1
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Gao W, Li JJ, Shi J, Lan H, Guo Y, Fu D. Ångstrom-scale gold particles loaded with alendronate via alpha-lipoic acid alleviate bone loss in osteoporotic mice. J Nanobiotechnology 2024; 22:212. [PMID: 38689294 PMCID: PMC11059737 DOI: 10.1186/s12951-024-02466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Osteoporosis is a highly prevalent metabolic disease characterized by low systemic bone mass and deterioration of bone microarchitecture, resulting in reduced bone strength and increased fracture risk. Current treatment options for osteoporosis are limited by factors such as efficacy, cost, availability, side effects, and acceptability to patients. Gold nanoparticles show promise as an emerging osteoporosis therapy due to their osteogenic effects and ability to allow therapeutic delivery but have inherent constraints, such as low specificity and the potential for heavy metal accumulation in the body. This study reports the synthesis of ultrasmall gold particles almost reaching the Ångstrom (Ång) dimension. The antioxidant alpha-lipoic acid (LA) is used as a dispersant and stabilizer to coat Ångstrom-scale gold particles (AuÅPs). Alendronate (AL), an amino-bisphosphonate commonly used in drug therapy for osteoporosis, is conjugated through LA to the surface of AuÅPs, allowing targeted delivery to bone and enhancing antiresorptive therapeutic effects. In this study, alendronate-loaded Ångstrom-scale gold particles (AuÅPs-AL) were used for the first time to promote osteogenesis and alleviate bone loss through regulation of the WNT signaling pathway, as shown through in vitro tests. The in vivo therapeutic effects of AuÅPs-AL were demonstrated in an established osteoporosis mouse model. The results of Micro-computed Tomography, histology, and tartrate-resistant acid phosphatase staining indicated that AuÅPs-AL significantly improved bone density and prevented bone loss, with no evidence of nanoparticle-associated toxicity. These findings suggest the possible future application of AuÅPs-AL in osteoporosis therapy and point to the potential of developing new approaches for treating metabolic bone diseases using Ångstrom-scale gold particles.
Collapse
Affiliation(s)
- Weihang Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Hongbing Lan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Dehao Fu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China.
| |
Collapse
|
3
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
4
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Gao W, Liang C, Zhao K, Hou M, Wen Y. Multifunctional gold nanoparticles for osteoporosis: synthesis, mechanism and therapeutic applications. J Transl Med 2023; 21:889. [PMID: 38062495 PMCID: PMC10702032 DOI: 10.1186/s12967-023-04594-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihang Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhao
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Hou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Qi P, Ning Z, Zhang X. Synergistic effects of 3D chitosan-based hybrid scaffolds and mesenchymal stem cells in orthopaedic tissue engineering. IET Nanobiotechnol 2023; 17:41-48. [PMID: 36708277 PMCID: PMC10116017 DOI: 10.1049/nbt2.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
Restoration of damaged bone and cartilage tissue with biomaterial scaffolds is an area of interest in orthopaedics. Chitosan is among the low-cost biomaterials used as scaffolds with considerable biocompability to almost every human tissue. Considerable osteoconductivity, porosity, and appropriate pore size distribution have made chitosan an appropriate scaffold for loading of stem cells and a good homing place for differentiation of stem cells to bone tissue. Moreover, the similarity of chitosan to glycosaminoglycans and its potential to be used as soft gels, which could be lasting more than 1 week in mobile chondral defects, has made chitosan a polymer of interest in repairing bone and cartilage defects. Different types of scaffolds using chitosan in combination with mesenchymal stem cells (MSCs) are discussed. MSCs are widely used in regenerative medicine because of their regenerative ability, and recent line evidence reviewed demonstrated that the combination of MSCs with a combination of chitosan with different materials, including collagen type 1, hyaluronic acid, Poly(L-lacticacid)/gelatin/β-tricalcium phosphate, gamma-poly[glutamic acid] polyelectrolyte/titanium alloy, modified Poly(L-Lactide-co-Epsilon-Caprolactone), calcium phosphate, β-glycerophosphate hydrogel/calcium phosphate cement (CPC), and CPC-Chitosan-RGD, can increase the efficacy of using MSCs, and chitosan-based stem cell delivery can be a promising method in restoration of damaged bone and cartilage tissue.
Collapse
Affiliation(s)
- Ping Qi
- Department of General Practice, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhaohui Ning
- Department of Traditional Chinese Medicine, Taian Central Hospital, Taian, Shandong, China
| | - Xiuju Zhang
- Department of General Practice, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
7
|
Perikala M, Valoor R, Bhaskar N, Bhardwaj A, Basu B. One-Step Colloidal Synthesis of Non-Toxic Electroactive Carbon Dots with a Better Threshold Cytotoxicity and Cytocompatibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:281-291. [PMID: 36576301 DOI: 10.1021/acsami.2c16046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs), because of their characteristic size (<10 nm) and highly fluorescent nature, can be internalized in biological cells or can be tagged to the key components of a living system. While these attributes can be potentially exploited for biomedical applications, the toxicity of CDs remains an important issue to be addressed. Both the synthesis approach and morphological attributes critically determine the dose-dependent toxicity and cytocompatibility of CDs. Against this perspective, we report herein a one-step colloidal synthesis of CDs using different reaction solvents that lead to the formation of three types of CDs (type I, type II, and type III CDs). The cytocompatibility and cellular uptake of CDs in human mesenchymal stem cells (hMSCs) are dependent on the nature of functionalization and concomitantly on the type of precursors. In particular, type I CDs are synthesized using citric acid, hexadecylamine, and octadecene that are immiscible in culture media. The type II CDs synthesized using citric acid and octadecene emit green fluorescence at a 488 nm excitation and were found to be agglomerated when internalized in hMSCs, whereas the type III CDs, synthesized using citric acid and deionized water, exhibit an agglomeration-free behavior. Further, type III CDs show a wide particle distribution, wide emission bandwidth range of 280-700 nm, threshold toxicity of 1 mg/mL, and good cytocompatibility with hMSCs, much better than those in the published reports. When benchmarked against commercial graphene quantum dots, the as-synthesized type III CDs have better electrical conductivity and cytocompatibility at a given dosage. Thus, the electroactive nature of synthesized type III CDs along with their inherent fluorescent property and less cytotoxicity would enable their potential applications in bio-imaging, directional lineage commitment, and cell-based therapy.
Collapse
Affiliation(s)
- Manasa Perikala
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore560012, India
| | - Remya Valoor
- Laboratory for Biomaterials, Material Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Nitu Bhaskar
- Laboratory for Biomaterials, Material Research Centre, Indian Institute of Science, Bangalore560012, India
| | - Asha Bhardwaj
- Instrumentation and Applied Physics, Indian Institute of Science, Bangalore560012, India
| | - B Basu
- Laboratory for Biomaterials, Material Research Centre, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
8
|
Anwar I, Ashfaq UA. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Crit Rev Ther Drug Carrier Syst 2023; 40:89-116. [PMID: 37585310 DOI: 10.1615/critrevtherdrugcarriersyst.2023042400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The liver is one of the crucial organs of the body that performs hundreds of chemical reactions needed by the body to survive. It is also the largest gland of the body. The liver has multiple functions, including the synthesis of chemicals, metabolism of nutrients, and removal of toxins. It also acts as a storage unit. The liver has a unique ability to regenerate itself, but it can lead to permanent damage if the injury is beyond recovery. The only possible treatment of severe liver damage is liver transplant which is a costly procedure and has several other drawbacks. Therefore, attention has been shifted towards the use of stem cells that have shown the ability to differentiate into hepatocytes. Among the numerous kinds of stem cells (SCs), the mesenchymal stem cells (MSCs) are the most famous. Various studies suggest that an MSC transplant can repair liver function, improve the signs and symptoms, and increase the chances of survival. This review discusses the impact of combining stem cell therapy with nanotechnology. By integrating stem cell science and nanotechnology, the information about stem cell differentiation and regulation will increase, resulting in a better comprehension of stem cell-based treatment strategies. The augmentation of SCs with nanoparticles has been shown to boost the effect of stem cell-based therapy. Also, the function of green nanoparticles in liver therapies is discussed.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Kim H, Kim S, Cho B, Shin J, Kim J. APOE ε4-dependent effects on the early amyloid pathology in induced neurons of patients with Alzheimer's disease. Transl Neurodegener 2022; 11:45. [PMID: 36284363 PMCID: PMC9594913 DOI: 10.1186/s40035-022-00319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background The ε4 allele of apolipoprotein E (APOE ε4) is the strongest known genetic risk factor for late-onset Alzheimer’s disease (AD), associated with amyloid pathogenesis. However, it is not clear how APOE ε4 accelerates amyloid-beta (Aβ) deposition during the seeding stage of amyloid development in AD patient neurons. Methods AD patient induced neurons (iNs) with an APOE ε4 inducible system were prepared from skin fibroblasts of AD patients. Transcriptome analysis was performed using RNA isolated from the AD patient iNs expressing APOE ε4 at amyloid-seeding and amyloid-aggregation stages. Knockdown of IGFBP3 was applied in the iNs to investigate the role of IGFBP3 in the APOE ε4-mediated amyloidosis. Results We optimized amyloid seeding stage in the iNs of AD patients that transiently expressed APOE ε4. Remarkably, we demonstrated that Aβ pathology was aggravated by the induction of APOE ε4 gene expression at the amyloid early-seeding stage in the iNs of AD patients. Moreover, transcriptome analysis in the early-seeding stage revealed that IGFBP3 was functionally important in the molecular pathology of APOE ε4-associated AD. Conclusions Our findings suggest that the presence of APOE ε4 at the early Aβ-seeding stage in patient iNs is critical for aggravation of sporadic AD pathology. These results provide insights into the importance of APOE ε4 expression for the progression and pathogenesis of sporadic AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00319-9.
