1
|
Chen H, Ao Q, Wang Y, Qian Y, Cheng Q, Zhang W. SOX11 as a potential prognostic biomarker in hepatocellular carcinoma linked to immune infiltration and ferroptosis. Chin J Cancer Res 2024; 36:378-397. [PMID: 39246708 PMCID: PMC11377886 DOI: 10.21147/j.issn.1000-9604.2024.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Objective SOX11 is expressed in numerous malignancies, including hepatocellular carcinomas (HCC), but its oncogenic function has not been elucidated. Here, we performed a comprehensive bioinformatics analysis of the Liver Hepatocellular Carcinoma (LIHC) dataset to investigate the function of SOX11 in tumorgenesis. Methods SOX11 expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were validated by immunohistochemistry (IHC). Co-expression, differential expression, and functional analyses utilized TCGA-LIHC, Timer 2.0, Metascape, GTEx, and LinkedOmics databases. Associations with immune infiltration, ferroptosis, and immune checkpoint genes were assessed. Genetic changes were explored via CBioPortal. Logistic regression, receiver operating characteristic curve (ROC), Kaplan-Meier analysis, and nomogram modeling evaluated associations with HCC clinicopathological features. SOX11's impact on proliferation and migration was studied in HepG2 and HuH7 cell lines. Results SOX11 was significantly elevated in HCC tumors compared to controls. SOX11-associated genes exhibited differential expression in pathways involving extracellular membrane ion channels. Significant associations were found between SOX11 levels, immune infiltration, ferroptosis, and immune checkpoint genes in HCC tissue. SOX11 levels correlated with HCC stage, histologic grade, and tumor status, and independently predicted overall and disease-specific survival. SOX11 expression effectively distinguished between tumor and normal liver tissue. Spearman correlations highlighted a significant relationship between SOX11 and ferroptosis-associated genes. Decreased SOX11 levels in HepG2 and HuH7 cells resulted in reduced proliferation and migration. Conclusions SOX11 was found to represent a promising biomarker within HCC diagnosis and prognosis together with being a possible drug-target.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Nephrology, the Second Medical Center of PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Qiangguo Ao
- Department of Nephrology, the Second Medical Center of PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yueling Wang
- Clinical Laboratory, the First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yue Qian
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Qingli Cheng
- Department of Nephrology, the Second Medical Center of PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Wei Zhang
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang 550000, China
| |
Collapse
|
2
|
Rasé VJ, Hayward R, Haughian JM, Pullen NA. Th17, Th22, and Myeloid-Derived Suppressor Cell Population Dynamics and Response to IL-6 in 4T1 Mammary Carcinoma. Int J Mol Sci 2022; 23:ijms231810299. [PMID: 36142210 PMCID: PMC9498998 DOI: 10.3390/ijms231810299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies relying on type 1 immunity have shown robust clinical responses in some cancers yet remain relatively ineffective in solid breast tumors. Polarization toward type 2 immunity and expansion of myeloid-derived suppressor cells (MDSC) confer resistance to therapy, though it remains unclear whether polarization toward type 3 immunity occurs or has a similar effect. Therefore, we investigated the involvement of type 3 Th17 and Th22 cells and their association with expanding MDSC populations in the 4T1 mouse mammary carcinoma model. Th17 and Th22 were detected in the earliest measurable mass at d 14 and remained present until the final sampling on d 28. In peripheral organs, Th17 populations were significantly higher than the non-tumor bearing control and peaked early at d 7, before a palpable tumor had formed. Peripheral Th22 proportions were also significantly increased, though at later times when tumors were established. To further address the mechanism underlying type 3 immune cell and MDSC recruitment, we used CRISPR-Cas9 to knock out 4T1 tumor production of interleukin-6 (4T1-IL-6-KO), which functions in myelopoiesis, MDSC recruitment, and Th maturation. While 4T1-IL-6-KO tumor growth was similar to the control, the reduced IL-6 significantly expanded the total CD4+ Th population and Th17 in tumors, while Th22 and MDSC were reduced in all tissues; this suggests that clinical IL-6 depletion combined with immunotherapy could improve outcomes. In sum, 4T1 mammary carcinomas secrete IL-6 and other factors, to polarize and reshape Th populations and expand distinct Th17 and Th22 populations, which may facilitate tumor growth and confer immunotherapy resistance.
