confirmed with XPS analysis. RESULTS We found that GO coating with a hydrophilic feature is more biocompatible than other surfaces as observed in case of fibroblast cells. We have shown that wettability-controlled by GO deposition-influences biocompatibilities and antibacterial effect of biomaterial surfaces. DISCUSSION Measuring the contact angle, it is found that contact angle for hydrophobic is increased to 150.590 and reduced to 11.580 by heat and argon plasma treatment, respectively, from 75.880 that was initially in the case of hydrophobic surface. XPS analysis confirmed various oxygen-containing functional groups transforming as deposited hydrophobic surface into superhydrophobic and hydrophilic surface. Thus, we have proposed a new, direct, cost-effective, and highly productive method for the synthesis of rGO and GO-with various surface properties-for biological applications. Similarly, for the dental implant application, the Streptococcus mutans was used as an antibacterial effect and found that S. mutans grows slowly on hydrophilic surface. Thus, antibacterial effect was prominent on GO with hydrophilic surface.
Collapse
Affiliation(s)
- Khurshed Alam
- School of Materials Science & Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon21565, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon21999, Republic of Korea
| | - Hoonsung Cho
- School of Materials Science & Engineering, Chonnam National University, Gwangju61186, Republic of Korea
| |
Collapse
|
23
|
Strojny B, Jaworski S, Misiewicz-Krzemińska I, Isidro I, Rojas EA, Gutiérrez NC, Grodzik M, Koczoń P, Chwalibog A, Sawosz E. Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3420. [PMID: 32756412 PMCID: PMC7436021 DOI: 10.3390/ma13153420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
The interest around the graphene family of materials is constantly growing due to their potential application in biomedical fields. The effect of graphene and its derivatives on cells varies amongst studies depending on the cell and tissue type. Since the toxicity against non-adherent cell lines has barely been studied, we investigated the effect of graphene and two different graphene oxides against four multiple myeloma cell lines, namely KMS-12-BM, H929, U226, and MM.1S, as well as two non-Hodgkin lymphoma cells lines, namely KARPAS299 and DOHH-2. We performed two types of viability assays, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion) and ATP (adenosine triphosphate detection), flow cytometry analysis of apoptosis induction and cell cycle, cell morphology, and direct interaction analysis using two approaches-visualization of living cells by two different systems, and visualization of fixed and dyed cells. Our results revealed that graphene and graphene oxides exhibit low to moderate cytotoxicity against cells, despite visible interaction between the cells and graphene oxide. This creates possibilities for the application of the selected graphene materials for drug delivery systems or theragnostics in hematological malignancies; however, further detailed studies are necessary to explain the nature of interactions between the cells and the materials.
Collapse
Affiliation(s)
- Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Irena Misiewicz-Krzemińska
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Isabel Isidro
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Elizabeta A. Rojas
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.M.-K.); (I.I.); (E.A.R.); (N.C.G.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (S.J.); (M.G.); (E.S.)
| |
Collapse
|
24
|
Burnett M, Abuetabh Y, Wronski A, Shen F, Persad S, Leng R, Eisenstat D, Sergi C. Graphene Oxide Nanoparticles Induce Apoptosis in wild-type and CRISPR/Cas9-IGF/IGFBP3 knocked-out Osteosarcoma Cells. J Cancer 2020; 11:5007-5023. [PMID: 32742448 PMCID: PMC7378933 DOI: 10.7150/jca.46464] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma affects both adolescents and adults, and some improvement in the survival rate for affected patients has been reached in the last decade. Still, non-specificity and systemic toxicity may limit traditional therapeutic approaches to some extent. The insulin growth factor 1 (IGF1) and its binding protein (IGFBP3) have been implicated in the tumorigenesis. Nanoparticles, such as graphene oxide (GO), can provide an effective treatment for cancer as they can specifically target cancer cells while reducing undesired side effects. This study aimed to evaluate the toxicity of GO on osteosarcoma in vitro using tumor cell lines with and without knocking out the IGF and IGFBP3 genes. Human osteosarcoma cell lines, U2OS and SAOS2, and the normal osteoblast cell line hFOB1.19 were used. The IGF1 and IGFBP3 genes were eliminated using CRISPR/Cas9. Tumor cells were cultured and treated with GO. Apoptosis and reactive oxygen species (ROS) were analyzed by Annexin V-FITC and ROS assays. The nuclear factor erythroid 2-related factor 2 (NRF2), which is a crucial regulator of cellular resistance to oxidants, was investigated by Western blotting. We found a significantly higher rate of apoptosis in the OS than hFOB1.19, especially in U2OS cells in which IGF1 and IGFBP3 were knocked out. ROS increase due to GO exposure was remarkably time and concentration-dependent. Based on the rate of apoptosis, ROS, Nrf-2 decrease, and cytomorphological changes, GO has a significant cytotoxic effect against OS. Targeting the IGF1 and IGFBP3 signaling pathway may strengthen GO-related cytotoxicity with the potential to increase the survival of patients affected by this tumor.
