1
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
3
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
4
|
Ozana V, Hruska K, Sechi LA. Neglected Facts on Mycobacterium Avium Subspecies Paratuberculosis and Type 1 Diabetes. Int J Mol Sci 2022; 23:3657. [PMID: 35409018 PMCID: PMC8998319 DOI: 10.3390/ijms23073657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Civilization factors are responsible for the increasing of human exposure to mycobacteria from environment, water, and food during the last few decades. Urbanization, lifestyle changes and new technologies in the animal and plant industry are involved in frequent contact of people with mycobacteria. Type 1 diabetes is a multifactorial polygenic disease; its origin is conditioned by the mutual interaction of genetic and other factors. The environmental factors and certain pathogenetic pathways are shared by some immune mediated chronic inflammatory and autoimmune diseases, which are associated with triggers originating mainly from Mycobacterium avium subspecies paratuberculosis, an intestinal pathogen which persists in the environment. Type 1 diabetes and some other chronic inflammatory diseases thus pose the global health problem which could be mitigated by measures aimed to decrease the human exposure to this neglected zoonotic mycobacterium.
Collapse
Affiliation(s)
- Veronika Ozana
- Faculty of Pharmacy, Masaryk University, 612 00 Brno, Czech Republic;
- Orlova Department, Karvina-Raj Hospital, 734 01 Karvina, Czech Republic
| | - Karel Hruska
- Veterinary Research Institute, 612 00 Brno, Czech Republic
- Institute for Research and Education, 621 00 Brno, Czech Republic
| | - Leonardo A. Sechi
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università degli Studi di Sassari, 07100 Sassari, Italy
- AOU Sassari, UC Microbiologia e Virologia, 07100 Sassari, Italy
| |
Collapse
|
5
|
Locker KC, Kachapati K, Wu Y, Bednar KJ, Adams D, Patel C, Tsukamoto H, Heuer LS, Aronow BJ, Herr AB, Ridgway WM. Endosomal Sequestration of TLR4 Antibody Induces Myeloid-Derived Suppressor Cells and Reverses Acute Type 1 Diabetes. Diabetes 2022; 71:470-482. [PMID: 35040474 PMCID: PMC8893939 DOI: 10.2337/db21-0426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022]
Abstract
We previously showed that treating NOD mice with an agonistic monoclonal anti-TLR4/MD2 antibody (TLR4-Ab) reversed acute type 1 diabetes (T1D). Here, we show that TLR4-Ab reverses T1D by induction of myeloid-derived suppressor cells (MDSCs). Unbiased gene expression analysis after TLR4-Ab treatment demonstrated upregulation of genes associated with CD11b+Ly6G+ myeloid cells and downregulation of T-cell genes. Further RNA sequencing of purified, TLR4-Ab-treated CD11b+ cells showed significant upregulation of genes associated with bone marrow-derived CD11b+ cells and innate immune system genes. TLR4-Ab significantly increased percentages and numbers of CD11b+ cells. TLR4-Ab-induced CD11b+ cells, derived ex vivo from TLR4-Ab-treated mice, suppress T cells, and TLR4-Ab-conditioned bone marrow cells suppress acute T1D when transferred into acutely diabetic mice. Thus, the TLR4-Ab-induced CD11b+ cells, by the currently accepted definition, are MDSCs able to reverse T1D. To understand the TLR4-Ab mechanism, we compared TLR4-Ab with TLR4 agonist lipopolysaccharide (LPS), which cannot reverse T1D. TLR4-Ab remains sequestered at least 48 times longer than LPS within early endosomes, alters TLR4 signaling, and downregulates inflammatory genes and proteins, including nuclear factor-κB. TLR4-Ab in the endosome, therefore, induces a sustained, attenuated inflammatory response, providing an ideal "second signal" for the activation/maturation of MDSCs that can reverse acute T1D.
