1
|
Shi Q, Wang S, Wang G, Wang T, Du K, Gao C, Guo X, Fu S, Yun K. Serum metabolomics analysis reveals potential biomarkers of penicillins-induced fatal anaphylactic shock in rats. Sci Rep 2024; 14:23534. [PMID: 39384950 PMCID: PMC11464644 DOI: 10.1038/s41598-024-74623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Immunoglobulin E (IgE)-mediated immediate hypersensitivity reactions are the most concerning adverse events after penicillin antibiotics (PENs) administration because of their rapid progression and potential for fatal outcome. However, the diagnosis of allergic death is a forensic challenge because it mainly depends on nonspecific characteristic morphological changes, as well as exclusion and circumstantial evidence. In this study, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) was used to screen potential forensic biomarkers of fatal anaphylactic shock induced by four PENs (benzylpenicillin (BP), amoxicillin (AMX), oxacillin (OXA), and mezlocillin (MEZ)), and analyzed the metabolites, metabolic pathway and the mechanism which were closely related to the allergic reactions. The metabolomics results discovered that a total of 24 different metabolites in all four anaphylactic death (AD) groups, seven of which were common metabolites. A biomarker model consisting of six common metabolites (linoleic acid, prostaglandin D2, lysophosphatidylcholine (18:0), N-acetylhistamine, citric acid and indolelactic acid) AUC value of Receiver Operating Characteristic (ROC) curve was 0.978. Metabolism pathway analysis revealed that the pathogenesis of PENs-induced AD is closely related to linoleic acid metabolism. Our results revealed that the metabolomic profiling has potential in PENs-induced AD post-mortem diagnosis and metabolic mechanism investigations.
Collapse
Affiliation(s)
- Qianwen Shi
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Shuhui Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Gege Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Tao Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Kaili Du
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Department of Pathology, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Cairong Gao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
| | - Xiangjie Guo
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Shanlin Fu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China
- Centre for Forensic Science, University of Technology Sydney, Sydney, 2007, Australia
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, P. R. China.
- Shanxi Key Laboratory of Forensic Medicine, Shanxi, 030600, P. R. China.
| |
Collapse
|
2
|
Li J, Zhang C, Tang J, He M, He C, Pu G, Liu L, Sun J. Causal associations between gut microbiota, metabolites and asthma: a two-sample Mendelian randomization study. BMC Pulm Med 2024; 24:72. [PMID: 38326796 PMCID: PMC10848467 DOI: 10.1186/s12890-024-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/05/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND While several traditional observational studies have suggested associations between gut microbiota and asthma, these studies are limited by factors such as participant selection bias, confounders, and reverse causality. Therefore, the causal relationship between gut microbiota and asthma remains uncertain. METHODS We performed two-sample bi-directional Mendelian randomization (MR) analysis to investigate the potential causal relationships between gut microbiota and asthma as well as its phenotypes. We also conducted MR analysis to evaluate the causal effect of gut metabolites on asthma. Genetic variants for gut microbiota were obtained from the MiBioGen consortium, GWAS summary statistics for metabolites from the TwinsUK study and KORA study, and GWAS summary statistics for asthma from the FinnGen consortium. The causal associations between gut microbiota, gut metabolites and asthma were examined using inverse variance weighted, maximum likelihood, MR-Egger, weighted median, and weighted model and further validated by MR-Egger intercept test, Cochran's Q test, and "leave-one-out" sensitivity analysis. RESULTS We identified nine gut microbes whose genetically predicted relative abundance causally impacted asthma risk. After FDR correction, significant causal relationships were observed for two of these microbes, namely the class Bacilli (OR = 0.84, 95%CI = 0.76-0.94, p = 1.98 × 10-3) and the order Lactobacillales (OR = 0.83, 95%CI = 0.74-0.94, p = 1.92 × 10-3). Additionally, in a reverse MR analysis, we observed a causal effect of genetically predicted asthma risk on the abundance of nine gut microbes, but these associations were no longer significant after FDR correction. No significant causal effect of gut metabolites was found on asthma. CONCLUSIONS Our study provides insights into the development mechanism of microbiota-mediated asthma, as well as into the prevention and treatment of asthma through targeting specific gut microbiota.