Collapse
Affiliation(s)
- Mervin Burnett
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Yasser Abuetabh
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | | | - Fan Shen
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Roger Leng
- Department of Laboratory Medicine and Pathology, Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - David Eisenstat
- Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada.,Department of Paediatrics, University of Alberta, Edmonton, Alberta, Canada.,National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, P.R. China.,Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
25
|
Cibecchini G, Veronesi M, Catelani T, Bandiera T, Guarnieri D, Pompa PP. Antiangiogenic Effect of Graphene Oxide in Primary Human Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22507-22518. [PMID: 32255338 DOI: 10.1021/acsami.0c03404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we exploited an integrated approach combining systematic analysis of cytotoxicity, angiogenic potential, and metabolomics to shed light on the effects of graphene oxide (GO) on primary human endothelial Huvec cells. Contrary to the outcomes observed in immortalized cell lines able to internalize a similar amount of GO, significant toxicity was found in Huvec cells at high GO concentrations (25 and 50 μg/mL). In particular, we found that the steric hindrance of GO intracellular aggregates perturbed the correct assembly of cytoskeleton and distribution of mitochondria. This was found to be primarily associated with oxidative stress and impairment of cell migration, affecting the formation of capillary-like structures. In addition, preliminary metabolomics characterization demonstrated that GO affects the consumption of niacinamide, a precursor of energy carriers, and several amino acids involved in the regulation of angiogenesis. Our findings suggest that GO acts at different cellular levels, both directly and indirectly. More precisely, the combination of the physical hindrance of internalized GO aggregates, induction of oxidative stress, and alteration of some metabolic pathways leads to a significant antiangiogenic effect in primary human endothelial cells.
Collapse
Affiliation(s)
- Giulia Cibecchini
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
- Piattaforma Interdipartimentale di Microscopia, Università Degli Studi di Milano-Bicocca, Piazza Della Scienza 2, Milano 20126, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
26
|
Wang X, Zhou W, Li X, Ren J, Ji G, Du J, Tian W, Liu Q, Hao A. Graphene oxide suppresses the growth and malignancy of glioblastoma stem cell-like spheroids via epigenetic mechanisms. J Transl Med 2020; 18:200. [PMID: 32410622 PMCID: PMC7227195 DOI: 10.1186/s12967-020-02359-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma stem-like cells (GSCs) are hypothesized to contribute to self-renewal and therapeutic resistance in glioblastoma multiforme (GBM) tumors. Constituting only a small percentage of cancer cells, GSCs possess “stem-like”, tumor-initiating properties and display resistance to irradiation and chemotherapy. Thus, novel approaches that can be used to suppress GSCs are urgently needed. A new carbon material—graphene oxide (GO), has been reported to show potential for use in tumor therapy. However, the exact effect of GO on GSCs and the inherent mechanism underlying its action are not clear. In this study, we aimed to investigate the usefulness of GO to inhibit the growth and promote the differentiation of GSCs, so as to suppress the malignancy of GBM. Methods In vitro effects of GO on sphere-forming ability, cell proliferation and differentiation were evaluated in U87, U251 GSCs and primary GSCs. The changes in cell cycle and the level of epigenetic modification H3K27me3 were examined. GO was also tested in vivo against U87 GSCs in mouse subcutaneous xenograft models by evaluating tumor growth and histological features. Results We cultured GSCs to explore the effect of GO and the underlying mechanism of its action. We found, for the first time, that GO triggers the inhibition of cell proliferation and induces apoptotic cell death in GSCs. Moreover, GO could promote the differentiation of GSCs by decreasing the expression of stem cell markers (SOX2 and CD133) and increasing the expression of differentiation-related markers (GFAP and β-III tubulin). Mechanistically, we found that GO had a striking effect on GSCs by inducing cell cycle arrest and epigenetic regulation. GO decreased H3K27me3 levels, which are regulated by EZH2 and associated with transcriptional silencing, in the promoters of the differentiation-related genes GFAP and β-III tubulin, thereby enhancing GSC differentiation. In addition, compared with untreated GSCs, GO-treated GSCs that were injected into nude mice exhibited decreased tumor growth in vivo. Conclusion These results suggested that GO could promote differentiation and reduce malignancy in GSCs via an unanticipated epigenetic mechanism, which further demonstrated that GO is a potent anti-GBM agent that could be useful for future clinical applications.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xian Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China.,Department of Foot and Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Ren
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Wenyu Tian
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qian Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
27
|
Rodríguez-Losada N, de la Rosa J, Larriva M, Wendelbo R, Aguirre JA, Castresana JS, Ballaz SJ. Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells. J Adv Res 2020; 23:37-45. [PMID: 32071790 PMCID: PMC7016025 DOI: 10.1016/j.jare.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Alpha-Synuclein (aSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson's disease. Whether aSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of aSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress aSyn at low and at high levels. aSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-aSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-aSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-aSyn neurons. Cytotoxicity of aSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-aSyn neurons, but, it did not in high-aSyn neurons. Consistent with their enhanced proliferation, high-aSyn neurons showed elevated levels of SMP30, a senescence-marker protein, and the mitosis Ki-67 marker. High-aSyn overexpression conferred to the carcinogenic neurons heightened tumorigenicity and resistance to senescence compared to low-aSyn cells, thus pointing to an inadequate level of aSyn stimulation, rather than the aSyn overload itself, as one of the factors contributing to α-synucleinopathy.