Collapse
Affiliation(s)
- Kathryn C.S. Locker
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kyle J. Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Caroline Patel
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hiroki Tsukamoto
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| | - Bruce J. Aronow
- Division of Bioinformatics, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital, Cincinnati, OH
| | - William M. Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA
| |
Collapse
|
6
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|
7
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Xiao Y, Shu L, Wu X, Liu Y, Cheong LY, Liao B, Xiao X, Hoo RL, Zhou Z, Xu A. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight 2021; 6:141814. [PMID: 33690220 PMCID: PMC8119222 DOI: 10.1172/jci.insight.141814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Both innate and adaptive immune cells are critical players in autoimmune destruction of insulin-producing β cells in type 1 diabetes. However, the early pathogenic events triggering the recruitment and activation of innate immune cells in islets remain obscure. Here we show that circulating fatty acid binding protein 4 (FABP4) level was significantly elevated in patients with type 1 diabetes and their first-degree relatives and positively correlated with the titers of several islet autoantibodies. In nonobese diabetic (NOD) mice, increased FABP4 expression in islet macrophages started from the neonatal period, well before the occurrence of overt diabetes. Furthermore, the spontaneous development of autoimmune diabetes in NOD mice was markedly reduced by pharmacological inhibition or genetic ablation of FABP4 or adoptive transfer of FABP4-deficient bone marrow cells. Mechanistically, FABP4 activated innate immune responses in islets by enhancing the infiltration and polarization of macrophages to proinflammatory M1 subtype, thus creating an inflammatory milieu required for activation of diabetogenic CD8+ T cells and shift of CD4+ helper T cells toward Th1 subtypes. These findings demonstrate FABP4 as a possible early mediator for β cell autoimmunity by facilitating crosstalk between innate and adaptive immune cells, suggesting that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for autoimmune diabetes.
Collapse
Affiliation(s)
- Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Hematologic Oncology, Cancer Center, Sun Yat-Sen University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Medicine, and
| | - Xiaoping Wu
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lai Yee Cheong
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Medicine, and
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Xiaoyu Xiao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruby L.C. Hoo
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology
- Department of Medicine, and
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Sinha S, Renavikar PS, Crawford MP, Steward-Tharp SM, Brate A, Tsalikian E, Tansey M, Shivapour ET, Cho T, Kamholz J, Karandikar NJ. Altered expression of SIRPγ on the T-cells of relapsing remitting multiple sclerosis and type 1 diabetes patients could potentiate effector responses from T-cells. PLoS One 2020; 15:e0238070. [PMID: 32853219 PMCID: PMC7451561 DOI: 10.1371/journal.pone.0238070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022] Open
Abstract
Factors regulating self-antigen directed immune-responses in autoimmunity are poorly understood. Signal regulatory protein gamma (SIRPγ) is a human T-cell specific protein with genetic variants associated with type 1 diabetes (T1D). SIRPγ's function in the immune system remains unclear. We show that T1D and relapsing remitting multiple sclerosis (RRMS) subjects have significantly greater frequency of rs2281808 T genetic variant, that correlates with reduced SIRPγ-expression in T-cells. Importantly, reduced SIRPγ-expression in RRMS and T1D subjects was not restricted to T variant, suggesting SIRPγ-expression is also regulated by disease specific factors in autoimmunity. Interestingly, increased frequencies of SIRPγlow T-cells in RRMS and T1D positively correlated with proinflammatory molecules from T-cells. Finally, we show that SIRPγlow T-cells have enhanced pathogenecity in vivo in a GVHD model. These findings suggest that decreased-SIRPγ expression, either determined by genetic variants or through peripherally acquired processes, may have a mechanistic link to autoimmunity through induction of hyperactive T-cells.
Collapse
Affiliation(s)
- Sushmita Sinha
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Pranav S. Renavikar
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Michael P. Crawford
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Scott M. Steward-Tharp
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Eva Tsalikian
- Department of Pediatrics, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Michael Tansey
- Department of Pediatrics, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Ezzatollah T. Shivapour
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Tracey Cho
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - John Kamholz
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| |
Collapse
|
10
|
Lu G, Rausell-Palamos F, Zhang J, Zheng Z, Zhang T, Valle S, Rosselot C, Berrouet C, Conde P, Spindler MP, Graham JG, Homann D, Garcia-Ocaña A. Dextran Sulfate Protects Pancreatic β-Cells, Reduces Autoimmunity, and Ameliorates Type 1 Diabetes. Diabetes 2020; 69:1692-1707. [PMID: 32381645 PMCID: PMC7372066 DOI: 10.2337/db19-0725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low-molecular-weight dextran sulfate (DS) is a sulfated semisynthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity, and ameliorate T1D is unknown. In this study, we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a proinflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in prediabetic NOD mice and, most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/HS proteoglycan expression, and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory costimulatory molecule programmed death-1 (PD-1) in T cells, reduces interferon-γ+CD4+ and CD8+ T cells, and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation, and immunomodulation can reverse diabetes in NOD mice, highlighting its therapeutic potential for the treatment of T1D.
