1
|
Sobczak-Kupiec A, Kudłacik-Kramarczyk S, Drabczyk A, Cylka K, Tyliszczak B. Studies on PVP-Based Hydrogel Polymers as Dressing Materials with Prolonged Anticancer Drug Delivery Function. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2468. [PMID: 36984346 PMCID: PMC10054093 DOI: 10.3390/ma16062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Tamoxifen is a well-known active substance with anticancer activity. Currently, many investigations are performed on the development of carriers that provide its effective delivery. Particular attention is directed toward the formation of cyclodextrin-drug complexes to provide prolonged drug delivery. According to our knowledge, carriers in the form of polyvinylpyrrolidone (PVP)/gelatin-based hydrogels incorporated with β-cyclodextrin-tamoxifen complexes and additionally modified with nanogold have not been presented in the literature. In this work, two series of these materials have been synthesized-with tamoxifen and with its complex with β-cyclodextrin. The process of obtaining drug carrier systems consisted of several stages. Firstly, the nanogold suspension was obtained. Next, the hydrogels were prepared via photopolymerization. The size, dispersity and optical properties of nanogold as well as the swelling properties of hydrogels, their behavior in simulated physiological liquids and the impact of these liquids on their chemical structure were verified. The release profiles of tamoxifen from composites were also determined. The developed materials showed swelling capacity, stability in tested environments that did not affect their structure, and the ability to release drugs, while the release process was much more effective in acidic conditions than in alkaline ones. This is a benefit considering their use for anticancer drug delivery, due to the fact that near cancer cells, there is an acidic environment. In the case of the composites containing the drug-β-cyclodextrin complex, a prolonged release process was achieved compared to the drug release from materials with unbound tamoxifen. In terms of the properties and the composition, the developed materials show a great application potential as drug carriers, in particular as carriers of anticancer drugs such as tamoxifen.
Collapse
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karolina Cylka
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland
| | - Bozena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
2
|
Al-jubori AA, Sulaiman GM, Tawfeeq AT, Mohammed HA, Khan RA, Mohammed SAA. Layer-by-Layer Nanoparticles of Tamoxifen and Resveratrol for Dual Drug Delivery System and Potential Triple-Negative Breast Cancer Treatment. Pharmaceutics 2021; 13:1098. [PMID: 34371789 PMCID: PMC8309206 DOI: 10.3390/pharmaceutics13071098] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Nanoparticle development demonstrates use in various physicochemical, biological, and functional properties for biomedical applications, including anti-cancer applications. In the current study, a cancer therapeutic conjugate was produced consisting of tamoxifen (TAM) and resveratrol (RES) by layer-by-layer (LbL) nanoparticles based on lipid-based drug delivery systems and liquid crystalline nanoparticles (LCNPs) coated with multiple layers of positively charged chitosan and negatively charged hyaluronic acid for the evaluation of biocompatibility and therapeutic properties against cancer cells. Multiple techniques characterized the synthesis of TAM/RES-LbL-LCNPs, such as Fourier-transform infrared spectroscopy (FTIR), X-ray crystallography (XRD), Zeta potential analysis, particle size analysis, Field Emission Scanning Electron Microscope (FESEM), and Transmission electron microscopy (TEM). The in vitro cytotoxic effects of TAM/RES-LbL-LCNPs were investigated against human breast cancer cell line, Michigan Cancer Foundation-7 (MCF-7), and human triple-negative breast cancer cell line, Centre Antoine Lacassagne-51 (CAL-51), using various parameters. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay confirmed that the treatment of cells with TAM/RES-LbL-LCNPs caused a reduction in cell proliferation, and no such inhibition was observed with human normal liver cell line: American Type Culture Collection Cell Line-48 (WRL-68 [ATCC CL-48]). Fluorescent microscopy examined the ability of Fluorescein isothiocyanate (FITC) to bind to TAM/RES-LbL-LCNPs along with their cellular uptake. Apoptosis determination was performed using hematoxylin-eosin and acridine orange-propidium iodide double staining. The expression of P53 and caspase-8 was analyzed by flow cytometry analysis. An in vivo study determined the toxicity of TAM/RES-LbL-LCNPs in mice and assessed the functional marker changes in the liver and kidneys. No significant statistical differences were found for the tested indicators. TAM/RES-LbL-LCNP treatment showed no apparent damages or histopathological abnormalities in the heart, lung, liver, spleen, and kidney histological images. The current findings observed for the first time propose that TAM/RES-LbL-LCNPs provide a new and safer method to use phytochemicals in combinatorial therapy and provide a novel treatment approach against breast cancers.