Collapse
Affiliation(s)
- Noela Rodríguez-Losada
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier de la Rosa
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - María Larriva
- Dept. of Pharmacology & Toxicology, University of Navarra School of Pharmacy and Nutrition, Pamplona, Spain
| | | | - José A. Aguirre
- Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
| | - Javier S. Castresana
- Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Santiago J. Ballaz
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí, Ecuador
| |
Collapse
|
28
|
Georgieva M, Vasileva B, Speranza G, Wang D, Stoyanov K, Draganova-Filipova M, Zagorchev P, Sarafian V, Miloshev G, Krasteva N. Amination of Graphene Oxide Leads to Increased Cytotoxicity in Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 21:E2427. [PMID: 32244505 PMCID: PMC7177364 DOI: 10.3390/ijms21072427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/22/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clinically, there is an urgent need to identify new therapeutic strategies for selectively treating cancer cells. One of the directions in this research is the development of biocompatible therapeutics that selectively target cancer cells. Here, we show that novel aminated graphene oxide (haGO-NH2) nanoparticles demonstrate increased toxicity towards human hepatocellular cancer cells compared to pristine graphene oxide(GO). The applied novel strategy for amination leads to a decrease in the size of haGO-NH2 and their zeta potential, thus, assuring easier penetration through the cell membrane. After characterization of the biological activities of pristine and aminated GO, we have demonstrated strong cytotoxicity of haGO-NH2 toward hepatic cancer cells - HepG2 cell line, in a dose-dependent manner. We have presented evidence that the cytotoxic effects of haGO-NH2 on hepatic cancer cells were due to cell membrane damage, mitochondrial dysfunction and increased reactive oxygen species (ROS) production. Intrinsically, our current study provides new rationale for exploiting aminated graphene oxide as an anticancer therapeutic.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Bela Vasileva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Giorgio Speranza
- Functional Materials and Photonic Structure, Center for Materials and Microsystems, Fondazione Bruno Kessler, I-38123 Povo, Italy;
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Medical School in Southeast University, Nanjing 210009, China;
| | - Kalin Stoyanov
- Department of Automation, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Milena Draganova-Filipova
- Department of Medical Biology, Medical Faculty, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (M.D.-F.); (V.S.)
- Research Institute at Medical University-Plovdiv, Bulgaria; 15A Vassil Aprilov, blvd, 4000 Plovdiv, Bulgaria
| | - Plamen Zagorchev
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Victoria Sarafian
- Department of Medical Biology, Medical Faculty, Medical University—Plovdiv, 4000 Plovdiv, Bulgaria; (M.D.-F.); (V.S.)
- Research Institute at Medical University-Plovdiv, Bulgaria; 15A Vassil Aprilov, blvd, 4000 Plovdiv, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (B.V.); (G.M.)
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
29
|
Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells. MATERIALS 2019; 13:ma13010090. [PMID: 31878020 PMCID: PMC6981792 DOI: 10.3390/ma13010090] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Despite advanced techniques in medicine, breast cancer caused the deaths of 627,000 women in 2018. Melittin, the main component of bee venom, has lytic properties for many types of cells, including cancer cells. To increase its toxic effect, carbon nanoparticles, graphene oxide, pristine graphene, and diamond were used as carriers of melittin to breast cancer cells. To date, the effects of carbon nanoparticles as carriers of melittin on cancer cells have not been studied. The present study was carried out on MCF-7 and MDA-MB-231 cell lines. The investigation consisted of structural analysis of complexes using transmission electron microscopy, zeta potential measurements, evaluation of cell morphology, assessment of cell viability and membrane integrity, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. Cell death was examined by flow cytometry and a membrane test for 43 apoptotic proteins. The results indicate that melittin complex with nanographene oxide has a stronger toxic effect on breast cancer cells than melittin alone. Moreover, nanodiamonds can protect cells against the lytic effects of melittin. All complexes reduced, but not completely eliminated the level of necrosis, compared to melittin. Thus, results suggest that the use of carbon nanoparticles as carriers for melittin may find use in medicine in the future.
Collapse
|
30
|
Belousov A, Titov S, Shved N, Garbuz M, Malykin G, Gulaia V, Kagansky A, Kumeiko V. The Extracellular Matrix and Biocompatible Materials in Glioblastoma Treatment. Front Bioeng Biotechnol 2019; 7:341. [PMID: 31803736 PMCID: PMC6877546 DOI: 10.3389/fbioe.2019.00341] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
During cancer genesis, the extracellular matrix (ECM) in the human brain undergoes important transformations, starting to resemble embryonic brain cell milieu with a much denser structure. However, the stiffness of the tumor ECM does not preclude cancer cells from migration. The importance of the ECM role in normal brain tissue as well as in tumor homeostasis has engaged much effort in trials to implement ECM as a target and an instrument in the treatment of brain cancers. This review provides a detailed analysis of both experimental and applied approaches in combined therapy for gliomas in adults. In general, matrix materials for glioma treatment should have properties facilitating the simplest delivery into the body. Hence, to deliver an artificial implant directly into the operation cavity it should be packed into a gel form, while for bloodstream injections matrix needs to be in the form of polymer micelles, nanoparticles, etc. Furthermore, the delivered material should mimic biomechanical properties of the native tissue, support vital functions, and slow down or stop the proliferation of surrounding cells for a prolonged period. The authors propose a two-step approach aimed, on the one hand, at elimination of remaining cancer cells and on the other hand, at restoring normal brain tissue. Thereby, the first bioartificial matrix to be applied should have relatively low elastic modulus should be loaded with anticancer drugs, while the second material with a higher elastic modulus for neurite outgrowth support should contain specific factors stimulating neuroregeneration.