Collapse
Affiliation(s)
- Geming Lu
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Francisco Rausell-Palamos
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiamin Zhang
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zihan Zheng
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cecilia Berrouet
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Matthew P Spindler
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John G Graham
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Homann
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
11
|
Abstract
Until recently, autoimmune disease research has primarily been focused on elucidating the role of the adaptive immune system. In the past decade or so, the role of the innate immune system in the pathogenesis of autoimmunity has increasingly been realized. Recent findings have elucidated paradigm-shifting concepts, for example, the implications of "trained immunity" and a dysbiotic microbiome in the susceptibility of predisposed individuals to clinical autoimmunity. In addition, the application of modern technologies such as the quantum dot (Qdot) system and 'Omics' (e.g., genomics, proteomics, and metabolomics) data-processing tools has proven fruitful in revisiting mechanisms underlying autoimmune pathogenesis and in identifying novel therapeutic targets. This review highlights recent findings discussed at the American Autoimmune Related Disease Association (AARDA) 2019 colloquium. The findings covering autoimmune diseases and autoinflammatory diseases illustrate how new developments in common innate immune pathways can contribute to the better understanding and management of these immune-mediated disorders.
Collapse
|
12
|
Sun L, Xi S, He G, Li Z, Gang X, Sun C, Guo W, Wang G. Two to Tango: Dialogue between Adaptive and Innate Immunity in Type 1 Diabetes. J Diabetes Res 2020; 2020:4106518. [PMID: 32802890 PMCID: PMC7415089 DOI: 10.1155/2020/4106518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a long-term and chronic autoimmune disorder, in which the immune system attacks the pancreatic β-cells. Both adaptive and innate immune systems are involved in T1DM development. Both B-cells and T-cells, including CD4 + and CD8 + T-cells, as well as other T-cell subsets, could affect onset of autoimmunity. Furthermore, cells involved in innate immunity, including the macrophages, dendritic cells, and natural killer (NK) cells, could also accelerate or decelerate T1DM development. In this review, the crosstalk and function of immune cells in the pathogenesis of T1DM, as well as the corresponding therapeutic interventions, are discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Shugang Xi
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guangyu He
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Zhuo Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Chenglin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| |
Collapse
|
13
|
Itoh A, Ortiz L, Kachapati K, Wu Y, Adams D, Bednar K, Mukherjee S, Chougnet C, Mittler RS, Chen YG, Dolan L, Ridgway WM. Soluble CD137 Ameliorates Acute Type 1 Diabetes by Inducing T Cell Anergy. Front Immunol 2019; 10:2566. [PMID: 31787971 PMCID: PMC6853870 DOI: 10.3389/fimmu.2019.02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
We show here that soluble CD137 (sCD137), the alternately spliced gene product of Tnfsfr9, effectively treats acute type 1 diabetes (T1D) in nonobese diabetic (NOD) mice. sCD137 significantly delayed development of end-stage disease, preserved insulin+ islet beta cells, and prevented progression to end-stage T1D in some mice. We demonstrate that sCD137 induces CD4+ T cell anergy, suppressing antigen-specific T cell proliferation and IL-2/IFN-γ secretion. Exogenous IL-2 reversed the sCD137 anergy effect. sCD137 greatly reduces inflammatory cytokine production by CD8 effector memory T cells, critical mediators of beta cell damage. We demonstrate that human T1D patients have decreased serum sCD137 compared to age-matched controls (as do NOD mice compared to NOD congenic mice expressing a protective Tnfsfr9 allele), that human sCD137 is secreted by regulatory T cells (Tregs; as in mice), and that human sCD137 induces T cell suppression in human T cells. These findings provide a rationale for further investigation of sCD137 as a treatment for T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lorenzo Ortiz
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kyle Bednar
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Claire Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Robert S Mittler
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Atlanta, GA, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Laurence Dolan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
14
|
Abdellatif AM, Sarvetnick NE. Current understanding of the role of gut dysbiosis in type 1 diabetes. J Diabetes 2019; 11:632-644. [PMID: 30864231 DOI: 10.1111/1753-0407.12915] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/13/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from destruction of the insulin-producing pancreatic β-cells. The disease mainly affects juveniles. Changes in the composition of the gut microbiota (dysbiosis) and changes in the properties of the gut barrier have been documented in T1D subjects. Because these factors affect immune system functions, they are likely to play a role in disease pathogenesis. However, their exact role is currently not fully understood and is under intensive investigation. In this article we discuss recent advancements depicting the role of intestinal dysbiosis on immunity and autoimmunity in T1D. We also discuss therapies aimed at maintaining a healthy gut barrier as prevention strategies for T1D.