Collapse
Affiliation(s)
- Ali A. Al-jubori
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (A.A.A.-j.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq; (A.A.A.-j.); (G.M.S.)
| | - Amer T. Tawfeeq
- Molecular Biology Department, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (H.A.M.); (R.A.K.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (H.A.M.); (R.A.K.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
3
|
Saleem MA, Yasir Siddique M, Nazar MF, Khan SUD, Ahmad A, Khan R, Hussain SZ, Mat Lazim A, Azfaralariff A, Mohamed M. Formation of Antihyperlipidemic Nano-Ezetimibe from Volatile Microemulsion Template for Enhanced Dissolution Profile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7908-7915. [PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
Collapse
Affiliation(s)
| | | | | | - Salah Ud-Din Khan
- Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University Riyadh, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Azwan Mat Lazim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Ahmad Azfaralariff
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Mazlan Mohamed
- Faculty of Bioenginering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia
| |
Collapse
|
4
|
Nankali E, Shaabanzadeh M, Torbati MB. Fluorescent tamoxifen-encapsulated nanocapsules functionalized with folic acid for enhanced drug delivery toward breast cancer cell line MCF-7 and cancer cell imaging. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1211-1219. [PMID: 31980856 DOI: 10.1007/s00210-020-01825-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/14/2020] [Indexed: 12/31/2022]
Abstract
Nanoscale drug delivery systems such as nanocapsules at the convergence of nanotechnology and biomedical sciences have been widely used. In the present study, with the aim of simultaneous imaging and therapy of cancer cells based on biodegradable/biocompatible polymers, we designed and synthesized tamoxifen-encapsulated nanocapsules to target the folate receptor positive breast cancer cells. Noteworthy, to monitor and link to the cancer cells, these nanocapsules were functionalized with fluorescein isothiocyanate and folic acid. The synthesized nanocapsules were characterized by FTIR, XRD, and PL spectroscopy, as well as FESEM and TEM techniques. Although the free tamoxifen has low solubility in physiological solutions, the synthesized tamoxifen-encapsulated nanocapsules have enough solubility, good stability, and more biocompatibility in these solutions. The encapsulation of tamoxifen into the nanocapsules, tamoxifen loading, and its subsequent release behavior were studied. In order to investigate the biological role of these nanocapsules, MTT assay and cell imaging analysis have also been examined. The cytotoxicity test exhibit that the mean IC50 values on the MCF-7 cell line were found to be 15.52 and 8.46 μg/ml in 24 h and 48 h respectively and the cytotoxicity increased by approximately 2.72-fold compared with free TAM against the MCF-7 cancer cell line. Also, cell imaging experiments showed that the synthesized nanocapsules have appropriate cellular uptake efficiency, good potential for monitoring of these particles in vitro. The experimental results suggest that the synthesized tamoxifen nanocapsules facilitate the proper targeting, drug encapsulation efficiency, and controlled release of tamoxifen in vitro.