Collapse
Affiliation(s)
- Hongwon Kim
- grid.255168.d0000 0001 0671 5021Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea ,grid.255168.d0000 0001 0671 5021Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Siyoung Kim
- grid.255168.d0000 0001 0671 5021Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Byounggook Cho
- grid.255168.d0000 0001 0671 5021Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Jaein Shin
- grid.255168.d0000 0001 0671 5021Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Jongpil Kim
- grid.255168.d0000 0001 0671 5021Department of Biomedical Engineering, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea ,grid.255168.d0000 0001 0671 5021Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-Gu, Seoul, 04620 Republic of Korea
| |
Collapse
|
10
|
Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022; 14:pharmaceutics14102182. [PMID: 36297620 PMCID: PMC9609291 DOI: 10.3390/pharmaceutics14102182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.
Collapse
|
11
|
Kim SK, Murugan SS, Dalavi PA, Gupta S, Anil S, Seong GH, Venkatesan J. Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1051-1067. [PMID: 36247529 PMCID: PMC9531556 DOI: 10.3762/bjnano.13.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic materials for better bone graft substitutes are a thrust area of research among researchers and clinicians. Autografts, allografts, and synthetic grafts are often utilized to repair and regenerate bone defects. Autografts are still considered the gold-standard method/material to treat bone-related issues with satisfactory outcomes. It is important that the material used for bone tissue repair is simultaneously osteoconductive, osteoinductive, and osteogenic. To overcome this problem, researchers have tried several ways to develop different materials using chitosan-based nanocomposites of silver, copper, gold, zinc oxide, titanium oxide, carbon nanotubes, graphene oxide, and biosilica. The combination of materials helps in the expression of ideal bone formation genes of alkaline phosphatase, bone morphogenic protein, runt-related transcription factor-2, bone sialoprotein, and osteocalcin. In vitro and in vivo studies highlight the scientific findings of antibacterial activity, tissue integration, stiffness, mechanical strength, and degradation behaviour of composite materials for tissue engineering applications.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Pandurang Appana Dalavi
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka 575018, India
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| |
Collapse
|
12
|
Comprehensive Analysis of Novel Genes and Pathways Associated with Osteogenic Differentiation of Adipose Stem Cells. DISEASE MARKERS 2022; 2022:4870981. [PMID: 36133435 PMCID: PMC9484926 DOI: 10.1155/2022/4870981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Background. Adipose-derived stem cells (ADSCs) are an important alternative source of mesenchymal stem cells (MSCs) and show great promise in tissue engineering and regenerative medicine applications. However, identifying the novel genes and pathways and finding the underlying mechanisms regulating ADSCs osteogenic differentiation remain urgent. Methods. We downloaded the gene expression profiles of GSE63754 and GSE37329 from the Gene Expression Omnibus (GEO) Database. We derived differentially expressed genes (DEGs) before and after ADSC osteogenic differentiation, followed by Gene Ontology (GO) functional and KEGG pathway analysis and protein-protein interaction (PPI) network analysis. 211 differentially expressed genes (142 upregulated genes and 69 downregulated genes) were aberrantly expressed. GO analysis revealed that these DEGs were associated with extracellular matrix organization, protein extracellular matrix, and semaphorin receptor binding. Conclusions. Our study provides novel genes and pathways that play important roles in regulating ADSC osteogenic differentiation, which may have potential therapeutic targets for clinic.
Collapse
|
13
|
Lee S, Shim HS, Park HJ, Chang Y, Han YE, Oh SJ, Lee W, Im H, Seol Y, Ryu H, Kang H, Lee YK, Park S, Yoo J. Elongated nanoporous Au networks improve somatic cell direct conversion into induced dopaminergic neurons for Parkinson's disease therapy. Acta Biomater 2022; 151:561-575. [PMID: 35931279 DOI: 10.1016/j.actbio.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
The efficient production of dopaminergic neurons via the direct conversion of other cell types is of interest as a potential therapeutic approach for Parkinson's disease. This study aimed to investigate the use of elongated porous gold nanorods (AuNpRs) as an enhancer of cell fate conversion. We observed that AuNpRs promoted the direct conversion of fibroblasts into dopaminergic neurons in vivo and in vitro. The extent of conversion of fibroblasts into dopaminergic neurons depended on the porosity of AuNpRs, as determined by their aspect ratio. The mechanism underlying these results involves specific AuNpR-induced transcriptional changes that altered the expression of antioxidant-related molecules. The generation of dopaminergic neurons via the direct conversion method will open a new avenue for developing a therapeutic platform for Parkinson's disease treatment. STATEMENT OF SIGNIFICANCE: In this study, we applied modified gold nanoporous materials (AuNpRs) to the direct lineage reprogramming of dopaminergic neurons. The cell reprogramming process is energy-intensive, resulting in an excess of oxidative stress. AuNpRs facilitated the direct conversion of dopaminergic neurons by ameliorating oxidative stress during the reprogramming process. We have found this mechanistic clue from high throughput studies in this research work.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeongki-do, 16419, Republic of Korea
| | - Hyun Soo Shim
- Laboratory of regenerative medicine for neurodegenerative disease, Stand Up Therapeutics, Hannamdaero 98, Seoul, 04418, Republic of Korea; Department of Molecular biology, Nuturn Science, Sinsadong 559-8, Seoul, 06037, Republic of Korea
| | - Hyeok Ju Park
- Laboratory of regenerative medicine for neurodegenerative disease, Stand Up Therapeutics, Hannamdaero 98, Seoul, 04418, Republic of Korea; Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yujung Chang
- Department of Molecular biology, Nuturn Science, Sinsadong 559-8, Seoul, 06037, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy, Woosuk University, 443, Samnye-ro, Samnye-eup, Wanju_Gun, Jeollabuk-do, 55338, Republic of Korea
| | - Hyeonjoo Im
- Laboratory of regenerative medicine for neurodegenerative disease, Stand Up Therapeutics, Hannamdaero 98, Seoul, 04418, Republic of Korea; Department of Anatomy, College of Medicine, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 20841, Republic of Korea Seoul
| | - YunHee Seol
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hoon Kang
- Laboratory of regenerative medicine for neurodegenerative disease, Stand Up Therapeutics, Hannamdaero 98, Seoul, 04418, Republic of Korea; Department of Molecular biology, Nuturn Science, Sinsadong 559-8, Seoul, 06037, Republic of Korea
| | - Yong Kyu Lee
- Database Laboratory, Department of Computer Science and Engineering, Dongguk University-Seoul, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeongki-do, 16419, Republic of Korea.
| | - Junsang Yoo
- Laboratory of regenerative medicine for neurodegenerative disease, Stand Up Therapeutics, Hannamdaero 98, Seoul, 04418, Republic of Korea; Department of Molecular biology, Nuturn Science, Sinsadong 559-8, Seoul, 06037, Republic of Korea.
| |
Collapse
|
14
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
15
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
16
|
Forskolin-Loaded Halloysite Nanotubes as Osteoconductive Additive for the Biopolymer Tissue Engineering Scaffolds. Polymers (Basel) 2021; 13:polym13223949. [PMID: 34833247 PMCID: PMC8619346 DOI: 10.3390/polym13223949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 01/22/2023] Open
Abstract
Here we report the use of forskolin-modified halloysite nanotubes (HNTs) as a dopant for biopolymer porous hydrogel scaffolds to impart osteoinductive properties. Forskolin is a labdane diterpenoid isolated from the Indian Coleus plant. This small molecule is widely used as a supplement in molecular biology for cell differentiation. It has been reported in some earlier publications that forskolin can activate osteodifferentiation process by cyclic adenosine monophosphate (c-AMP) signalling activation in stem cells. In presented study it was demonstrated that forskolin release from halloysite-doped scaffolds induced the osteodifferentiation of equine mesenchymal stem cells (MSCs) in vitro without addition of any specific growth factors. The reinforcement of mechanical properties of cells and intercellular space during the osteodifferentiation was demonstrated using atomic force microscopy (AFM). These clay-doped scaffolds may find applications to accelerate the regeneration of horse bone defects by inducing the processes of osteodifferentiation of endogenous MSCs.