Collapse
Affiliation(s)
- Ahmed M Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Nora E Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, Nebraska
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
15
|
Williams AC, Hill LJ. Nicotinamide and Demographic and Disease transitions: Moderation is Best. Int J Tryptophan Res 2019; 12:1178646919855940. [PMID: 31320805 PMCID: PMC6610439 DOI: 10.1177/1178646919855940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Good health and rapid progress depend on an optimal dose of nicotinamide. Too little meat triggers the neurodegenerative condition pellagra and tolerance of symbionts such as tuberculosis (TB), risking dysbioses and impaired resistance to acute infections. Nicotinamide deficiency is an overlooked diagnosis in poor cereal-dependant economies masquerading as 'environmental enteropathy' or physical and cognitive stunting. Too much meat (and supplements) may precipitate immune intolerance and autoimmune and allergic disease, with relative infertility and longevity, via the tryptophan-nicotinamide pathway. This switch favours a dearth of regulatory T (Treg) and an excess of T helper cells. High nicotinamide intake is implicated in cancer and Parkinson's disease. Pro-fertility genes, evolved to counteract high-nicotinamide-induced infertility, may now be risk factors for degenerative disease. Moderation of the dose of nicotinamide could prevent some common diseases and personalised doses at times of stress or, depending on genetic background or age, may treat some other conditions.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Wang J, Gou W, Kim DS, Strange C, Wang H. Clathrin-mediated Endocytosis of Alpha-1 Antitrypsin is Essential for its Protective Function in Islet Cell Survival. Am J Cancer Res 2019; 9:3940-3951. [PMID: 31281523 PMCID: PMC6587339 DOI: 10.7150/thno.31647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Cytokine-induced pancreatic β cell death plays a pivotal role in both type 1 and type 2 diabetes. Our previous study showed that alpha-1 antitrypsin (AAT) inhibits β cell death through the suppression of cytokine-induced c-Jun N-terminal kinase (JNK) activation in an islet transplantation model. The aim of this study was to further understand how AAT impacts β cells by studying AAT endocytosis in human islets and a βTC3 murine insulinoma cell line. Methods: In vitro, human islets and βTC3 cells were stimulated with cytokines in the presence or absence of chlorpromazine (CPZ), a drug that disrupts clathrin-mediated endocytosis. Western blot, real-time PCR and cell death ELISA were performed to investigate β cell death. The oxygen consumption rate (OCR) was measured on human islets. In vivo, islets were harvested from C57BL/6 donor mice treated with saline or human AAT and transplanted into the livers of syngeneic mice that had been rendered diabetic by streptozotocin (STZ). Islet graft survival and function were analyzed. Results: AAT was internalized by β cells in a time- and dose-dependent manner. AAT internalization was mediated by clathrin as treatment with CPZ, profoundly decreased AAT internalization, cytokine-induced JNK activation and the downstream upregulation of c-Jun mRNA expression. Similarly, addition of CPZ attenuated cytokine-induced caspase 9 cleavage (c-casp 9) and DNA fragmentation, which was suppressed by AAT. Treatment of donor mice with AAT produced AAT internalization in islets, and resulted in a higher percentage of recipients reaching normoglycemia after syngeneic intraportal islet transplantation. Conclusion: Our results suggest that AAT is internalized by β cells through clathrin-mediated endocytosis that leads to the suppression of caspase 9 activation. This process is required for the protective function of AAT in islets when challenged with proinflammatory cytokines or after islet transplantation.