Collapse
Affiliation(s)
- Viva J. Rasé
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Reid Hayward
- School of Sport and Exercise Science, University of Northern Colorado, Greeley, CO 80639, USA
| | - James M. Haughian
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Nicholas A. Pullen
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
- Correspondence: ; Tel.: +1-970-351-1843; Fax: +1-970-351-2335
| |
Collapse
|
3
|
An Immune-Related Prognostic Classifier Is Associated with Diffuse Large B Cell Lymphoma Microenvironment. J Immunol Res 2021; 2021:5564568. [PMID: 34212052 PMCID: PMC8205595 DOI: 10.1155/2021/5564568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is a life-threatening malignant tumor characterized by heterogeneous clinical, phenotypic, and molecular manifestations. Given the association between immunity and tumors, identifying a suitable immune biomarker could improve DLBCL diagnosis. Methods We systematically searched for DLBCL gene expression microarray datasets from the GEO database. Immune-related genes (IRGs) were obtained from the ImmPort database, and 318 transcription factor (TF) targets in cancer were retrieved from the Cistrome Cancer database. An immune-related classifier for DLBCL prognosis was constructed using Cox regression and LASSO analysis. To assess differences in overall survival between the low- and high-risk groups, we analyzed the tumor microenvironment (TME) and immune infiltration in DLBCL using the ESTIMATE and CIBERSORT algorithms. WGCNA was applied to study the molecular mechanisms explaining the clinical significance of our immune-related classifier and TFs. Results Eighteen IRGs were selected to construct the classifier. The multi-IRG classifier showed powerful predictive ability. Patients with a high-risk score had poor survival. Based on the AUC for three- and five-year survival, the classifier exhibited better predictive power than clinical data. Discrepancies in overall survival between the low- and high-risk score groups might be explained by differences in immune infiltration, TME, and transcriptional regulation. Conclusions Our study describes a novel prognostic IRG classifier with strong predictive power in DLBCL. Our findings provide valuable guidance for further analysis of DLBCL pathogenesis and clinical treatment.
Collapse
|
4
|
Shibabaw T. Inflammatory Cytokine: IL-17A Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J Inflamm Res 2020; 13:673-680. [PMID: 33116747 PMCID: PMC7547786 DOI: 10.2147/jir.s278335] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a globally communicable public health disease caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV-2). Eradication of COVID-19 appears practically impossible but, therefore, more effective pharmacotherapy is needed. The deteriorated clinical presentation of patients with COVID-19 is mainly associated with hypercytokinemia due to notoriously elevated pro-inflammatory cytokines such as interleukin (IL)-1B, IL-6, IL-8, IL-17, granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), interferon-γ-inducible protein (IP10), monocyte chemoattractant protein (MCP1), and tumor necrosis factor-α (TNFα), and is usually responsible for cytokine release syndrome. In the cytokine storm, up-regulation of T-helper 17 cell cytokine IL-17A, and maybe also IL-17F, is mostly responsible for the immunopathology of COVID-19 and acute respiratory distress syndrome. Herein, I meticulously review the exuberant polarization mechanism of naïve CD4+ T cells toward Th17 cells in response to SARS-CoV-2 infection and its associated immunopathological sequelae. I also, propose, for clinical benefit, targeting IL-17A signaling and the synergic inflammatory cytokine IL-6 to manage COVID-19 patients, particularly those presenting with cytokine storm syndrome.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Cheng WT, Kantilal HK, Davamani F. The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malays J Med Sci 2020; 27:9-21. [PMID: 32863742 PMCID: PMC7444842 DOI: 10.21315/mjms2020.27.4.2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