Collapse
|
17
|
Zhou X, Cornel EJ, Fan Z, He S, Du J. Bone-Targeting Polymer Vesicles for Effective Therapy of Osteoporosis. NANO LETTERS 2021; 21:7998-8007. [PMID: 34529430 DOI: 10.1021/acs.nanolett.1c02150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the aging of the population, postmenopausal osteoporosis becomes increasingly widespread and severe as fractures caused by osteoporosis may lead to permanent disabilities and even death. Inspired by extracellular vesicles that participate in bone remodeling, we present a biomimicking polymer vesicle for bone-targeted β-estradiol (E2) delivery. This vesicle is self-assembled from a poly(ε-caprolactone)28-block-poly[(l-glutamic acid)7-stat-(l-glutamic acid-alendronic acid)4] (PCL28-b-P[Glu7-stat-(Glu-ADA)4]) diblock copolymer. The alendronic acid (ADA) on the coronas endows the polymer vesicles with a high bone affinity and acts synergistically with E2 to achieve an enhanced therapeutic effect. As confirmed with ovariectomized osteoporosis rat models, bone loss was significantly reversed as the recovery rates of total BMD (bone mineral density) and trabecular BMD were 70.4% and 99.3%, respectively. Overall, this work provides fresh insight into the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
18
|
Fu C, Jiang Y, Yang X, Wang Y, Ji W, Jia G. Mussel-Inspired Gold Nanoparticle and PLGA/L-Lysine-g-Graphene Oxide Composite Scaffolds for Bone Defect Repair. Int J Nanomedicine 2021; 16:6693-6718. [PMID: 34621123 PMCID: PMC8491140 DOI: 10.2147/ijn.s328390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Insufficient biological activity heavily restricts the application and development of biodegradable bone implants. Functional modification of bone implants is critical to improve osseointegration and bone regeneration. METHODS In this study, L-lysine functionalized graphene oxide (Lys-g-GO) nanoparticles and polydopamine-assisted gold nanoparticle (AuNPs-PDA) coatings were applied to improve the biological function of PLGA scaffold materials. The effects of Lys-g-GO nanoparticles and AuNPs-PDA functionalized coatings on the physicochemical properties of PLGA scaffolds were detected with scanning electron microscopy (SEM), contact angle measurement, and mechanical testing instruments. In vitro, the effects of composite scaffolds on MC3T3-E1 cell proliferation, adhesion, and osteogenic differentiation were studied. Finally, a radial defect model was used to assess the effect of composite scaffolds on bone defect healing. RESULTS The prepared AuNPs-PDA@PLGA/Lys-g-GO composite scaffolds exhibited excellent mechanical strength, hydrophilicity and antibacterial properties. In vitro, this composite scaffold can significantly improve osteoblast adhesion, proliferation, osteogenic differentiation, calcium deposition, and other cell behaviour. In vivo, this composite scaffold can significantly promote the new bone formation and collagen deposition in the radial defect site and presented good biocompatibility. CONCLUSION The combination of bioactive nanoparticles and surface coatings shows considerable potential to enhance the osseointegration of bone implants.
Collapse
Affiliation(s)
- Chuan Fu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Yikun Jiang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Wei Ji
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Guoliang Jia
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, People’s Republic of China
| |
Collapse
|
19
|
Suryani L, Foo JKR, Cardilla A, Dong Y, Muthukumaran P, Hassanbhai A, Wen F, Simon DT, Iandolo D, Yu N, Ng KW, Teoh SH. Effects of Pulsed Electromagnetic Field Intensity on Mesenchymal Stem Cells. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Luvita Suryani
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jyong Kiat Reuben Foo
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Angelysia Cardilla
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yibing Dong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Padmalosini Muthukumaran
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ammar Hassanbhai
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Donata Iandolo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- UMR5510 MATEIS, CNRS, INSA-Lyon, University of Lyon, Lyon, France
- Mines Saint-Etienne, INSERM, U1059 SAINBIOSE, Saint-Étienne, France
| | - Na Yu
- National Dental Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|
20
|
Shi Y, Han X, Pan S, Wu Y, Jiang Y, Lin J, Chen Y, Jin H. Gold Nanomaterials and Bone/Cartilage Tissue Engineering: Biomedical Applications and Molecular Mechanisms. Front Chem 2021; 9:724188. [PMID: 34307305 PMCID: PMC8299113 DOI: 10.3389/fchem.2021.724188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 01/26/2023] Open
Abstract
Recently, as our population increasingly ages with more pressure on bone and cartilage diseases, bone/cartilage tissue engineering (TE) have emerged as a potential alternative therapeutic technique accompanied by the rapid development of materials science and engineering. The key part to fulfill the goal of reconstructing impaired or damaged tissues lies in the rational design and synthesis of therapeutic agents in TE. Gold nanomaterials, especially gold nanoparticles (AuNPs), have shown the fascinating feasibility to treat a wide variety of diseases due to their excellent characteristics such as easy synthesis, controllable size, specific surface plasmon resonance and superior biocompatibility. Therefore, the comprehensive applications of gold nanomaterials in bone and cartilage TE have attracted enormous attention. This review will focus on the biomedical applications and molecular mechanism of gold nanomaterials in bone and cartilage TE. In addition, the types and cellular uptake process of gold nanomaterials are highlighted. Finally, the current challenges and future directions are indicated.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuyao Han
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuang Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuhan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinghao Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yihuang Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep 2021; 11:13877. [PMID: 34230542 PMCID: PMC8260712 DOI: 10.1038/s41598-021-93367-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The main aim of the present study was to fabricate 3D scaffold based on poly (L-lactic acid) (PLLA)/Polycaprolactone (PCL) matrix polymer containing gelatin nanofibers (GNFs) and gold nanoparticles (AuNPs) as the scaffold for bone tissue engineering application. AuNPs were synthesized via the Turkevich method as the osteogenic factor. GNFs were fabricated by the electrospinning methods and implemented into the scaffold as the extracellular matrix mimicry structure. The prepared AuNPs and Gel nanofibers were composited by PLLA/PCL matrix polymer and converted to a 3D scaffold using thermal-induced phase separation. SEM imaging illustrated the scaffold's porous structure with a porosity range of 80-90% and a pore size range of 80 to 130 µm. The in vitro studies showed that the highest concentration of AuNPs (160 ppm) induced toxicity and 80 ppm AuNPs exhibited the highest cell proliferation. The in vivo studies showed that PCL/PLLA/Gel/80ppmAuNPs induced the highest neo-bone formation, osteocyte in lacuna woven bone formation, and angiogenesis in the defect site. In conclusion, this study showed that the prepared scaffold exhibited suitable properties for bone tissue engineering in terms of porosity, pore size, mechanical properties, biocompatibility, and osteoconduction activities.