Collapse
|
17
|
Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. MEDCHEMCOMM 2019; 10:280-293. [PMID: 30881615 PMCID: PMC6390468 DOI: 10.1039/c8md00419f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic β-cell membranes and presynaptic areas of neurons contain analogous protein complexes that control the secretion of bioactive molecules. These complexes include the neuroligins (NLs) and their binding partners, the neurexins (NXs). It has been recently reported that both insulin secretion and the proliferation rates of β-cells increase when cells are co-cultured with full-length NL-2 clusters. The pharmacological use of full-length protein is always problematic due to its unfavorable pharmacokinetic properties. Thus, NL-2-derived short peptide was conjugated to the surface of polyamidoamine-based (PAMAM) dendrimers. This nanoscale composite improved β-cell functions in terms of the rate of proliferation, glucose-stimulated insulin secretion (GSIS), and functional maturation. This functionalized dendrimer also protected β-cells under cellular stress conditions. In addition, various novel peptidomimetic scaffolds of NL-2-derived peptide were designed, synthesized, and conjugated to the surface of PAMAM in order to increase the biostability of the conjugates. However, after being covered by peptidomimetics, PAMAM dendrimers were inactive. Thus, the original peptide-based PAMAM dendrimer is a leading compound for continued research that might provide a unique starting point for designing an innovative class of antidiabetic therapeutics that possess a unique mode of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Yoni Moskovitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Aviv Meir
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Shirin Kahremany
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Department of Pharmacology , Cleveland Center for Membrane and Structural Biology , School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Laura Levy
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Michal Kolitz-Domb
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Guy Cohen
- Skin Research Institute , Dead Sea and Arava Research Center , Masada , Israel
| | - Efrat Shtriker
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Olga Viskind
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Jean-Paul Lellouche
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Nanomaterials Research Center , Institute of Nanotechnology & Advanced Materials (BINA) , Bar-Ilan University , Ramat-Gan , Israel
| | - Hanoch Senderowitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Steven D Chessler
- Division of Endocrinology, Diabetes & Metabolism , Department of Medicine , University of California , Irvine , CA , USA
| | - Edward E Korshin
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Sharon Ruthstein
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Arie Gruzman
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| |
Collapse
|
18
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Ni Q, Pham NB, Meng WS, Zhu G, Chen X. Advances in immunotherapy of type I diabetes. Adv Drug Deliv Rev 2019; 139:83-91. [PMID: 30528629 DOI: 10.1016/j.addr.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease affecting 3 million individuals in the U.S. The pathogenesis of T1DM is driven by immune-mediated destruction of pancreatic β cells, the source of glucose regulator insulin. While T1DM can be successfully managed with insulin replacement therapy, approaches that can modify the underlying immuno-pathology of β cell destruction has been long sought after. Immunotherapy can attenuate T cell responses against β cell antigens. Given the detailed cellular and molecular definitions of T1DM immune responses, rational immunomodulation can be and have been developed in mouse models, and in some instances, tested in humans. The possibility of identifying individuals who are predisposed to T1DM through genotyping lend to the possibility of preventive vaccines. While much has been accomplished in delineating the mechanisms of immunotherapies, some of which are being tested in humans, long-term preservation of β cells and insulin independency has not been achieved. In this regard, the drug delivery field has much to offer in maximizing the benefits of immune modulators by optimizing spatiotemporal presentation of antigens and costimulatory signals. In this review, we attempt to capture the current state of T1DM immunotherapy by highlighting representative studies.
Collapse
Affiliation(s)
- Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA; Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Liu C, Wang J, Wan Y, Xia X, Pan J, Gu W, Li M. Serum vitamin D deficiency in children and adolescents is associated with type 1 diabetes mellitus. Endocr Connect 2018; 7:1275-1279. [PMID: 30352405 PMCID: PMC6240138 DOI: 10.1530/ec-18-0191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND To investigate the relationship 25-hydroxy vitamin D (25OHD) level among children and in children with type 1 diabetes mellitus (T1DM). METHODS A case-control study was conducted to compare the serum 25OHD levels between cases and controls. This study recruited 296 T1DM children (106 newly diagnosed T1DM patients and 190 established T1DM patients), and 295 age- and gender-matched healthy subjects as controls. RESULTS The mean serum 25OHD in T1DM children was 48.69 ± 15.26 nmol/L and in the controls was 57.93 ± 19.03 nmol/L. The mean serum 25OHD in T1DM children was lower than that of controls (P < 0.01). The mean serum 25OHD level (50.42 ± 14.74 nmol/L) in the newly diagnosed T1DM children was higher than that (47.70 ± 15.50 nmol/L) in the established T1DM children but the difference was not statistically significant (P = 0.16). HbA1c values were associated with 25OHD levels in established T1DM children (r = 0.264, P < 0.01), and there was no association between 25OHD and HbA1c in newly diagnosed T1DM children (r = 0.164; P > 0.05). CONCLUSION Vitamin D deficiency is common in T1DM children, and it should be worthy of attention on the lack of vitamin D in established T1DM children.