The Bacteroides fragilis (B. fragilis) produce biofilm for colonisation in the intestinal tract can cause a series of inflammatory reactions due to B. fragilis toxin (BFT) which can lead to chronic intestinal inflammation and tissue injury and play a crucial role leading to colorectal cancer (CRC). The enterotoxigenic B. fragilis (ETBF) forms biofilm and produce toxin and play a role in CRC, whereas the non-toxigenic B. fragilis (NTBF) does not produce toxin. The ETBF triggers the expression of cyclooxygenase (COX)-2 that releases PGE2 for inducing inflammation and control cell proliferation. From chronic intestinal inflammation to cancer development, it involves signal transducers and activators of transcription (STAT)3 activation. STAT3 activates by the interaction between epithelial cells and BFT. Thus, regulatory T-cell (Tregs) will activates and reduce interleukin (IL)-2 amount. As the level of IL-2 drops, T-helper (Th17) cells are generated leading to increase in IL-17 levels. IL-17 is implicated in early intestinal inflammation and promotes cancer cell survival and proliferation and consequently triggers IL-6 production that activate STAT3 pathway. Additionally, BFT degrades E-cadherin, hence alteration of signalling pathways can upregulate spermine oxidase leading to cell morphology and promote carcinogenesis and irreversible DNA damage. Patient with familial adenomatous polyposis (FAP) disease displays a high level of tumour load in the colon. This disease is caused by germline mutation of the adenomatous polyposis coli (APC) gene that increases bacterial adherence to the mucosa layer. Mutated-APC gene genotype with ETBF increases the chances of CRC development. Therefore, the colonisation of the ETBF in the intestinal tract depicts tumour aetiology can result in risk of hostility and effect on human health.
Collapse
Affiliation(s)
- Wai Teng Cheng
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Haresh Kumar Kantilal
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Shihab I, Khalil BA, Elemam NM, Hachim IY, Hachim MY, Hamoudi RA, Maghazachi AA. Understanding the Role of Innate Immune Cells and Identifying Genes in Breast Cancer Microenvironment. Cancers (Basel) 2020; 12:cancers12082226. [PMID: 32784928 PMCID: PMC7464944 DOI: 10.3390/cancers12082226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens and has a major role in clearing transformed cells, besides its essential role in activating the adaptive immune system. Macrophages, dendritic cells, NK cells, and granulocytes are part of the innate immune system that accumulate in the tumor microenvironment such as breast cancer. These cells induce inflammation in situ by secreting cytokines and chemokines that promote tumor growth and progression, in addition to orchestrating the activities of other immune cells. In breast cancer microenvironment, innate immune cells are skewed towards immunosuppression that may lead to tumor evasion. However, the mechanisms by which immune cells could interact with breast cancer cells are complex and not fully understood. Therefore, the importance of the mammary tumor microenvironment in the development, growth, and progression of cancer is widely recognized. With the advances of using bioinformatics and analyzing data from gene banks, several genes involved in NK cells of breast cancer individuals have been identified. In this review, we discuss the activities of certain genes involved in the cross-talk among NK cells and breast cancer. Consequently, altering tumor immune microenvironment can make breast tumors more responsive to immunotherapy.
Collapse
Affiliation(s)
- Israa Shihab
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Bariaa A. Khalil
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Noha Mousaad Elemam
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Ibrahim Y. Hachim
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, UAE;
| | - Rifat A. Hamoudi
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
| | - Azzam A. Maghazachi
- Department of Clinical Sciences and the Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (I.S.); (B.A.K.); (N.M.E.); (I.Y.H.); (R.A.H.)