Collapse
Affiliation(s)
- Andrei Belousov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Sergei Titov
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| | - Nikita Shved
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Mikhail Garbuz
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Grigorii Malykin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Valeriia Gulaia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
31
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
32
|
Jagiełło J, Sekuła-Stryjewska M, Noga S, Adamczyk E, Dźwigońska M, Kurcz M, Kurp K, Winkowska-Struzik M, Karnas E, Boruczkowski D, Madeja Z, Lipińska L, Zuba-Surma EK. Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. Int J Mol Sci 2019; 20:E4561. [PMID: 31540083 PMCID: PMC6770664 DOI: 10.3390/ijms20184561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
The potential therapeutic applications of mesenchymal stem/stromal cells (MSCs) and biomaterials have attracted a great amount of interest in the field of biomedical engineering. MSCs are multipotent adult stem cells characterized as cells with specific features, e.g., high differentiation potential, low immunogenicity, immunomodulatory properties, and efficient in vitro expansion ability. Human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs) are a new, important cell type that may be used for therapeutic purposes, i.e., for autologous and allogeneic transplantations. To improve the therapeutic efficiency of hUC-MSCs, novel biomaterials have been considered for use as scaffolds dedicated to the propagation and differentiation of these cells. Nowadays, some of the most promising materials for tissue engineering include graphene and its derivatives such as graphene oxide (GO) and reduced graphene oxide (rGO). Due to their physicochemical properties, they can be easily modified with biomolecules, which enable their interaction with different types of cells, including MSCs. In this study, we demonstrate the impact of graphene-based substrates (GO, rGO) on the biological properties of hUC-MSCs. The size of the GO flakes and the reduction level of GO have been considered as important factors determining the most favorable surface for hUC-MSCs growth. The obtained results revealed that GO and rGO are suitable scaffolds for hUC-MSCs. hUC-MSCs cultured on: (i) a thin layer of GO and (ii) an rGO surface with a low reduction level demonstrated a viability and proliferation rate comparable to those estimated under standard culture conditions. Interestingly, cell culture on a highly reduced GO substrate resulted in a decreased hUC-MSCs proliferation rate and induced cell apoptosis. Moreover, our analysis demonstrated that hUC-MSCs cultured on all the tested GO and rGO scaffolds showed no alterations of their typical mesenchymal phenotype, regardless of the reduction level and size of the GO flakes. Thus, GO scaffolds and rGO scaffolds with a low reduction level exhibit potential applicability as novel, safe, and biocompatible materials for utilization in regenerative medicine.
Collapse
Affiliation(s)
- Joanna Jagiełło
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | | | - Sylwia Noga
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Edyta Adamczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Monika Dźwigońska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Magdalena Kurcz
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Katarzyna Kurp
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska-Struzik
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Elżbieta Karnas
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
33
|
Graphene-Based Nanomaterials in Soil: Ecotoxicity Assessment Using Enchytraeus crypticus Reduced Full Life Cycle. NANOMATERIALS 2019; 9:nano9060858. [PMID: 31195669 PMCID: PMC6631203 DOI: 10.3390/nano9060858] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
Graphene-based nanomaterials (GBNs) possess unique physicochemical properties, allowing a wide range of applications in physical, chemical, and biomedical fields. Although GBNs are broadly used, information about their adverse effects on ecosystem health, especially in the terrestrial environment, is limited. Therefore, this study aims to assess the toxicity of two commonly used derivatives of GBNs, graphene oxide (GO) and reduced graphene oxide (rGO), in the soil invertebrate Enchytraeus crypticus using a reduced full life cycle test. At higher exposure concentrations, GO induced high mortality and severe impairment in the reproduction rate, while rGO showed little adverse effect up to 1000 mg/kg. Collectively, our body of results suggests that the degree of oxidation of GO correlates with their toxic effects on E. crypticus, which argues against generalization on GBNs ecotoxicity. Identifying the key factors affecting the toxicity of GBNs, including ecotoxicity, is urgent for the design of safe GBNs for commercial purposes.
Collapse
|
34
|
Thermal Reduction of Graphene Oxide Mitigates Its In Vivo Genotoxicity Toward Xenopus laevis Tadpoles. NANOMATERIALS 2019; 9:nano9040584. [PMID: 30970633 PMCID: PMC6523888 DOI: 10.3390/nano9040584] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The worldwide increase of graphene family materials raises the question of the potential consequences resulting from their release in the environment and future consequences on ecosystem health, especially in the aquatic environment in which they are likely to accumulate. Thus, there is a need to evaluate the biological and ecological risk but also to find innovative solutions leading to the production of safer materials. This work focuses on the evaluation of functional group-safety relationships regarding to graphene oxide (GO) in vivo genotoxic potential toward X. laevis tadpoles. For this purpose, thermal treatments in H2 atmosphere were applied to produce reduced graphene oxide (rGOs) with different surface group compositions. Analysis performed indicated that GO induced disturbances in erythrocyte cell cycle leading to accumulation of cells in G0/G1 phase. Significant genotoxicity due to oxidative stress was observed in larvae exposed to low GO concentration (0.1 mg·L−1). Reduction of GO at 200 °C and 1000 °C produced a material that was no longer genotoxic at low concentrations. X-ray photoelectron spectroscopy (XPS) analysis indicated that epoxide groups may constitute a good candidate to explain the genotoxic potential of the most oxidized form of the material. Thermal reduction of GO may constitute an appropriate “safer-by-design” strategy for the development of a safer material for environment.
Collapse
|
35
|
Kutwin M, Sawosz E, Jaworski S, Wierzbicki M, Strojny B, Grodzik M, Ewa Sosnowska M, Trzaskowski M, Chwalibog A. Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines. MATERIALS 2019; 12:ma12060909. [PMID: 30893818 PMCID: PMC6470683 DOI: 10.3390/ma12060909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Inefficient drug administration into cancer cells is related to the chemoresistance of cancer cells caused by genetic mutations including genes involved in drug transport, enzyme metabolism, and/or DNA damage repair. The objective of the present study was to evaluate the properties of platinum (NP-Pt), graphene oxide (GO), and the nanocomplex of GO functionalized with platinum nanoparticles (GO-NP-Pt) against several genetically, phenotypically, and metabolically different cancer cell lines: Colo205, HT-29, HTC-116, SW480, HepG2, MCF-7, LNCaP, and Hela B. The anticancer effects toward the cancer cell lines were evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) and bromodeoxyuridine (BrdU) assays and measurements of cell apoptosis and morphology deformations. The NP-Pt and GO could effectively be introduced to cancer cells, but more effective delivery was observed after GO-NP-Pt treatment. The delivery of the GO-NP-Pt nanocomplex significantly decreased the viability of Colo 205 and HepG2 cells, but did not increase the cytotoxicity of other investigated cancer cells. The nanocomplex GO-NP-Pt also significantly increased the apoptosis of Colo 205 and HepG2 cancer cells. The obtained results suggest that the nanocomplex GO-NP-Pt is a remarkable nanostructure that can improve the delivery of Pt nanoparticles into cancer cells and has potential anticancer applications.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Malwina Ewa Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 02-822 Warsaw, Poland.