Collapse
Affiliation(s)
- Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Khastar
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Majid Salehi
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
22
|
Zhang Y, Wang P, Wang Y, Li J, Qiao D, Chen R, Yang W, Yan F. Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. Int J Nanomedicine 2021; 16:61-73. [PMID: 33442250 PMCID: PMC7797360 DOI: 10.2147/ijn.s282246] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Cell sheet technology (CST) is advantageous for repairing alveolar bone defects in clinical situations, and osteogenic induction before implantation may result in enhanced bone regeneration. Herein, we observed the effect of gold nanoparticles (AuNPs) on osteogenic differentiation of periodontal ligament stem cell (PDLSC) sheets and explored their potential mechanism of action. METHODS PDLSCs were cultured in cell sheet induction medium to obtain cell sheets. PDLSC sheets were treated with or without AuNPs. Alkaline phosphatase, alizarin red S, von Kossa, and immunofluorescence staining were used to observe the effects of AuNPs on the osteogenic differentiation of PDLSC sheets. Western blotting was performed to evaluate the osteogenic effects and autophagy activity. The cell sheets were transplanted into the dorsa of nude mice, and bone regeneration was analyzed by micro-CT and histological staining. RESULTS AuNPs could promote the osteogenic differentiation of PDLSC sheets by upregulating bone-related protein expression and mineralization. The 45-nm AuNPs were more effective than 13-nm AuNPs. Additional analysis demonstrated that their ability to promote differentiation could depend on activation of the autophagy pathway through upregulation of microtubule-associated protein light chain 3 and downregulation of sequestosome 1/p62. Furthermore, AuNPs significantly promoted the bone regeneration of PDLSC sheets in ectopic models. CONCLUSION AuNPs enhance the osteogenesis of PDLSC sheets by activating autophagy, and 45-nm AuNPs were more effective than 13-nm AuNPs. This study may provide an AuNP-based pretreatment strategy for improving the application of CST in bone repair and regeneration.
Collapse
Affiliation(s)
- Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Yuxian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Dan Qiao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Rixin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
23
|
Gambelunghe A, Giovagnoli S, Di Michele A, Boncompagni S, Dell’Omo M, Leopold K, Iavicoli I, Talesa VN, Antognelli C. Redox-Sensitive Glyoxalase 1 Up-Regulation Is Crucial for Protecting Human Lung Cells from Gold Nanoparticles Toxicity. Antioxidants (Basel) 2020; 9:antiox9080697. [PMID: 32756399 PMCID: PMC7463694 DOI: 10.3390/antiox9080697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are considered nontoxic upon acute exposure, at least when they are equal or above 5 nm size. However, the safeguard mechanisms contributing to maintain cell viability are scarcely explored so far. Here, we investigated the cyto-protective role of Glyoxalase 1 (Glo1), a key enzyme involved in the control of deleterious dicarbonyl stress, in two human cell types of the respiratory tract, after an acute exposure to AuNPs with a main size of 5 nm. We found that the redox sensitive Nrf-2-mediated up-regulation of Glo1 was crucial to protect cells from AuNPs-induced toxicity. However, cells challenged with a pro-inflammatory/pro-oxidative insult become susceptible to the pro-apoptotic effect of AuNPs. Notably, the surviving cells undergo epigenetic changes associated with the onset of a partial epithelial to mesenchymal transition (EMT) process (metastable phenotype), driven by the increase in dicarbonyl stress, consequent to Glo1 inactivation. As a physiological respiratory epithelium is required for the normal respiratory function, the knowledge of the protective mechanisms avoiding or (when challenged) promoting its modification/damage might provide insight into the genesis, and, most importantly, prevention of potential health effects that might occur in subjects exposed to AuNPs, through targeted surveillance programs, at least under specific influencing factors.
Collapse
Affiliation(s)
- Angela Gambelunghe
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | | | - Simona Boncompagni
- Department of Neuroscience, University G. d’ Annunzio of Chieti, Imaging and Clinical Sciences (DNICS) & Center for Advanced Studies and Technologies (CAST), 66100 Chieti, Italy;
| | - Marco Dell’Omo
- Department of Medicine, University of Perugia, 06123 Perugia, Italy; (A.G.); (M.D.)
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, 89081 Ulm, Germany;
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | | | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06123 Perugia, Italy;
- Correspondence: ; Tel.: +39-075-585-8354
| |
Collapse
|
24
|
Li K, Zhuang P, Tao B, Li D, Xing X, Mei X. Ultra-Small Lysozyme-Protected Gold Nanoclusters as Nanomedicines Inducing Osteogenic Differentiation. Int J Nanomedicine 2020; 15:4705-4716. [PMID: 32636626 PMCID: PMC7335297 DOI: 10.2147/ijn.s241163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Ultra-small gold nanoclusters (AuNCs), as emerging fluorescent nanomaterials with excellent biocompatibility, have been widely investigated for in vivo biomedical applications. However, their effects in guiding osteogenic differentiation have not been investigated, which are important for osteoporosis therapy and bone regeneration. Herein, for the first time, lysozyme-protected AuNCs (Lys-AuNCs) are used to stimulate osteogenic differentiation, which have the potential for the treatment of bone disease. METHODS Proliferation of MC3T3E-1 is important for osteogenic differentiation. First, the proliferation rate of MC3T3E-1 was studied by Cell Counting Kit-8 (CCK8) assays. Signaling pathways of PI3K/Akt play central roles in controlling proliferation throughout the body. The expression of PI3K/Akt was investigated in the presence of lysozyme, and lysozyme-protected AuNCs (Lys-AuNCs) by Western blot (WB) and intracellular cell imaging to evacuate the osteogenic differentiation mechanisms. Moreover, the formation of osteoclasts (OC) plays a negative role in the differentiation of osteoblasts. Nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) signaling pathways are used to understand the negative influence of the osteogenic differentiation by the investigation of Raw 264.7 cell line. Raw 264.7 (murine macrophage-like) cells and NIH/3T3 (mouse fibroblast) cells were treated with tyloxapol, and the cell viability was assessed. Raw 264.7 cells have also been used for in vitro studies, on understanding the osteoclast formation and function. The induced osteoclasts were identified by TRAP confocal fluorescence imaging. These key factors in osteoclast formation, such as (NFATc-1, c-Fos, V-ATPase-2 and CTSK), were investigated by Western blot. RESULTS Based on the above investigation, Lys-AuNCs were found to promote osteogenic differentiation and decrease osteoclast activity. It is noteworthy that the lysozyme (protected template), AuNPs, or the mixture of Lysozyme and AuNPs have negligible effects on osteoblastic differentiation compared to Lys-AuNCs. CONCLUSION This study opens up a novel avenue to develop a new gold nanomaterial for promoting osteogenic differentiation. The possibility of using AuNCs as nanomedicines for the treatment of osteoporosis can be expected.
Collapse
Affiliation(s)
- Kuo Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Pengfei Zhuang
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Dan Li
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Department of Basic Science, School of Pharmaceutical Science, Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xuejiao Xing
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xifan Mei
- Department of Orthopedics, School of Pharmaceutical Science, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
25
|
Bennur T, Javdekar V, Tomar GB, Zinjarde S. Gold nanoparticles biosynthesized by Nocardiopsis dassonvillei NCIM 5124 enhance osteogenesis in gingival mesenchymal stem cells. Appl Microbiol Biotechnol 2020; 104:4081-4092. [PMID: 32157422 DOI: 10.1007/s00253-020-10508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/01/2022]
Abstract
Gold nanoparticles are widely used for biomedical applications owing to their biocompatibility, ease of functionalization and relatively non-toxic nature. In recent years, biogenic nanoparticles have gained attention as an eco-friendly alternative for a variety of applications. In this report, we have synthesized and characterized gold nanoparticles (AuNPs) from an Actinomycete, Nocardiopsis dassonvillei NCIM 5124. The conditions for biosynthesis were optimized (100 mg/ml of cell biomass, 2.5 mM tetrachloroauric acid (HAuCl4) at 80 °C and incubation time of 25 min) and the nanoparticles were characterized by TEM, SAED, EDS and XRD analysis. The nanoparticles were spherical and ranged in size from 10 to 25 nm. Their interactions with human gingival tissue-derived mesenchymal stem cells (GMSCs) and their potential applications in regenerative medicine were evaluated further. The AuNPs did not display cytotoxicity towards GMSCs when assessed by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, DNA fragmentation patterns and Annexin V/propidium iodide staining techniques. These AuNPs induced faster cell migration when monitored by the in vitro wound healing assay. The effect of these nanoparticles on osteogenesis of GMSCs was also studied. Based on the results obtained from alkaline phosphatase, Von Kossa staining and Alizarin Red S staining, the AuNPs were seen to positively affect differentiation of GMSCs and enhance mineralization of the synthesized matrix. We therefore conclude that the biogenic, non-toxic AuNPs are of potential relevance for tissue regeneration applications.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Vaishali Javdekar
- Department of Biotechnology, Abasaheb Garware College, Pune, Maharashtra, 411004, India
| | - Geetanjali B Tomar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
26
|
Mahmoud NS, Ahmed HH, Mohamed MR, Amr KS, Aglan HA, Ali MAM, Tantawy MA. Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells. Cytotechnology 2020; 72:1-22. [PMID: 31722051 PMCID: PMC7002803 DOI: 10.1007/s10616-019-00353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/02/2019] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to investigate the osteoinductive potentiality of some selected nanostructures; Hydroxyapatite (HA-NPs), Gold (Au-NPs), Chitosan (C-NPs), Gold/hydroxyapatite (Au/HA-NPs) and Chitosan/hydroxyapatite (CH-NPs) on bone marrow- derived mesenchymal stem cells (BM-MSCs). These nanostructures were characterized using transmission electron microscope and Zetasizer. MSCs were isolated from bone marrow of rat femur bones and their identity was documented by morphology, flow cytometry and multi-potency capacity. The influence of the selected nanostructures on the viability, osteogenic differentiation and subsequent matrix mineralization of BM-MSCs was determined by MTT assay, molecular genetic analysis and alizarin red S staining, respectively. MTT analysis revealed insignificant toxicity of the tested nanostructures on BM-MSCs at concentrations ranged from 2 to 25 µg/ml over 48 h and 72 h incubation period. Notably, the tested nanostructures potentiate the osteogenic differentiation of BM-MSCs as evidenced by a prominent over-expression of runt-related transcription factor 2 (Runx-2) and bone morphogenetic protein 2 (BMP-2) genes after 7 days incubation. Moreover, the tested nanostructures induced matrix mineralization of BM-MSCs after 21 days as manifested by the formation of calcium nodules stained with alizarin red S. Conclusively, these data provide a compelling evidence for the functionality of the studied nanostructures as osteoinductive materials motivating the differentiation of BM-MSCs into osteoblasts with the most prominent effect observed with Au-NPs and Au/HA-NPs, followed by CH-NPs.