- Correspondence:
| |
Collapse
|
7
|
Nistor GI, Dillman RO. Cytokine network analysis of immune responses before and after autologous dendritic cell and tumor cell vaccine immunotherapies in a randomized trial. J Transl Med 2020; 18:176. [PMID: 32316978 PMCID: PMC7171762 DOI: 10.1186/s12967-020-02328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background In a randomized phase II trial conducted in patients with metastatic melanoma, patient-specific autologous dendritic cell vaccines (DCV) were associated with longer survival than autologous tumor cell vaccines (TCV). Both vaccines presented antigens from cell-renewing autologous tumor cells. The current analysis was performed to better understand the immune responses induced by these vaccines, and their association with survival. Methods 110 proteomic markers were measured at a week-0 baseline, 1 week before the first of 3 weekly vaccine injections, and at week-4, 1 week after the third injection. Data was presented as a deviation from normal controls. A two-component principal component (PC) statistical analysis and discriminant analysis were performed on this data set for all patients and for each treatment cohort. Results At baseline PC-1 contained 64.4% of the variance and included the majority of cytokines associated with Th1 and Th2 responses, which positively correlated with beta-2-microglobulin (B2M), programmed death protein-1 (PD-1) and transforming growth factor beta (TGFβ1). Results were similar at baseline for both treatment cohorts. After three injections, DCV-treated patients showed correlative grouping among Th1/Th17 cytokines on PC-1, with an inverse correlation with B2M, FAS, and IL-18, and correlations among immunoglobulins in PC-2. TCV-treated patients showed a positive correlation on PC-1 among most of the cytokines and tumor markers B2M and FAS receptor. There were also correlative changes of IL12p40 with both Th1 and Th2 cytokines and TGFβ1. Discriminant analysis provided additional evidence that DCV was associated with innate, Th1/Th17, and Th2 responses while TCV was only associated with innate and Th2 responses. Conclusions These analyses confirm that DCV induced a different immune response than that induced by TCV, and these immune responses were associated with improved survival. Trial registration Clinical trials.gov NCT004936930 retrospectively registered 28 July 2009
Collapse
Affiliation(s)
- Gabriel I Nistor
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA
| | - Robert O Dillman
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA.
| |
Collapse
|
8
|
Salmani A, Mohammadi M, Farid Hosseini R, Tavakol Afshari J, Fouladvand A, Dehnavi S, Khoshkhooi M, Jabbari Azad F. A significant increase in expression of FOXP3 and IL-17 genes in patients with allergic rhinitis underwent accelerated rush immunotherapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:989-996. [PMID: 31807241 PMCID: PMC6880522 DOI: 10.22038/ijbms.2019.32979.7878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective(s): Allergic rhinitis (AR) is a common hypersensitivity disease worldwide. Immunotherapy has been performed as the best treatment for years. This study aimed to study the gene expression pattern of immune system cells following an accelerated rush immunotherapy protocol (ARIT) in patients with AR. Materials and Methods: Fifteen patients with AR (15–55 years old) resident in Mashhad, Iran, with positive prick test to regional aeroallergens (weed mix, grass mix, tree mix, and Salsola) enrolled in this study. All patients were treated for three months with 3-day ARIT protocol between July 2015 and August 2016. Clinical symptoms and quality of life were recorded by two questioners. The expression levels of FOXP3, TGF-β, IL-10, IL-17, IL-4, and IFN-γ genes in patient’s peripheral blood mononuclear cells were evaluated by SYBR Green real-time RT-PCR technique. Results: The severity of disease and quality of life showed significant improvement following ARIT (P-value<0.05). Gene expression of IFN-γ and IL-10 was increased whereas TGF-β and IL-4 down-regulated, following ARIT, but these changes were not significant. However, gene expression of FOXP3 and IL-17 was significantly increased after intervention when compared with the baseline (P-value< 0.002). Conclusion: Significant up-regulation of FOXP3 and IL-17 genes, additionally, a significant improvement in the clinical signs following ARIT might be related to increases in HLA-DR- and FOXP3+ Treg population at the initiation phase of ARIT. Employing the flow cytometry technique to study the phenotype of these cells is suggested for future studies.