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland.
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.
| |
Collapse
|
36
|
Jaworski S, Strojny B, Sawosz E, Wierzbicki M, Grodzik M, Kutwin M, Daniluk K, Chwalibog A. Degradation of Mitochondria and Oxidative Stress as the Main Mechanism of Toxicity of Pristine Graphene on U87 Glioblastoma Cells and Tumors and HS-5 Cells. Int J Mol Sci 2019; 20:E650. [PMID: 30717385 PMCID: PMC6386908 DOI: 10.3390/ijms20030650] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022] Open
Abstract
Due to the development of nanotechnologies, graphene and graphene-based nanomaterials have attracted immense scientific interest owing to their extraordinary properties. Graphene can be used in many fields, including biomedicine. To date, little is known about the impact graphene may have on human health in the case of intentional exposure. The present study was carried out on U87 glioma cells and non-cancer HS-5 cell lines as in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane as in vivo model, on which the effects of pristine graphene platelets (GPs) were evaluated. The investigation consisted of structural analysis of GPs using transmission electron microscopy, Fourier transmission infrared measurements, zeta potential measurements, evaluation of cell morphology, assessment of cell viability, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. The toxicity of U87 glioma tumors was evaluated by calculating the weight and volume of tumors and performing analyses of the ultrastructure, histology, and protein expression. The in vitro results indicate that GPs have dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial membrane potential. The mass and volume of tumors were reduced in vivo after injection of GPs. Additionally, the level of apoptotic and necrotic markers increased in GPs-treated tumors.
Collapse
Affiliation(s)
- Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - Karolina Daniluk
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland.
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
37
|
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Int J Mol Sci 2019; 20:E247. [PMID: 30634552 PMCID: PMC6359521 DOI: 10.3390/ijms20020247] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
Graphene and its derivatives are emerging as attractive materials for biomedical applications, including antibacterial, gene delivery, contrast imaging, and anticancer therapy applications. It is of fundamental importance to study the cytotoxicity and biocompatibility of these materials as well as how they interact with the immune system. The present study was conducted to assess the immunotoxicity of graphene oxide (GO) and vanillin-functionalized GO (V-rGO) on THP-1 cells, a human acute monocytic leukemia cell line. The synthesized GO and V-rGO were characterized by using various analytical techniques. Various concentrations of GO and V-rGO showed toxic effects on THP-1 cells such as the loss of cell viability and proliferation in a dose-dependent manner. Cytotoxicity was further demonstrated as an increased level of lactate dehydrogenase (LDH), loss of mitochondrial membrane potential (MMP), decreased level of ATP content, and cell death. Increased levels of reactive oxygen species (ROS) and lipid peroxidation caused redox imbalance in THP-1 cells, leading to increased levels of malondialdehyde (MDA) and decreased levels of anti-oxidants such as glutathione (GSH), glutathione peroxidase (GPX), super oxide dismutase (SOD), and catalase (CAT). Increased generation of ROS and reduced MMP with simultaneous increases in the expression of pro-apoptotic genes and downregulation of anti-apoptotic genes suggest that the mitochondria-mediated pathway is involved in GO and V-rGO-induced apoptosis. Apoptosis was induced consistently with the significant DNA damage caused by increased levels of 8-oxo-dG and upregulation of various key DNA-regulating genes in THP-1 cells, indicating that GO and V-rGO induce cell death through oxidative stress. As a result of these events, GO and V-rGO stimulated the secretion of various cytokines and chemokines, indicating that the graphene materials induced potent inflammatory responses to THP-1 cells. The harshness of V-rGO in all assays tested occurred because of better charge transfer, various carbon to oxygen ratios, and chemical compositions in the rGO. Overall, these findings suggest that it is essential to better understand the parameters governing GO and functionalized GO in immunotoxicity and inflammation. Rational design of safe GO-based formulations for various applications, including nanomedicine, may result in the development of risk management methods for people exposed to graphene and graphene family materials, as these nanoparticles can be used as delivery agents in various biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Szmidt M, Stankiewicz A, Urbańska K, Jaworski S, Kutwin M, Wierzbicki M, Grodzik M, Burzyńska B, Góra M, Chwalibog A, Sawosz E. Graphene oxide down-regulates genes of the oxidative phosphorylation complexes in a glioblastoma. BMC Mol Biol 2019; 20:2. [PMID: 30602369 PMCID: PMC6317254 DOI: 10.1186/s12867-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recently different forms of nanographene were proposed as the material with high anticancer potential. However, the mechanism of the suppressive activity of the graphene on cancer development remains unclear. We examined the effect of oxygenated, reduced and pristine graphene on the gene expression in glioblastoma U87 cell line. RESULTS Conducting microarrays and RT-qPCR analysis we explored that graphene oxide (rather than reduced graphene oxide and pristine graphene) down-regulates the mRNA expression of mitochondrial oxidative phosphorylation (OXPHOS) nuclear genes of complexes I, III, IV and V. The presented results provide first evidence for the hypothesis that the suppressed growth of GBM can be the consequence of down-regulation of OXPHOS protein expression and decreased ATP level. CONCLUSIONS We suggest that changes in the expression of OXPHOS genes identified in our study may mediate the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells. However, further investigations with different cell lines, regarding expression, regulation and activity of OXPHOS genes identified in our study is necessary to elucidate the mechanism mediating the anti-proliferative and anti-migratory effects of graphene oxide in glioblastoma cells.