Collapse
Affiliation(s)
- Ehsan Nankali
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Masoud Shaabanzadeh
- Department of Chemistry, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Dutta L, Mukherjee B, Chakraborty T, Das MK, Mondal L, Bhattacharya S, Gaonkar RH, Debnath MC. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood-brain barrier into brain. Drug Deliv 2018; 25:504-516. [PMID: 29426257 PMCID: PMC6058568 DOI: 10.1080/10717544.2018.1435749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Delivering highly water soluble drugs across blood-brain barrier (BBB) is a crucial challenge for the formulation scientists. A successful therapeutic intervention by developing a suitable drug delivery system may revolutionize treatment across BBB. Efforts were given here to unravel the capability of a newly developed fatty acid combination (stearic acid:oleic acid:palmitic acid = 8.08:4.13:1) (ML) as fundamental component of nanocarrier to deliver highly water soluble zidovudine (AZT) as a model drug into brain across BBB. A comparison was made with an experimentally developed standard phospholipid-based nanocarrier containing AZT. Both the formulations had nanosize spherical unilamellar vesicular structure with highly negative zeta potential along with sustained drug release profiles. Gamma scintigraphic images showed both the radiolabeled formulations successfully crossed BBB, but longer retention in brain was observed for ML-based formulation (MGF) as compared to soya lecithin (SL)-based drug carrier (SYF). Plasma and brain pharmacokinetic data showed less clearance, prolonged residence time, more bioavailability and sustained release of AZT from MGF in rats compared to those data of the rats treated with SYF/AZT suspension. Thus, ML may be utilized to successfully develop drug nanocarrier to deliver drug into brain across BBB, in a sustained manner for a prolong period of time and may provide an effective therapeutic strategy for many diseases of brain. Further, many anti-HIV drugs cannot cross BBB sufficiently. Hence, the developed formulation may be a suitable option to carry those drugs into brain for better therapeutic management of HIV.
Collapse
Affiliation(s)
- Lopamudra Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tapash Chakraborty
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Malay Kumar Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Raghuvir H. Gaonkar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
6
|
Banerjee S, Kundu A. Lipid-drug conjugates: a potential nanocarrier system for oral drug delivery applications. ACTA ACUST UNITED AC 2018; 26:65-75. [PMID: 30159763 PMCID: PMC6154489 DOI: 10.1007/s40199-018-0209-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/26/2018] [Indexed: 11/28/2022]
Abstract
Hydrophilic drugs are preferred candidates for most routes of drug administration, because of their enhanced solubility and dissolution under aqueous in vivo conditions. However, their hydrophilic nature also leads to decreased permeability across hydrophobic barriers. This is a severe limitation in situations where membrane permeability is the primary factor affecting bioavailability and efficacy of the drug. Highly impermeable cellular membranes or the tight endothelial junctions governing the blood-brain barrier are prime examples of this limitation. In other cases, decreased permeability across mucosal or epithelial membranes may require increased doses, which is an inefficient and potentially dangerous workaround. Covalent conjugation of hydrophilic drugs to hydrophobic moieties like short-chain lipids is a promising strategy for maintaining the critical balance between drug solubility and permeability. This article practically focuses on the production procedure of Lipid drug conjugates (LDCs), various formulation methodologies for preparing LDC nanoparticles with detailed about their in vitro physicochemical characterization at laboratory scale. Moreover, brief overviews on the role of LDCs in novel drug delivery applications as a substrate to various disease therapies are provided. Three dimensional (3-D) schematic representation of LDCs structures. ![]()
Collapse
Affiliation(s)
- Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan Univerfsity, Seoul, South Korea
| |
Collapse
|
7
|
Assali M, Zaid AN, Bani-Odeh M, Faroun M, Muzaffar R, Sawalha H. Preparation and characterization of carvedilol-loaded poly(d,l) lactide nanoparticles/microparticles as a sustained-release system. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1263951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Majd Bani-Odeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Maryam Faroun
- The Nanotechnology Research Laboratory, Materials Engineering Department, Al-Quds University, East Jerusalem, Palestine
| | - Riham Muzaffar
- The Nanotechnology Research Laboratory, Materials Engineering Department, Al-Quds University, East Jerusalem, Palestine
| | - Hassan Sawalha
- Chemical Engineering Department, Faculty of Engineering, An Najah National University, Nablus, Palestine
| |
Collapse
|
8
|
Maji R, Dey NS, Satapathy BS, Mukherjee B, Mondal S. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int J Nanomedicine 2014; 9:3107-18. [PMID: 25028549 PMCID: PMC4077606 DOI: 10.2147/ijn.s63535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA) based nanoparticles (TNPs) were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7) breast cancer cells was also investigated. Methods Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR), surface morphology by field emission scanning electron microscopy (FESEM), zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (%) was studied. Results No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm) with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w), 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug. Conclusion TNPs (NP4) showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the good permeation of the formulation into the breast cancer cells.