Collapse
Affiliation(s)
- Nadia S. Mahmoud
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.), Dokki, Giza, P.O. 12622 Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.), Dokki, Giza, P.O. 12622 Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed R. Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khalda S. Amr
- Medical Molecular Genetics Department, Human Genetics and Genome Researches Division, National Research Centre, Dokki, Giza, Egypt
| | - Hadeer A. Aglan
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.), Dokki, Giza, P.O. 12622 Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A. M. Ali
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed A. Tantawy
- Hormones Department, Medical Research Division, National Research Centre, 33 EL Bohouth St. (former EL -Tahrir st.), Dokki, Giza, P.O. 12622 Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
27
|
Liang H, Xu X, Feng X, Ma L, Deng X, Wu S, Liu X, Yang C. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway. Int J Nanomedicine 2019; 14:6151-6163. [PMID: 31447557 PMCID: PMC6683960 DOI: 10.2147/ijn.s213889] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Precise control and induction of the differentiation of stem cells to osteoblasts by artificial biomaterials are a promising strategy for rapid bone regeneration and reconstruction. PURPOSE In this study, gold nanoparticles (AuNPs)-loaded hydroxyapatite (HA-Au) nanocomposites were designed to guide the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) through the synergistic effects of both AuNPs and HA. MATERIALS AND METHODS The HA-Au nanoparticles were synthesized and characterized by several analytical techniques. Cell viability and proliferation of hMSCs were characterized by CCK-8 test. Cellular uptake of nanoparticles was observed by transmission electron microscope. For the evaluation of osteogenic differentiation, alkaline phosphatase (ALP) activity and staining, Alizarin red staining, and a quantitative real-time polymerase chain reaction (RT-PCR) analysis were performed. In order to examine specific signaling pathways, RT-PCR and Western blotting assay were performed. RESULTS The results confirmed the successful synthesis of HA-Au nanocomposites. The HA-Au nanoparticles showed good cytocompatibility and internalized into hMSCs at the studied concentrations. The increased level of ALP production, deposition of calcium mineralization, as well as the expression of typical osteogenic genes, indicated the enhancement of osteogenic differentiation of hMSCs. Moreover, the incorporation of Au could activate the Wnt/β-catenin signaling pathway, which seemed to be the molecular mechanism underlying the osteoinductive capability of HA-Au nanoparticles. CONCLUSION The HA-Au nanoparticles exerted a synergistic effect on accelerating osteogenic differentiation of hMSCs, suggesting they may be potential candidates for bone repair and regeneration.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Xiaomo Xu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| | - Shuilin Wu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People’s Republic of China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan430062, People’s Republic of China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
| |
Collapse
|
28
|
Zhu S, Zhu L, Yu J, Wang Y, Peng B. Anti-osteoclastogenic effect of epigallocatechin gallate-functionalized gold nanoparticles in vitro and in vivo. Int J Nanomedicine 2019; 14:5017-5032. [PMID: 31371944 PMCID: PMC6627179 DOI: 10.2147/ijn.s204628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Epigallocatechin gallate (EGCG), the major anti-inflammatory compound in green tea, has been shown to suppress osteoclast (OC) differentiation. However, the low aqueous solubility of EGCG always leads to poor bioavailability, adverse effects, and several drawbacks for clinical applications. Purpose: In this study, we synthesized EGCG-capped gold nanoparticles (EGCG-GNPs) to solve the drawbacks for clinical uses of EGCG in bone destruction disorders by direct reduction of HAuCl4 in EGCG aqueous solution. Methods and Results: The obtained EGCG-GNPs were negatively charged and spherical. Theoretical calculation results suggested that EGCG was released from GNPs in an acidic environment. Cellular uptake study showed an obviously large amount of intracellular EGCG-GNPs without cytotoxicity. EGCG-GNPs exhibited better effects in reducing intracellular reactive oxygen species levels than free EGCG. A more dramatic anti-osteoclastogenic effect induced by EGCG-GNPs than free EGCG was observed in lipopolysaccharide (LPS)-stimulated bone marrow macrophages, including decreased formation of TRAP-positive multinuclear cells and actin rings. Meanwhile, EGCG-GNPs not only suppressed the mRNA expression of genetic markers of OC differentiation but also inhibited MAPK signaling pathways. Furthermore, we confirmed that EGCG-GNPs greatly reversed bone resorption in the LPS-induced calvarial bone erosion model in vivo, which was more effective than applying free EGCG, specifically in inhibiting the number of OCs, improving bone density, and preventing bone loss. Conclusion: EGCG-GNPs showed better anti-osteoclastogenic effect than free EGCG in vitro and in vivo, indicating their potential in anti-bone resorption treatment strategy.
Collapse
Affiliation(s)
- Shenting Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Lingxin Zhu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Jingjing Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanqing Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Bin Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
29
|
Wu W, Zhang D, Yin Y, Ji M, Xu K, Huang X, Peng Y, Zhang J. Comprehensive transcriptomic view of the role of the LGALS12 gene in porcine subcutaneous and intramuscular adipocytes. BMC Genomics 2019; 20:509. [PMID: 31215398 PMCID: PMC6582507 DOI: 10.1186/s12864-019-5891-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background Livestock production aims to provide meats of high and consistent eating quality. Insufficient intramuscular (IM) fat and excessive subcutaneous (SC) fat are paramount pork quality challenges. IM fat and SC fat, which are modulated by the adipogenesis of IM and SC adipocytes, play key roles in pork quality. Galectin-12 (LGALS12) was proven to be an important regulator of fat deposition in porcine. However, the current knowledge of the transcriptome-wide role of LGALS12 in adipocytes is still limited. This study was aimed to discover the different regulatory mechanisms of LGALS12 in porcine IM and SC adipocyte. Results The siRNA-mediated knockdown of the expression of LGALS12 identified 1075 and 3016 differentially expressed genes (DEGs) in IM and SC adipocytes, respectively. Among these, 585 were up- and 490 were downregulated in the IM adipocytes, while 2186 were up- and 830 were downregulated in the SC adipocytes. Moreover, 418 DGEs were observed only in the IM adipocytes, 2359 DGEs only in the SC adipocytes, and 657 DGEs in both types of adipocytes. According to Gene Ontology (GO) analysis, DEGs in both IM and SC adipocytes were mainly enriched in categories related to lipids or fat cell differentiation. Pathway analysis of the DEGs revealed 88 changed signaling pathways in the IM adipocytes and 86 in the SC adipocytes. The signaling pathways present in only one type of adipocyte were identified from among the top 50 signaling pathways in each type of adipocyte. Four signaling pathways, encompassing PI3K-AKT, cardiac muscle contraction, fatty acid metabolism and Ras, were significantly enriched in the IM adipocytes. On the other hand, four different signaling pathways, encompassing TNF, WNT, cGMP-PKG and NF-kappa B, were greatly enriched in the SC ones. The pathway changes were confirmed by chemical inhibition assays. Conclusions Our data reveals that LGALS12 knockdown alters the expression of numerous genes involved in key biological processes in the development of adipocytes. These observations provide a global view of the role of LGALS12 in porcine IM and SC adipocytes; thus, improving our understanding of the regulatory mechanisms by which this gene acts in fat development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5891-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yajun Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Miao Ji
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Ke Xu
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Xin Huang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao Hebei, 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
30
|
Yadid M, Feiner R, Dvir T. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. NANO LETTERS 2019; 19:2198-2206. [PMID: 30884238 DOI: 10.1021/acs.nanolett.9b00472] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The development of scaffolding materials that recapitulate the cellular microenvironment and provide cells with physicochemical cues is crucial for successfully engineering functional tissues that can aid in repairing damaged organs. The use of gold nanoparticles for tissue engineering and regenerative medicine has raised great interest in recent years. In this mini review, we describe the shape-dependent properties of gold nanoparticles, and their versatile use in creating tunable nanocomposite scaffolds with improved mechanical and electrical properties for tissue engineering. We further describe using gold nanoparticle-integrated scaffolds to achieve improved stem cells proliferation and differentiation. Finally, we discuss the main challenges and prospects for clinical translation of gold nanoparticles-hybrid scaffolds.