Collapse
Affiliation(s)
- Maciej Szmidt
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Kaja Urbańska
- Department of Morphological Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Beata Burzyńska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Monika Góra
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvje 3, 1870 Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
39
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
40
|
Xu L, Dai Y, Wang Z, Zhao J, Li F, White JC, Xing B. Graphene quantum dots in alveolar macrophage: uptake-exocytosis, accumulation in nuclei, nuclear responses and DNA cleavage. Part Fibre Toxicol 2018; 15:45. [PMID: 30424790 PMCID: PMC6234698 DOI: 10.1186/s12989-018-0279-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Given the tremendous potential for graphene quantum dots (QDs) in biomedical applications, a thorough understanding of the interaction of these materials with macrophages is essential because macrophages are one of the most important barriers against exogenous particles. Although the cytotoxicity and cellular uptake of graphene QDs were reported in previous studies, the interaction between nuclei and the internalized graphene QDs is not well understood. We thus systematically studied the nuclear uptake and related nuclear response associated with aminated graphene QDs (AG-QDs) exposure. RESULTS AG-QDs showed modest 24-h inhibition to rat alveolar macrophages (NR8383), with a minimum inhibitory concentration (MIC) of 200 μg/mL. Early apoptosis was significantly increased by AG-QDs (100 and 200 μg/mL) exposure and played a major role in cell death. The internalization of AG-QDs was mainly via energy-dependent endocytosis, phagocytosis and caveolae-mediated endocytosis. After a 48-h clearance period, more than half of the internalized AG-QDs remained in the cellular cytoplasm and nucleus. Moreover, AG-QDs were effectively accumulated in nucleus and were likely regulated by two nuclear pore complexes genes (Kapβ2 and Nup98). AG-QDs were shown to alter the morphology, area, viability and nuclear components of exposed cells. Significant cleavage and cross-linking of DNA chains after AG-QDs exposure were confirmed by atomic force microscopy investigation. Molecular docking simulations showed that H-bonding and π-π stacking were the dominant forces mediating the interactions between AG-QDs and DNA, and were the important mechanisms resulting in DNA chain cleavage. In addition, the generation of reactive oxygen species (ROS) (e.g., •OH), and the up-regulation of caspase genes also contributed to DNA cleavage. CONCLUSIONS AG-QDs were internalized by macrophages and accumulated in nuclei, which further resulted in nuclear damage and DNA cleavage. It is demonstrated that oxidative damage, direct contact via H-bonding and π-π stacking, and the up-regulation of caspase genes are the primary mechanisms for the observed DNA cleavage by AG-QDs.
Collapse
Affiliation(s)
- Lina Xu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100 China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100 China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Fei Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003 China
| | - Jason C. White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504 USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
41
|
Reduced graphene oxide triggered epithelial-mesenchymal transition in A549 cells. Sci Rep 2018; 8:15188. [PMID: 30315228 PMCID: PMC6185964 DOI: 10.1038/s41598-018-33414-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Graphene and its derivatives have exhibited wide potential applications in electronics, structural engineering and medicine. However, over utilization and untreated discharge may cause its distribution into environmental as well as biological chain, which raised the concerns of potential health risk as a potential hazard. Accumulating evidence has demonstrated that graphene derivatives induce lung fibrosis in vivo, so overall goal of this study was to explore the molecular mechanisms underlying the pulmonary fibrotic responses of reduced graphene oxide (rGO), using in vitro assays. Epithelial-mesenchymal transition (EMT) has profound effect on development of pulmonary fibrosis. Herein, we evaluated the EMT effect of rGO samples on A549 cells. Firstly, rGO penetrated through the A549 cells membrane into the cytosol by endocytosis and located in late endosome and/or lysosomes observed via transmission electron microscopy (TEM), and were well tolerant by cells. Secondly, rGO promoted the cell migration and invasion capacities at lower doses (below 10 μg/ml), but significantly inhibited the capacities at 20 μg/ml. Moreover, rGO-induced EMT were evidenced by decreased expression of epithelial marker like E-cadherin, β-catenin, Smad4 and increased expression of mesenchymal markers like Vimentin, VEGF-B, TWIST1. Based on our findings, it is supposed that rGO can effectively induce EMT through altering epithelial–mesenchymal transition markers in A549 cells.
Collapse
|
42
|
Dasari Shareena TP, McShan D, Dasmahapatra AK, Tchounwou PB. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. NANO-MICRO LETTERS 2018; 10:53. [PMID: 30079344 PMCID: PMC6075845 DOI: 10.1007/s40820-018-0206-4] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/22/2018] [Indexed: 05/18/2023]
Abstract
Graphene-based nanomaterials (GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing: (1) the history, synthesis, structural properties and recent developments of GBNs for biomedical applications; (2) GBNs uses as therapeutics, drug/gene delivery and antibacterial materials; (3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and (4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs.