Collapse
Affiliation(s)
- Amirabbas Salmani
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farid Hosseini
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Fouladvand
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Khoshkhooi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
9
|
Dillman RO, Nistor GI, Poole AJ. Genomic, proteomic, and immunologic associations with a durable complete remission of measurable metastatic melanoma induced by a patient-specific dendritic cell vaccine. Hum Vaccin Immunother 2019; 16:742-755. [PMID: 31625825 PMCID: PMC7227648 DOI: 10.1080/21645515.2019.1680239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This report describes efforts to understand the immune mechanism of action that led to a complete response in a patient with progressive, refractory, metastatic melanoma after treatment with a therapeutic vaccine consisting of autologous dendritic cells (DC) loaded with autologous tumor antigens (ATA) derived from cells that were self-renewing in cell culture. Her histocompatibility type proved to be HLA B27 with extensive mutations in the HLA-A locus. Exomic analysis of proliferating tumor cells revealed more than 2800 non-synonymous mutations compared to her leukocytes. Histology of resected tumor lesions showed no evidence of an existing or suppressed immune response. In in vitro mixed cell cultures, DC loaded with ATA induced increased IL-22 expression, and a four-fold increase in CD8 + T lymphocytes. Cryopreserved blood samples obtained at week-0, 1 week before the first of three-weekly vaccine injections, and at week-4, 1 week after the third dose, were analyzed by protein array and compared for 110 different serum markers. At baseline, she had marked elevations of amyloid A, IL-12p40, IL21, IL-22, IL-10, IL-16, GROa, TNF-alpha, IL-3, and IL-2, and a lesser elevation of IL-15. One week after 3 weekly vaccinations she had a further 80% increase in amyloid A, a further 66% increase in IL-22, a 92% decrease in IL12p40, a 45% decrease in TGF-β and 26% decrease in IL-10. The data suggested that by 3 weeks after the first DCV injection, vaccine-induced changes in this particular patient were most consistent with enhanced innate and Th1 immune responses rather than Th2 or Th17.
Collapse
Affiliation(s)
- Robert O Dillman
- AIVITA Biomedical, Inc, Irvine, CA, USA.,Hoag Cancer Institute, Newport Beach, CA, USA
| | | | | |
Collapse
|
10
|
Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018; 155:1706-1715. [PMID: 30218667 PMCID: PMC6441974 DOI: 10.1053/j.gastro.2018.08.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Sporadic colorectal cancer is one of the most common and lethal cancers worldwide. The locations and functions of immune cells in the colorectal tumor microenvironment are complex and heterogeneous. T-helper (Th)1 cell-mediated responses against established colorectal tumors are associated with better outcomes of patients (time of relapse-free or overall survival), whereas Th17 cell-mediated responses and production of interleukin 17A (IL17A) have been associated with worse outcomes of patients. Tumors that develop in mouse models of colorectal cancer are rarely invasive and differ in many ways from human colorectal tumors. However, these mice have been used to study the mechanisms by which Th17 cells and IL17A promote colorectal tumor initiation and growth, which appear to involve their direct effects on colon epithelial cells. Specific members of the colonic microbiota may promote IL17A production and IL17A-producing cell functions in the colonic mucosa to promote carcinogenesis. Increasing our understanding of the interactions between the colonic microbiota and the mucosal immune response, the roles of Th17 cells and IL17 in these interactions, and how these processes are altered during colon carcinogenesis, could lead to new strategies for preventing or treating colorectal cancer.