Collapse
Affiliation(s)
- Changwei Liu
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
- Correspondence should be addressed to C Liu:
| | - Jingwen Wang
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wan
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Xiaona Xia
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Jian Pan
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Mei Li
- Children’s Hospital affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Saberzadeh-Ardestani B, Karamzadeh R, Basiri M, Hajizadeh-Saffar E, Farhadi A, Shapiro AMJ, Tahamtani Y, Baharvand H. Type 1 Diabetes Mellitus: Cellular and Molecular Pathophysiology at A Glance. CELL JOURNAL 2018; 20:294-301. [PMID: 29845781 PMCID: PMC6004986 DOI: 10.22074/cellj.2018.5513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a disease where destruction of the insulin producing pancreatic beta-cells leads
to increased blood sugar levels. Both genetic and environmental factors play a part in the development of T1DM.
Currently, numerous loci are specified to be the responsible genetic factors for T1DM; however, the mechanisms of only
a few of these genes are known. Although several environmental factors are presumed responsible for progression of
T1DM, to date, most of their mechanisms remain undiscovered. After several years of hyperglycemia, late onsets of
macrovascular (e.g., cardiovascular) and microvascular (e.g., neurological, ophthalmological, and renal) complications
may occur. This review and accompanying figures provides an overview of the etiological factors for T1DM, its
pathogenesis at the cellular level, and attributed complications.
Collapse
Affiliation(s)
- Bahar Saberzadeh-Ardestani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Aisan Farhadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - A M J Shapiro
- Clinical Islet Transplant Program and Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran. Electronic Address:
| |
Collapse
|
22
|
Miao C, Chang J, Zhang G, Fang Y. MicroRNAs in type 1 diabetes: new research progress and potential directions. Biochem Cell Biol 2018; 96:498-506. [PMID: 29554441 DOI: 10.1139/bcb-2018-0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding single-stranded RNA molecules encoded by endogenous genes of about 22 nucleotides, which are involved in post-transcriptional gene expression regulation in animals and plants. Type 1 diabetes (T1D) is an autoimmune disease that is clinically silent until the majority of β cells are destroyed, and a large number of studies have shown that miRNAs are involved in the pathological mechanism of T1D. In this review, we searched the related research in recent years and summarized the important roles of miRNAs in T1D diagnosis and treatment. Furthermore, we summarized the current understanding of miRNA-mediated regulation mechanisms of gene expression in the T1D pathogenesis as well as related signaling pathways with a focus on the important roles of miRNAs and their antagonists in T1D pathogenesis, and brought insight into the potential therapeutic value of miRNAs for T1D patients. In view of the important roles of miRNAs in T1D pathology, disordered miRNAs may be important diagnostic markers and therapeutic targets for patients with T1D.
Collapse
Affiliation(s)
- Chenggui Miao
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Jun Chang
- b Department of Orthopaedics, 4th Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Guoxue Zhang
- c College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanxi Fang
- a Department of Pharmacy, College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| |
Collapse
|
23
|
Fenske RJ, Kimple ME. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus. Exp Biol Med (Maywood) 2018; 243:586-591. [PMID: 29504478 DOI: 10.1177/1535370218761662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric Gz protein (Gαz) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gαz or inhibition of the Gαz signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gαz in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding investigation of beta-cell therapeutic targets for the treatment and prevention of type 1 diabetes mellitus is fundamentally relevant and timely. This review summarizes the overall scope of research into novel type 1 diabetes mellitus therapeutics, highlighting weaknesses or caveats in current clinical trials as well as describing potential new targets to pursue. More specifically, signaling proteins that act as modulators of beta-cell function, survival, and replication, as well as immune infiltration may need to be targeted to develop the most efficient pharmaceutical interventions for type 1 diabetes mellitus. One such beta-cell signaling pathway, mediated by the alpha subunit of the heterotrimeric Gz protein (Gαz), is discussed in more detail. The work described here will be critical in moving the field forward as it emphasizes the central role of the beta-cell in type 1 diabetes mellitus disease pathology.
Collapse
Affiliation(s)
- Rachel J Fenske
- 1 Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,2 Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.,3 Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michelle E Kimple
- 1 Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.,2 Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.,3 Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.,4 Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
24
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|