Collapse
Affiliation(s)
| | - Danielle McShan
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
43
|
Park CM, Wang D, Heo J, Her N, Su C. Aggregation of reduced graphene oxide and its nanohybrids with magnetite and elemental silver under environmentally relevant conditions. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:93. [PMID: 31595146 PMCID: PMC6781226 DOI: 10.1007/s11051-018-4202-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/20/2018] [Indexed: 05/14/2023]
Abstract
The aggregation and long-term (25 d) sedimentation behaviors of reduced graphene oxide (RGO) and its three successively self-assembled nanohybrids with magnetite (Fe3O4) and zerovalent silver (Ag0) nanoparticles have been investigated. The aggregation behaviors of the nanomaterials in NaCl and CaCl2 were found to be in good agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO)-type interactions and the Schulze-Hardy rule. The colloidal stability decreased with the increasing ratios of the edge-based functional groups (COO- and C=O) to the total oxygen-containing functional groups decorated on the basal planes (C-O) and edges of RGO, as quantified by X-ray photoelectron spectroscopy analysis. In the presence of natural organic matter (NOM), the aggregation of RGO and its nanohybrids was greatly inhibited as a result of the enhanced electrosteric repulsions arising from the adsorbed NOM macromolecules. The long-term sedimentation kinetics results showed that the RGO nanohybrids were less stable in synthetic groundwater containing higher electrolyte concentrations, which was likely because of the greater charge screening or neutralization effect imparted by higher monovalent and divalent electrolyte concentrations. Our findings have important implications for evaluating the environmental impact and toxicity of the emerging class of multifunctional nanohybrids whose environmental behaviors are currently largely unknown.
Collapse
Affiliation(s)
- Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
- National Research Council Research Associate at the United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Dengjun Wang
- National Research Council Research Associate at the United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Jiyong Heo
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk 38900, South Korea
| | - Namguk Her
- Department of Civil and Environmental Engineering, Korea Army Academy at Youngcheon, 495 Hogook-ro, Gokyungmeon, Youngcheon, Gyeongbuk 38900, South Korea
| | - Chunming Su
- Groundwater, Watershed and Ecosystem Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
44
|
Wierzbicki M, Jaworski S, Kutwin M, Grodzik M, Strojny B, Kurantowicz N, Zdunek K, Chodun R, Chwalibog A, Sawosz E. Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion. Int J Nanomedicine 2017; 12:7241-7254. [PMID: 29042773 PMCID: PMC5634373 DOI: 10.2147/ijn.s146193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The highly invasive nature of glioblastoma is one of the most significant problems regarding the treatment of this tumor. Diamond nanoparticles (ND), graphite nanoparticles (NG), and graphene oxide nanoplatelets (nGO) have been explored for their biomedical applications, especially for drug delivery. The objective of this research was to assess changes in the adhesion, migration, and invasiveness of two glioblastoma cell lines, U87 and U118, after ND, NG, and nGO treatment. All treatments affected the cell surface structure, adhesion-dependent EGFR/AKT/mTOR, and β-catenin signaling pathways, decreasing the migration and invasiveness of both glioblastoma cell lines. The examined nanoparticles did not show strong toxicity but effectively deregulated cell migration. ND was effectively taken up by cells, whereas nGO and NG strongly interacted with the cell surface. These results indicate that nanoparticles could be used in biomedical applications as a low toxicity active compound for glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Science
| | | | - Krzysztof Zdunek
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Rafał Chodun
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Science
| |
Collapse
|
45
|
Ou L, Lin S, Song B, Liu J, Lai R, Shao L. The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine 2017; 12:6633-6646. [PMID: 28924347 PMCID: PMC5595361 DOI: 10.2147/ijn.s140526] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphene-based materials (GBMs) are widely used in many fields, including biomedicine. To date, much attention had been paid to the potential unexpected toxic effects of GBMs. Here, we review the recent literature regarding the impact of GBMs on programmed cell death (PCD). Apoptosis, autophagy, and programmed necrosis are three major PCDs. Mechanistic studies demonstrated that the mitochondrial pathways and MAPKs (JNK, ERK, and p38)- and TGF-β-related signaling pathways are implicated in GBMs-induced apoptosis. Autophagy, unlike apoptosis and necroptosis which are already clear cell death types, plays a vital pro-survival role in cell homeostasis, so its role in cell death should be carefully considered. However, GBMs always induce unrestrained autophagy accelerating cell death. GBMs trigger autophagy through inducing autophagosome accumulation and lysosome impairment. Mitochondrial dysfunction, ER stress, TLRs signaling pathways, and p38 MAPK and NF-κB pathways participate in GBMs-induced autophagy. Programmed necrosis can be activated by RIP kinases, PARP, and TLR-4 signaling in macrophages after GBMs exposure. Though apoptosis, autophagy, and necroptosis are distinguished by some characteristics, their numerous signaling pathways comprise an interconnected network and correlate with each other, such as the TLRs, p53 signaling pathways, and the Beclin-1 and Bcl-2 interaction. A better understanding of the mechanisms of PCD induced by GBMs may allow for a thorough study of the toxicology of GBMs and a more precise determination of the consequences of human exposure to GBMs. These determinations will also benefit safety assessments of the biomedical and therapeutic applications of GBMs.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Shaoqiang Lin
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Bin Song
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Renfa Lai
- Department of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
46
|
Jaworski S, Biniecka P, Bugajska Ż, Daniluk K, Dyjak S, Strojny B, Kutwin M, Wierzbicki M, Grodzik M, Chwalibog A. Analysis of the cytotoxicity of hierarchical nanoporous graphenic carbon against human glioblastoma grade IV cells. Int J Nanomedicine 2017; 12:3839-3849. [PMID: 28572728 PMCID: PMC5441660 DOI: 10.2147/ijn.s135932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A newly produced hierarchical, nanoporous carbon (HNC) material is studied for the first time in a biological model. The material consists of uniform particles and is characterized by a mean diameter <150 nm, a high specific surface area of 1,000 m2/g, well-developed porosity, and high electrical conductivity. These unique properties and ability to transfer charge create a possibility of employing HNC as a moderator of tumor cell growth. As the charge of HNC may interfere with cell membranes by adhesion and by bonding with cell receptors, it may block the supply of nutrients. The interactions of HNC with the U87 cells can also lead to the excessive generation of reactive oxygen species (ROS) and activate apoptotic mechanisms in cancer cells. The investigation was performed using U87 human glioblastoma and PCS-201-010 normal fibroblast cell lines, where cell morphology and ultrastructure, viability, ROS production, type of cell death, mitochondrial transmembrane potential, and the expression of genes engaged in apoptosis pathways are studied. The results demonstrate that cytotoxicity of HNC particles increases with concentration from 5 to 100 µg/mL by activation of apoptosis through the mitochondrial pathway, without inducing necrosis. Our research indicates the potential applicability of HNC in cancer therapy.