Collapse
|
31
|
Tan HL, Teow SY, Pushpamalar J. Application of Metal Nanoparticle⁻Hydrogel Composites in Tissue Regeneration. Bioengineering (Basel) 2019; 6:E17. [PMID: 30754677 PMCID: PMC6466392 DOI: 10.3390/bioengineering6010017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Challenges in organ transplantation such as high organ demand and biocompatibility issues have led scientists in the field of tissue engineering and regenerative medicine to work on the use of scaffolds as an alternative to transplantation. Among different types of scaffolds, polymeric hydrogel scaffolds have received considerable attention because of their biocompatibility and structural similarity to native tissues. However, hydrogel scaffolds have several limitations, such as weak mechanical property and a lack of bioactive property. On the other hand, noble metal particles, particularly gold (Au) and silver (Ag) nanoparticles (NPs), can be incorporated into the hydrogel matrix to form NP⁻hydrogel composite scaffolds with enhanced physical and biological properties. This review aims to highlight the potential of these hybrid materials in tissue engineering applications. Additionally, the main approaches that have been used for the synthesis of NP⁻hydrogel composites and the possible limitations and challenges associated with the application of these materials are discussed.
Collapse
Affiliation(s)
- Hui-Li Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| | - Janarthanan Pushpamalar
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor Darul Ehsan, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
Zhou Z, Lu Y, Wang Y, Du L, Zhang Y, Tao J. Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1. Am J Physiol Cell Physiol 2018; 316:C57-C69. [PMID: 30379578 DOI: 10.1152/ajpcell.00211.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a progressive bone disease characterized by decreased bone mass and density, which usually parallels a reduced antioxidative capacity and increased reactive oxygen species formation. Adipose-derived mesenchymal stem cells (ADMSCs), a population of self-renewing multipotent cells, are a well-recognized source of potential bone precursors with significant clinical potential for tissue regeneration. We previously showed that overexpressing stearoyl-CoA desaturase 1 (SCD-1) promotes osteogenic differentiation of mesenchymal stem cells. Micro-RNAs (miRNAs) are noncoding RNAs recently recognized to play key roles in many developmental processes, and miRNA let-7c is downregulated during osteoinduction. We found that let-7c was upregulated in the serum of patients with postmenopausal osteoporosis compared with healthy controls. Levels of let-7c during osteogenic differentiation of ADMSCs were examined under oxidative stress in vitro and found to be upregulated. Overexpression of let-7c inhibited osteogenic differentiation, whereas inhibition of let-7c function promoted this process, evidenced by increased expression of osteoblast-specific genes, alkaline phosphatase activity, and matrix mineralization. The luciferase reporter assay was used to validate SCD-1 as a target of let-7c. Further experiments showed that silencing of SCD-1 significantly attenuated the effect of let-7c inhibitor on osteoblast markers, providing strong evidence that let-7c modulates osteogenic differentiation by targeting SCD-1. Inhibition of let-7c promoted the translocation of β-catenin into nuclei, thus activating Wnt/β-catenin signaling. Collectively, these data suggest that let-7c is induced under oxidative stress conditions and in osteoporosis, reducing SCD-1 protein levels, switching off Wnt/β-catenin signaling, and inhibiting osteogenic differentiation. Thus, let-7c may be a potential therapeutic target in the treatment of osteoporosis and especially postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zihui Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yuanshan Lu
- Department of Blood Transfusion, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yao Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Lin Du
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yunpeng Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Jie Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
33
|
Abdal Dayem A, Lee SB, Cho SG. The Impact of Metallic Nanoparticles on Stem Cell Proliferation and Differentiation. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E761. [PMID: 30261637 PMCID: PMC6215285 DOI: 10.3390/nano8100761] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
Nanotechnology has a wide range of medical and industrial applications. The impact of metallic nanoparticles (NPs) on the proliferation and differentiation of normal, cancer, and stem cells is well-studied. The preparation of NPs, along with their physicochemical properties, is related to their biological function. Interestingly, various mechanisms are implicated in metallic NP-induced cellular proliferation and differentiation, such as modulation of signaling pathways, generation of reactive oxygen species, and regulation of various transcription factors. In this review, we will shed light on the biomedical application of metallic NPs and the interaction between NPs and the cellular components. The in vitro and in vivo influence of metallic NPs on stem cell differentiation and proliferation, as well as the mechanisms behind potential toxicity, will be explored. A better understanding of the limitations related to the application of metallic NPs on stem cell proliferation and differentiation will afford clues for optimal design and preparation of metallic NPs for the modulation of stem cell functions and for clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
34
|
Li C, Li Z, Zhang Y, Fathy AH, Zhou M. The role of the Wnt/β-catenin signaling pathway in the proliferation of gold nanoparticle-treated human periodontal ligament stem cells. Stem Cell Res Ther 2018; 9:214. [PMID: 30092818 PMCID: PMC6085621 DOI: 10.1186/s13287-018-0954-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/24/2023] Open
Abstract
Background Several studies have confirmed that gold nanoparticles (AuNPs) of specific concentration and size exert a boosting effect on cell proliferation; however, the mechanism through which this effect occurs remains unknown. This study explores the canonical Wnt signaling pathway in AuNP promotion of human periodontal ligament stem cell (hPDLSC) proliferation. Methods MTS was employed to evaluate hPDLSC proliferation. The interference of LRP5 and β-catenin was steered by shRNA plasmids and siRNA, respectively, at which point the expression of MYC, CCND1, AXIN2, and POU5F1 had been estimated via real-time PCR. The expressions of LRP5 and β-catenin were detected via western blot assay. Results The proliferation of hPDLSCs treated with 60 nm AuNPs at 56 μM was clearly elevated. In contrast, β-catenin siRNA significantly decreased cell viability. The LRP5 shRNA plasmid did not consistently impact cells. The expressions of these four genes downstream of the Wnt/β-catenin signaling pathway were not significantly overexpressed in response to the interference of shRNA plasmid/siRNA with the treatment of AuNPs. Conclusions These results suggest that the Wnt/β-catenin signaling pathway plays a significant role in the process of AuNP promotion of hPDLSC proliferation.