Collapse
Affiliation(s)
- Christopher G Hurtado
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Franck Housseau
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Cynthia L Sears
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland; Blomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Interleukin-1 Beta-A Friend or Foe in Malignancies? Int J Mol Sci 2018; 19:ijms19082155. [PMID: 30042333 PMCID: PMC6121377 DOI: 10.3390/ijms19082155] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
Interleukin-1 beta (IL-1β) is induced by inflammatory signals in a broad number of immune cell types. IL-1β (and IL-18) are the only cytokines which are processed by caspase-1 after inflammasome-mediated activation. This review aims to summarize current knowledge about parameters of regulation of IL-1β expression and its multi-facetted role in pathophysiological conditions. IL-1 signaling activates innate immune cells including antigen presenting cells, and drives polarization of CD4+ T cells towards T helper type (Th) 1 and Th17 cells. Therefore, IL-1β has been attributed a largely beneficial role in resolving acute inflammations, and by initiating adaptive anti-tumor responses. However, IL-1β generated in the course of chronic inflammation supports tumor development. Furthermore, IL-1β generated within the tumor microenvironment predominantly by tumor-infiltrating macrophages promotes tumor growth and metastasis via different mechanisms. These include the expression of IL-1 targets which promote neoangiogenesis and of soluble mediators in cancer-associated fibroblasts that evoke antiapoptotic signaling in tumor cells. Moreover, IL-1 promotes the propagation of myeloid-derived suppressor cells. Using genetic mouse models as well as agents for pharmacological inhibition of IL-1 signaling therapeutically applied for treatment of IL-1 associated autoimmune diseases indicate that IL-1β is a driver of tumor induction and development.
Collapse
|
12
|
The Plasticity of CD4 +CD25 +FOXP3 +CD127 low T Cells in Patients with Metastatic Renal Cell Carcinoma in the Course of Interferon-Alpha Immunotherapy. JOURNAL OF ONCOLOGY 2018; 2018:7828735. [PMID: 29853890 PMCID: PMC5954933 DOI: 10.1155/2018/7828735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/18/2022]
Abstract
Aims To examine changes in subpopulation of CD4+CD25+Foxp3+CD127low T lymphocytes (Treg) and their association with the efficiency of the IFN-α therapy. Materials and Methods Pts with mRCC who had undergone nephrectomy were treated with IFN-α at a dose of 6 × 106 U/day three times a week (n = 18). An immunophenotypic analysis of lymphocytes in peripheral blood expressing CD4, CD25, CD127, and Foxp3 antigens could be performed in 18 pts before, 2 weeks, and 2 mo after IFN-α therapy and 22 normal volunteers. Blood samples were collected at baseline and 2 mo after treatment start. Serum levels of TGF-β1, IL-17A, and Epo were measured by ELISA. Results PR was achieved in 3 (16.6%) pts who received first-line therapy. Long-lasting SD (≥6 months) was noted in 6 (33.3%) pts. The median progression free survival (PFS) was 4 mo (95% CI: 2-NE). The study of the population of Treg indicated that there were no significant differences in the groups depending on the effect (p = 0.71). In one patient, the reduction of Treg cells was associated with increased TGF-β and IL-17 levels, whereas in other two pts the increase in Treg cells was associated with decreased TGF-β and IL-17 levels. The endogenous levels of Epo did not show significant correlation with response to IFN-α immunotherapy. In the patient subgroup with an initial value of MCH > 31 pg, the median PFS was not achieved, but in the subgroup with an initial value of MCH < 31 pg, the median PFS was 2 months (p = 0.032). Conclusions In our study, we have described functional plasticity of Treg cells, which prevents them from being used as a prognostic marker. The conversion of Treg cells into Th17 can serve as a basis for the development of a new specific immunotherapeutic method in oncology after confirmation in the experiment in vitro. Given the small dataset, the results will need further validation.