Collapse
Affiliation(s)
| | - Paulina Biniecka
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Żaneta Bugajska
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Karolina Daniluk
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Sławomir Dyjak
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Warsaw, Poland
| | - Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Science
| | | | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Science
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Kurantowicz N, Sawosz E, Halik G, Strojny B, Hotowy A, Grodzik M, Piast R, Pasanphan W, Chwalibog A. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int J Nanomedicine 2017; 12:2887-2898. [PMID: 28435265 PMCID: PMC5391155 DOI: 10.2147/ijn.s131960] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the present study, the toxicity of six different types of carbon nanoparticles (CNPs) was investigated using a chicken-embryo model. Fertilized chicken eggs were divided into the following treatment groups: placebo, diamond NPs, graphite NPs, pristine graphene, small graphene oxide, large graphene oxide, and reduced graphene oxide. Experimental solutions at a concentration of 500 μg/mL were administrated into the egg albumin. Gross pathology and the rate of survival were examined after 5, 10, 15, and 20 days of incubation. After 20 days of incubation, blood samples were collected and the weight of the body and organs measured. The relative ratio of embryo survival decreased after treatment all treatments except diamond NPs. There was no correlation between the rate of survival and the ζ-potential or the surface charge of the CNPs in solution. Body and organ weight, red blood-cell morphology, blood serum biochemical parameters, and oxidative damage in the liver did not differ among the groups. These results indicate that CNPs can remain in blood circulation without any major side effects, suggesting their potential applicability as vehicles for drug delivery or active compounds per se. However, there is a need for further investigation of their properties, which vary depending on production methods and surface functionalization.
Collapse
Affiliation(s)
- Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Gabriela Halik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Anna Hotowy
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences
| | | | - Wanvimol Pasanphan
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Pelin M, Fusco L, León V, Martín C, Criado A, Sosa S, Vázquez E, Tubaro A, Prato M. Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 2017; 7:40572. [PMID: 28079192 PMCID: PMC5227695 DOI: 10.1038/srep40572] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Impressive properties make graphene-based materials (GBMs) promising tools for nanoelectronics and biomedicine. However, safety concerns need to be cleared before mass production of GBMs starts. As skin, together with lungs, displays the highest exposure to GBMs, it is of fundamental importance to understand what happens when GBMs get in contact with skin cells. The present study was carried out on HaCaT keratinocytes, an in vitro model of skin toxicity, on which the effects of four GBMs were evaluated: a few layer graphene, prepared by ball-milling treatment (FLG), and three samples of graphene oxide (GOs, a research-grade GO1, and two commercial GOs, GO2 and GO3). Even though no significant effects were observed after 24 h, after 72 h the less oxidized compound (FLG) was the less cytotoxic, inducing mitochondrial and plasma-membrane damages with EC50s of 62.8 μg/mL (WST-8 assay) and 45.5 μg/mL (propidium iodide uptake), respectively. By contrast, the largest and most oxidized compound, GO3, was the most cytotoxic, inducing mitochondrial and plasma-membrane damages with EC50s of 5.4 and 2.9 μg/mL, respectively. These results suggest that only high concentrations and long exposure times to FLG and GOs could impair mitochondrial activity associated with plasma membrane damage, suggesting low cytotoxic effects at the skin level.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.,Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Verónica León
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Cristina Martín
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Alejandro Criado
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.,CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San Sebastián (Guipúzcoa), Spain
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Ester Vázquez
- Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas-IRICA, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy.,CIC BiomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San Sebastián (Guipúzcoa), Spain.,Basque Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
49
|
Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13:57. [PMID: 27799056 PMCID: PMC5088662 DOI: 10.1186/s12989-016-0168-y] [Citation(s) in RCA: 401] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell models by following with different administration routes and penetrating through physiological barriers, subsequently being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and facilitate their wide application.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Song
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Deng
- The General Hospital of People’s Liberation Army, Beijing, China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
50
|
Kumar S, Chatterjee K. Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26431-26457. [PMID: 27662057 DOI: 10.1021/acsami.6b09801] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent research suggests that graphene holds great potential in the biomedical field because of its extraordinary properties. Whereas initial attempts focused on the use of suspended graphene for drug delivery and bioimaging, more recent work has demonstrated its advantages for preparing substrates for tissue engineering and biomedical devices and products. Cells are known to interact with and respond to nanoparticles differently when presented in the form of a substrate than in the form of a suspension. In tissue engineering, a stable and supportive substrate or scaffold is needed to provide mechanical support, chemical stimuli, and biological signals to cells. This review compiles recent advances of the impact of both graphene and graphene-derived particles to prepare supporting substrates for tissue regeneration and devices as well as the associated cell response to multifunctional graphene substrates. We discuss the interaction of cells with pristine graphene, graphene oxide, functionalized graphene, and hybrid graphene particles in the form of coatings and composites. Such materials show excellent biological outcomes in vitro, in particular, for orthopedic and neural tissue engineering applications. Preliminary evaluation of these graphene-based materials in vivo reinforces their promise for tissue regeneration and implants. Although the reported findings of studies on graphene-based substrates are promising, several questions and concerns associated with their in vivo use persist. Possible strategies to examine these issues are presented.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|