Collapse
Affiliation(s)
- Chen Li
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhuoquan Li
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yan Zhang
- Department of Basic Science, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | | | - Min Zhou
- Department of Periodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
35
|
Gurunathan S, Kim JH. Biocompatible Gold Nanoparticles Ameliorate Retinoic Acid-Induced Cell Death and Induce Differentiation in F9 Teratocarcinoma Stem Cells. NANOMATERIALS 2018; 8:nano8060396. [PMID: 29865197 PMCID: PMC6027053 DOI: 10.3390/nano8060396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
Abstract
The unique properties of gold nanoparticles (AuNPs) have attracted much interest for a range of applications, including biomedical applications in the cosmetic industry. The current study assessed the anti-oxidative effect of AuNPs against retinoic acid (RA)-induced loss of cell viability; cell proliferation; expression of oxidative and anti-oxidative stress markers, pro- and anti-apoptotic genes, and differentiation markers; and mitochondrial dysfunction in F9 teratocarcinoma stem cells. AuNPs were prepared by reduction of gold salts using luteolin as a reducing and stabilizing agent. The prepared AuNPs were spherical in shape with an average diameter of 18 nm. F9 cells exposed to various concentrations of these AuNPs were not harmed, whereas cells exposed to RA exhibited a dose-dependent change in cell viability and cell proliferation. The RA-mediated toxicity was associated with increased leakage of lactate dehydrogenase, reactive oxygen species, increased levels of malondialdehyde and nitric oxide, loss of mitochondrial membrane potential, and a reduced level of ATP. Finally, RA increased the level of pro-apoptotic gene expression and decreased the expression of anti-apoptotic genes. Interestingly, the toxic effect of RA appeared to be decreased in cells treated with RA in the presence of AuNPs, which was coincident with the increased levels of anti-oxidant markers including thioredoxin, glutathione peroxidases, glutathione, glutathione disulfide, catalase, and superoxide dismutase. Concomitantly, AuNPs ameliorated the apoptotic response by decreasing the mRNA expression of p53, p21, Bax, Bak, caspase-3, caspase-9, and increasing the expressions of Bcl-2 and Bcl-Xl. Interestingly, AuNPs not only ameliorated oxidative stress but also induced differentiation in F9 cells by increasing the expression of differentiation markers including retinoic acid binding protein, laminin 1, collagen type IV, and Gata 6 and decreasing the expressions of markers of stem cell pluripotency including Nanog, Rex1, octamer-binding transcription factor 4, and Sox-2. These consistent cellular and biochemical data suggest that AuNPs could ameliorate RA-induced cell death and facilitate F9 cell differentiation. AuNPs could be suitable therapeutic agents for the treatment of oxidative stress-related diseases such as atherosclerosis, cancer, diabetes, rheumatoid arthritis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
36
|
Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular Transport of Silver and Gold Nanoparticles and Biological Responses: An Update. Int J Mol Sci 2018; 19:E1305. [PMID: 29702561 PMCID: PMC5983807 DOI: 10.3390/ijms19051305] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Medicine, food, and cosmetics represent the new promising applications for silver (Ag) and gold (Au) nanoparticles (NPs). AgNPs are most commonly used in food and cosmetics; conversely, the main applications of gold NPs (AuNPs) are in the medical field. Thus, in view of the risk of accidentally or non-intended uptake of NPs deriving from the use of cosmetics, drugs, and food, the study of NPs⁻cell interactions represents a key question that puzzles researchers in both the nanomedicine and nanotoxicology fields. The response of cells starts when the NPs bind to the cell surface or when they are internalized. The amount and modality of their uptake depend on many and diverse parameters, such as NPs and cell types. Here, we discuss the state of the art of the knowledge and the uncertainties regarding the biological consequences of AgNPs and AuNPs, focusing on NPs cell uptake, location, and translocation. Finally, a section will be dedicated to the most currently available methods for qualitative and quantitative analysis of intracellular transport of metal NPs.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
| | - Francesco Mura
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Marco Rossi
- Department of Basic and Applied Science to Engineering, Sapienza University of Rome, 00161 Rome, Italy.
- Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, 00161 Rome, Italy.
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy.
- CNR-Nanotec, Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
37
|
Kang ES, Kim DS, Suhito IR, Lee W, Song I, Kim TH. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res 2018; 22:10. [PMID: 29619243 PMCID: PMC5879765 DOI: 10.1186/s40824-018-0120-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. Main text In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Conclusion Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Ee-Seul Kang
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Da-Seul Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Intan Rosalina Suhito
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wanhee Lee
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Inbeom Song
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Tae-Hyung Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea.,2Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
38
|
Zhou J, Zhang Y, Li L, Fu H, Yang W, Yan F. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. Int J Nanomedicine 2018; 13:555-567. [PMID: 29416335 PMCID: PMC5790078 DOI: 10.2147/ijn.s150897] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective It is a great challenge to absorb and conduct biophysicochemical interactions at the nano-bio interface. Peptides are emerging as versatile materials whose function can be programmed to perform specific tasks. Peptides combined nanoparticles might be utilized as a new approach of treatment. Human β-defensin 3 (hBD3), possesses both antimicrobial and proregeneration properties. Gold nanoparticles (AuNPs) have shown promising applications in the field of tissue engineering. However, the coordinating effects of AuNPs and hBD3 on human periodontal ligament cells (hPDLCs) remain unknown. In this study, we systematically investigated whether AuNPs and hBD3 would be able to coordinate and enhance the osteogenic differentiation of hPDLCs in inflammatory microenvironments, and the underlying mechanisms was explored. Methods hPDLCs were stimulated with E. coli-LPS, hBD3 and AuNPs. Alkaline phosphatase (ALP) and alizarin red S staining were used to observe the effects of hBD3 and AuNPs on the osteogenic differentiation of hPDLCs. Real-time PCR and western blot were performed to evaluate the osteogenic differentiation and Wnt/β-catenin signaling pathway related gene and protein expression. Results In the inflammatory microenvironments stimulated by E. coli-LPS, we found that AuNPs and hBD3 increased the proliferation of hPDLCs slightly. In addition, hBD3-combined AuNPs could significantly enhance ALP activities and mineral deposition in vitro. Meanwhile, we observed that the osteogenic differentiation-related gene and protein expressions of ALP, collagenase-I (COL-1) and runt-related transcription factor 2 (Runx-2) were remarkably upregulated in the presence of hBD3 and AuNPs. Moreover, hBD3-combined AuNPs strongly activated the Wnt/β-catenin signaling pathway and upregulated the gene and protein expression of β-catenin and cyclin D1. Furthermore, hBD3-combined AuNPs induced osteogenesis, which could be reversed by the Wnt/β-catenin signaling pathway inhibitor (ICG-001). Conclusion The present study demonstrated that hBD3 combined AuNPs could significantly promote the osteogenic differentiation of hPDLCs in inflammatory microenvironments via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Xia Y, Chen H, Zhang F, Bao C, Weir MD, Reynolds MA, Ma J, Gu N, Xu HHK. Gold nanoparticles in injectable calcium phosphate cement enhance osteogenic differentiation of human dental pulp stem cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:35-45. [PMID: 28887211 PMCID: PMC5803751 DOI: 10.1016/j.nano.2017.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023]
Abstract
In this study, a novel calcium phosphate cement containing gold nanoparticles (GNP-CPC) was developed. Its osteogenic induction ability on human dental pulp stem cells (hDPSCs) was investigated for the first time. The incorporation of GNPs improved hDPSCs behavior on CPC, including better cell adhesion (about 2-fold increase in cell spreading) and proliferation, and enhanced osteogenic differentiation (about 2-3-fold increase at 14 days). GNPs endow CPC with micro-nano-structure, thus improving surface properties for cell adhesion and subsequent behaviors. In addition, GNPs released from GNP-CPC were internalized by hDPSCs, as verified by transmission electron microscopy (TEM), thus enhancing cell functions. The culture media containing GNPs enhanced the cellular activities of hDPSCs. This result was consistent with and supported the osteogenic induction results of GNP-CPC. In conclusion, GNP-CPC significantly enhanced the osteogenic functions of hDPSCs. GNPs are promising to modify CPC with nanotopography and work as bioactive additives thus enhance bone regeneration.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chongyun Bao
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Borzenkov M, Chirico G, Collini M, Pallavicini P. Gold Nanoparticles for Tissue Engineering. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology 2017; 15:75. [PMID: 29065876 PMCID: PMC5655945 DOI: 10.1186/s12951-017-0310-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/14/2017] [Indexed: 01/23/2023] Open
Abstract
Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells’ fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.
Collapse
Affiliation(s)
- Min Wei
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China
| | - Weidong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China. .,Collaborative Innovation Center for Brain Science, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, People's Republic of China.
| |
Collapse
|
42
|
Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 2017; 110:88-96. [PMID: 28917940 DOI: 10.1016/j.ijbiomac.2017.09.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Bone is a highly integrative and dynamic tissue of the human body. It is continually remodeled by bone cells such as osteoblasts, osteoclasts. When a fraction of a bone is damaged or deformed, stem cells and bone cells under the influence of several signaling pathways regulate bone regeneration at the particular locale. Effective therapies for bone defects can be met via bone tissue engineering which employs drug delivery systems with biomaterials to enhance cellular functions by acting on signaling pathways such as Wnt, BMP, TGF-β, and Notch. This review provides the current understanding of polymers/bioceramics/bioactive compounds as scaffolds in activation of signaling pathways for the formation of bone.