Collapse
|
13
|
Zheng X, Hu Y, Yao C. The paradoxical role of tumor-infiltrating immune cells in lung cancer. Intractable Rare Dis Res 2017; 6:234-241. [PMID: 29259850 PMCID: PMC5735275 DOI: 10.5582/irdr.2017.01059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains one of the leading causes of death worldwide, and lung cancers have often already metastasized when diagnosed. Numerous studies have noted the infiltration of immune cells in the lung cancer microenvironment, but these cells play a dualistic role, i.e. they suppress and/or promote tumor development and growth based on tumor progression and different cytokines in the microenvironment. These tumor-infiltrating immune cells create different microenvironments depending on their type and interaction. Chemokines act as a bridge in this process by recruiting immune cells to the tumor site and they regulate the phenotypes and functions of those cells. The current review summarizes current knowledge about the tumor-infiltrating immune cells in lung cancer as well as the mechanisms involved in suppression and promotion of tumor development and growth.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Yuhai Hu
- Clinical Laboratory, Wuhan Hankou Hospital, Wuhan, China
| | - Chengfang Yao
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to: Dr. Chengfang Yao, Institute of Basic Medicine, Shandong Academy of Medical Sciences, No. 18877 Jingshi Road, Ji'nan 250062, Shandong, China. E-mail:
| |
Collapse
|
14
|
Tang WJ, Tao L, Lu LM, Tang D, Shi XL. Role of T helper 17 cytokines in the tumour immune inflammation response of patients with laryngeal squamous cell carcinoma. Oncol Lett 2017; 14:561-568. [PMID: 28693206 PMCID: PMC5494688 DOI: 10.3892/ol.2017.6253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Altered cytokine production can lead to immune dysfunction in patients with cancer. The present study investigated the expression of T helper (Th)17 cytokines in patients with laryngeal squamous cell carcinoma (LSCC) and their clinical significance in providing new therapeutic insights. The prevalence of Th17 cells and their receptors in patients with LSCC was studied using immunohistochemical analysis via tissue microarray technology. Flow cytometry was used to investigate the percentage of Th17 and Th1 cells in peripheral blood mononuclear cells. Furthermore, the proliferation of Th17 cells and Th17-associated cytokines, including interleukin (IL)17, IL23 and RAR-related orphan receptor γt, was analyzed by reverse transcription-quantitative polymerase chain reaction. The results revealed that the prevalence of Th17 cells in patients with LSCC was elevated in their primary tumors, as well as in peripheral blood, compared with that in healthy controls. It was further demonstrated that Th17 cells could be induced and expanded in the tumor microenvironment through cytokines produced by the tumor cells. In conclusion, Th17 cells have a substantial impact on the carcinogenesis of LSCCs, and could serve as a potential therapeutic target to modulate the anti-tumor response in these carcinomas.
Collapse
Affiliation(s)
- Wei-Jing Tang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Lei Tao
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Di Tang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Xiao-Lin Shi
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
15
|
Drakes ML, Stiff PJ. Harnessing immunosurveillance: current developments and future directions in cancer immunotherapy. Immunotargets Ther 2014; 3:151-65. [PMID: 27471706 PMCID: PMC4918242 DOI: 10.2147/itt.s37790] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improved methods of cancer detection and disease management over the last few decades, cancer remains a major public health problem in many societies. Conventional therapies, such as chemotherapy, radiation, and surgery, are not usually sufficient to prevent disease recurrence. Therefore, efforts have been focused on developing novel therapies to manage metastatic disease and to prolong disease-free and overall survival, by modulating the immune system to alleviate immunosuppression, and to enhance antitumor immunity. This review discusses protumor mechanisms in patients that circumvent host immunosurveillance, and addresses current immunotherapy modalities designed to target these mechanisms. Given the complexity of cancer immunosuppressive mechanisms, we propose that identification of novel disease biomarkers will drive the development of more targeted immunotherapy. Finally, administration of different classes of immunotherapy in combination regimens, will be the ultimate route to impact low survival rates in advanced cancer patients.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Patrick J Stiff
- Department of Medicine, Division of Hematology and Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|