Collapse
Affiliation(s)
- Ruma Maji
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta), India
| | - Niladri Shekhar Dey
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta), India
| | | | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta), India
| | - Subhasish Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta), India
| |
Collapse
|
9
|
Chen AZ, Wang GY, Wang SB, Li L, Liu YG, Zhao C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2. Int J Nanomedicine 2012; 7:3013-22. [PMID: 22787397 PMCID: PMC3391004 DOI: 10.2147/ijn.s32662] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of this study was to improve the drug loading, encapsulation efficiency, and sustained-release properties of supercritical CO(2)-based drug-loaded polymer carriers via a process of suspension-enhanced dispersion by supercritical CO(2) (SpEDS), which is an advanced version of solution-enhanced dispersion by supercritical CO(2) (SEDS). METHODS Methotrexate nanoparticles were successfully microencapsulated into poly (L-lactide)-poly(ethylene glycol)-poly(L-lactide) (PLLA-PEG-PLLA) by SpEDS. Methotrexate nanoparticles were first prepared by SEDS, then suspended in PLLA-PEG-PLLA solution, and finally microencapsulated into PLLA-PEG-PLLA via SpEDS, where an "injector" was utilized in the suspension delivery system. RESULTS After microencapsulation, the composite methotrexate (MTX)-PLLA-PEG-PLLA microspheres obtained had a mean particle size of 545 nm, drug loading of 13.7%, and an encapsulation efficiency of 39.2%. After an initial burst release, with around 65% of the total methotrexate being released in the first 3 hours, the MTX-PLLA-PEG-PLLA microspheres released methotrexate in a sustained manner, with 85% of the total methotrexate dose released within 23 hours and nearly 100% within 144 hours. CONCLUSION Compared with a parallel study of the coprecipitation process, microencapsulation using SpEDS offered greater potential to manufacture drug-loaded polymer microspheres for a drug delivery system.
Collapse
Affiliation(s)
- Ai-Zheng Chen
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | | | | | | | | | | |
Collapse
|
10
|
Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 2011; 165:1628-51. [PMID: 21947761 PMCID: PMC3239222 DOI: 10.1007/s12010-011-9383-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Abstract
Successful cancer management depends on accurate diagnostics along with specific treatment protocols. Current diagnostic techniques need to be improved to provide earlier detection capabilities, and traditional chemotherapy approaches to cancer treatment are limited by lack of specificity and systemic toxicity. This review highlights advances in nanotechnology that have allowed the development of multifunctional platforms for cancer detection, therapy, and monitoring. Nanomaterials can be used as MRI, optical imaging, and photoacoustic imaging contrast agents. When used as drug carriers, nanoformulations can increase tumor exposure to therapeutic agents and result in improved treatment effects by prolonging circulation times, protecting entrapped drugs from degradation, and enhancing tumor uptake through the enhanced permeability and retention effect as well as receptor-mediated endocytosis. Multiple therapeutic agents such as chemotherapy, antiangiogenic, or gene therapy agents can be simultaneously delivered by nanocarriers to tumor sites to enhance the effectiveness of therapy. Additionally, imaging and therapy agents can be co-delivered to provide seamless integration of diagnostics, therapy, and follow-up, and different therapeutic modalities such as chemotherapy and hyperthermia can be co-administered to take advantage of synergistic effects. Liposomes, metallic nanoparticles, polymeric nanoparticles, dendrimers, carbon nanotubes, and quantum dots are examples of nanoformulations that can be used as multifunctional platforms for cancer theranostics. Nanomedicine approaches in cancer have great potential for clinically translatable advances that can positively impact the overall diagnostic and therapeutic process and result in enhanced quality of life for cancer patients. However, a concerted scientific effort is still necessary to fully explore long-term risks, effects, and precautions for safe human use.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