Collapse
|
43
|
Palombella S, Pirrone C, Rossi F, Armenia I, Cherubino M, Valdatta L, Raspanti M, Bernardini G, Gornati R. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model. NANOMATERIALS 2017; 7:nano7080212. [PMID: 28771169 PMCID: PMC5575694 DOI: 10.3390/nano7080212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023]
Abstract
As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.
Collapse
Affiliation(s)
- Silvia Palombella
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Cherubino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Luigi Valdatta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
44
|
Zhang Y, Kong N, Zhang Y, Yang W, Yan F. Size-dependent Effects of Gold Nanoparticles on Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells. Theranostics 2017; 7:1214-1224. [PMID: 28435460 PMCID: PMC5399588 DOI: 10.7150/thno.17252] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
Gold nanoparticles (AuNPs) have been reported to promote osteogenic differentiation of mesenchymal stem cells and osteoblasts, but little is known about their effects on human periodontal ligament progenitor cells (PDLPs). In this study, we evaluated the effects of AuNPs with various diameters (5, 13 and 45 nm) on the osteogenic differentiation of PDLPs and explored the underlying mechanisms. 5 nm AuNPs reduced the alkaline phosphatase activity, mineralized nodule formation and expression of osteogenic genes, while 13 and 45 nm AuNPs increased these osteogenic markers. Compared with 13 nm, 45 nm AuNPs showed more effective in promoting osteogenic differentiation. Meanwhile, autophagy was up-regulated by 13 and 45 nm AuNPs but blocked by 5 nm AuNPs, which corresponded with their effects on osteogenic differentiation and indicated that autophagy might be involved in this process. Furthermore, the osteogenesis induced by 45 nm AuNPs could be reversed by autophagy inhibitors (3-methyladenine and chloroquine). These findings revealed that AuNPs affected the osteogenic differentiation of PDLPs in a size-dependent manner with autophagy as a potential explanation, which suggested AuNPs with defined size could be a promising material for periodontal bone regeneration.
Collapse
Affiliation(s)
- Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Na Kong
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Yuanchao Zhang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Victoria 3216, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Mok PL, Leow SN, Koh AEH, Mohd Nizam HH, Ding SLS, Luu C, Ruhaslizan R, Wong HS, Halim WHWA, Ng MH, Idrus RBH, Chowdhury SR, Bastion CML, Subbiah SK, Higuchi A, Alarfaj AA, Then KY. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer. Int J Mol Sci 2017; 18:ijms18020345. [PMID: 28208719 PMCID: PMC5343880 DOI: 10.3390/ijms18020345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/09/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Collapse
Affiliation(s)
- Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Sue Ngein Leow
- Department of Ophthalmology, Hospital Sultanah Aminah, 80100 Johor Bahru, Johor, Malaysia.
| | - Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Harun Mohd Nizam
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suet Lee Shirley Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Chi Luu
- Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, Melbourne 3002, Australia.
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne 3002, Australia.
| | - Raduan Ruhaslizan
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Hon Seng Wong
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | | | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Ruszymah Binti Hj Idrus
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Catherine Mae-Lynn Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan 32001, Taiwan.
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
46
|
Griffin MF, Kalaskar DM, Seifalian A, Butler PE. An update on the Application of Nanotechnology in Bone Tissue Engineering. Open Orthop J 2016; 10:836-848. [PMID: 28217209 PMCID: PMC5299580 DOI: 10.2174/1874325001610010836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/23/2022] Open
Abstract
Background: Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. Methods: This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Results: Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Conclusion: Future studies to improve the application of nanomaterials for bone tissue engineering are needed.
Collapse
Affiliation(s)
- M F Griffin
- University College London, Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| | - D M Kalaskar
- University College London, Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| | - A Seifalian
- University College London, Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| | - P E Butler
- University College London, Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, London, UK; Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| |
Collapse
|
47
|
Bandara N, Gurusinghe S, Lim SY, Chen H, Chen S, Wang D, Hilbert B, Wang LX, Strappe P. Molecular control of nitric oxide synthesis through eNOS and caveolin-1 interaction regulates osteogenic differentiation of adipose-derived stem cells by modulation of Wnt/β-catenin signaling. Stem Cell Res Ther 2016; 7:182. [PMID: 27927230 PMCID: PMC5142348 DOI: 10.1186/s13287-016-0442-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023] Open
Abstract
Background Nitric oxide (NO) plays a role in a number of physiological processes including stem cell differentiation and osteogenesis. Endothelial nitric oxide synthase (eNOS), one of three NO-producing enzymes, is located in a close conformation with the caveolin-1 (CAV-1WT) membrane protein which is inhibitory to NO production. Modification of this interaction through mutation of the caveolin scaffold domain can increase NO release. In this study, we genetically modified equine adipose-derived stem cells (eASCs) with eNOS, CAV-1WT, and a CAV-1F92A (CAV-1WT mutant) and assessed NO-mediated osteogenic differentiation and the relationship with the Wnt signaling pathway. Methods NO production was enhanced by lentiviral vector co-delivery of eNOS and CAV-1F92A to eASCs, and osteogenesis and Wnt signaling was assessed by gene expression analysis and activity of a novel Runx2-GFP reporter. Cells were also exposed to a NO donor (NONOate) and the eNOS inhibitor, l-NAME. Results NO production as measured by nitrite was significantly increased in eNOS and CAV-1F92A transduced eASCs +(5.59 ± 0.22 μM) compared to eNOS alone (4.81 ± 0.59 μM) and un-transduced control cells (0.91 ± 0.23 μM) (p < 0.05). During osteogenic differentiation, higher NO correlated with increased calcium deposition, Runx2, and alkaline phosphatase (ALP) gene expression and the activity of a Runx2-eGFP reporter. Co-expression of eNOS and CAV-1WT transgenes resulted in lower NO production. Canonical Wnt signaling pathway-associated Wnt3a and Wnt8a gene expressions were increased in eNOS-CAV-1F92A cells undergoing osteogenesis whilst non-canonical Wnt5a was decreased and similar results were seen with NONOate treatment. Treatment of osteogenic cultures with 2 mM l-NAME resulted in reduced Runx2, ALP, and Wnt3a expressions, whilst Wnt5a expression was increased in eNOS-delivered cells. Co-transduction of eASCs with a Wnt pathway responsive lenti-TCF/LEF-dGFP reporter only showed activity in osteogenic cultures co-transduced with a doxycycline inducible eNOS. Lentiviral vector expression of canonical Wnt3a and non-canonical Wnt5a in eASCs was associated with induced and suppressed osteogenic differentiation, respectively, whilst treatment of eNOS-osteogenic cells with the Wnt inhibitor Dkk-1 significantly reduced expressions of Runx2 and ALP. Conclusions This study identifies NO as a regulator of canonical Wnt/β-catenin signaling to promote osteogenesis in eASCs which may contribute to novel bone regeneration strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0442-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadeeka Bandara
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia
| | - Saliya Gurusinghe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Shiang Yong Lim
- O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.,Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - Haying Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Dawei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.,Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
48
|
One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proc Natl Acad Sci U S A 2016; 113:13318-13323. [PMID: 27821760 DOI: 10.1073/pnas.1616400113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the in vitro long-term (20 wk) changes in cells exposed to well-characterized gold nanoparticles (Au NPs) with varying shapes and surface coatings under both chronic (exposure to Au NPs continuously over 20 wk) and nonchronic (initial acute cell exposure to Au NPs, followed by 20 wk in NP-free cell media) conditions. Both chronic and nonchronic Au NPs exposures at low dose induce modifications at the gene level after long periods. In attempt to overcome from the injuries caused by nanoparticle exposure, genes related to oxidative stress, cell cycle regulation, and inflammation are among those presenting differential expression levels. Surprisingly, the nonchronic exposure induced more gene expression changes than its chronic counterpart and the stress effects caused by this type of exposure were sustained even after 20 wk without any additional NP exposure. NP surface chemistry played an important role in the alteration of gene regulation. Overall, our data suggest that (i) cells can adaptively respond to chronic, low-level NP insults; (ii) the cell stress response is not reversible over time upon removal of NPs upon acute, nonchronic exposure; and (iii) polyethylene glycol is not as benign a surface chemistry as is generally supposed.
Collapse
|