| | | | | |
Collapse
|
11
|
Alli SMA. Preparation and characterization of a coacervate extended-release microparticulate delivery system for Lactobacillus rhamnosus. Int J Nanomedicine 2011; 6:1699-707. [PMID: 21984867 PMCID: PMC3184930 DOI: 10.2147/ijn.s19589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The purpose of this study was to develop a mucoadhesive coacervate microparticulate system to deliver viable Lactobacillus rhamnosus cells into the gut for an extended period of time while maintaining high numbers of viable cells within the formulation throughout its shelf-life and during gastrointestinal transit. METHODS Core coacervate mucoadhesive microparticles of L. rhamnosus were developed using several grades of hypromellose and were subsequently enteric-coated with hypromellose phthalate. Microparticles were evaluated for percent yield, entrapment efficiency, surface morphology, particle size, size distribution, zeta potential, flow properties, in vitro swelling, mucoadhesion properties, in vitro release profile and release kinetics, in vivo probiotic activity, and stability. The values for the kinetic constant and release exponent of model-dependent approaches, the difference factor, similarity factor, and Rescigno indices of model-independent approaches were determined for analyzing in vitro dissolution profiles. RESULTS Experimental microparticles of formulation batches were of spherical shape with percent yields of 41.24%-58.18%, entrapment efficiency 45.18%-64.16%, mean particle size 33.10-49.62 μm, and zeta potential around -11.5 mV, confirming adequate stability of L. rhamnosus at room temperature. The in vitro L. rhamnosus release profile follows zero-order kinetics and depends on the grade of hypromellose and the L. rhamnosus to hypromellose ratio. CONCLUSION Microparticles delivered L. rhamnosus in simulated intestinal conditions for an extended period, following zero-order kinetics, and exhibited appreciable mucoadhesion in simulated intestinal conditions.
Collapse
Affiliation(s)
- Sk Md Athar Alli
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12:62-76. [PMID: 21174180 DOI: 10.1208/s12249-010-9563-0] [Citation(s) in RCA: 432] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/30/2010] [Indexed: 01/28/2023] Open
Abstract
Lipid nanoparticles based on solid matrix have emerged as potential drug carriers to improve gastrointestinal (GI) absorption and oral bioavailability of several drugs, especially lipophilic compounds. These formulations may also be used for sustained drug release. Solid lipid nanoparticle (SLN) and the newer generation lipid nanoparticle, nanostructured lipid carrier (NLC), have been studied for their capability as oral drug carriers. Biodegradable, biocompatible, and physiological lipids are generally used to prepare these nanoparticles. Hence, toxicity problems related with the polymeric nanoparticles can be minimized. Furthermore, stability of the formulations might increase than other liquid nano-carriers due to the solid matrix of these lipid nanoparticles. These nanoparticles can be produced by different formulation techniques. Scaling up of the production process from lab scale to industrial scale can be easily achieved. Reasonably high drug encapsulation efficiency of the nanoparticles was documented. Oral absorption and bioavailability of several drugs were improved after oral administration of the drug-loaded SLNs or NLCs. In this review, pros and cons, different formulation and characterization techniques, drug incorporation models, GI absorption and oral bioavailability enhancement mechanisms, stability and storage condition of the formulations, and recent advances in oral delivery of the lipid nanoparticles based on solid matrix will be discussed.
Collapse
|