Collapse
Affiliation(s)
- Jingli Li
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chunyi Zhang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jixian Tang
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Meng He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Chunxiao He
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Guimei Pu
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Lingjing Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
3
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
4
|
Losol P, Wolska M, Wypych TP, Yao L, O'Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases. Clin Transl Allergy 2024; 14:e12339. [PMID: 38342758 PMCID: PMC10859320 DOI: 10.1002/clt2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
- Department of Molecular Biology and GeneticsSchool of BiomedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Magdalena Wolska
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Tomasz P. Wypych
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Lu Yao
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
5
|
Shi J, Zhao J, Zhang Y, Wang Y, Tan CP, Xu YJ, Liu Y. Windows Scanning Multiomics: Integrated Metabolomics and Proteomics. Anal Chem 2023; 95:18793-18802. [PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jialiang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Xie Q, Liu C, Fu W, Chen C, Luo D, Xue W. Combination of Gut Microbial Features and the Proteomic Pattern Revealed Changes in Specific Intestinal Luminal Factors and Mechanisms of Their Regulation of Gluten Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12558-12573. [PMID: 37581333 DOI: 10.1021/acs.jafc.3c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Recent research consensus has highlighted the role of intestinal luminal factors in the association between intestinal microenvironment homeostasis and food allergy. However, the association between intestinal immune homeostasis and food allergy-related proteomic features remains elusive. In this study, we aimed to investigate the changes in gluten allergy (GA)-defined phenotypes and endotypes and intestinal microenvironment factors in BALB/c mice and linked GA to colonic proteomic signatures. Combined with increased allergy and diarrhea scores, intense antibody responses and abnormalities in T-cell cytokine production were induced in mice. GA-associated disruption of intestinal microenvironment homeostasis was underlined by the increased colonic pH, decreased intestinal antioxidant capacity, impaired intestinal barrier function, and decreased production and imbalanced proportions of short-chain fatty acids. 16S rRNA amplicon sequencing showed that the gut microbiota dysbiosis in mice was characterized by significant enrichment of six bacterial taxonomic units, including Prevotellaceae, Escherichia Shigella, Alloprevotella, Escherichia coli, Bacteroides vulgatus, and Lachnospiraceae bacterium DW59, which was correlated with immune end points. Using a label-free proteomics quantitative approach, 24 differentially expressed proteins linking GA-induced gut dysbiosis were identified, with four of them enriched in the serine endopeptidase inhibitor activity pathway. The development of GA in mice was associated with changes in specific intestinal luminal factors and may be mediated by serine protease activity-associated metabolic routes.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Chenglong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wenhui Fu
- School of Medicine, Nankai University, Tianjin 300000, P. R. China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| |
Collapse
|
7
|
Falcon RMG, Caoili SEC. Immunologic, genetic, and ecological interplay of factors involved in allergic diseases. FRONTIERS IN ALLERGY 2023; 4:1215616. [PMID: 37601647 PMCID: PMC10435091 DOI: 10.3389/falgy.2023.1215616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
An allergic or type I hypersensitivity reaction involves a misdirected immune overreaction to innocuous environmental and dietary antigens called allergens. The genetic predisposition to allergic disease, referred to as atopy, can be expressed as a variety of manifestations-e.g., allergic rhinitis, allergic conjunctivitis, atopic dermatitis, allergic asthma, anaphylaxis. Globally, allergic diseases are one the most common types of chronic conditions. Several factors have been identified to contribute to the pathogenesis and progression of the disease, leading to distinctively variable clinical symptoms. The factors which can attenuate or exacerbate allergic reactions can range from genetic heterozygosity, the prominence of various comorbid infections, and other factors such as pollution, climate, and interactions with other organisms and organism-derived products, and the surrounding environment. As a result, the effective prevention and control of allergies remains to be one of the most prominent public health problems. Therefore, to contextualize the current knowledge about allergic reactions, this review paper attempts to synthesize different aspects of an allergic response to describe its significance in the global health scheme. Specifically, the review shall characterize the biomolecular mechanisms of the pathophysiology of the disease based on underlying disease theories and current findings on ecologic interactions and describe prevention and control strategies being utilized. An integrated perspective that considers the underlying genetic, immunologic, and ecologic aspects of the disease would enable the development of more effective and targeted diagnostic tools and therapeutic strategies for the management and control of allergic diseases.
Collapse
Affiliation(s)
- Robbi Miguel G. Falcon
- Biomedical Innovations Research for Translational Health Science Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | |
Collapse
|
8
|
Lupu A, Jechel E, Mihai CM, Mitrofan EC, Fotea S, Starcea IM, Ioniuc I, Mocanu A, Ghica DC, Popp A, Munteanu D, Sasaran MO, Salaru DL, Lupu VV. The Footprint of Microbiome in Pediatric Asthma-A Complex Puzzle for a Balanced Development. Nutrients 2023; 15:3278. [PMID: 37513696 PMCID: PMC10384859 DOI: 10.3390/nu15143278] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Considered to be of greater complexity than the human genome itself, the microbiome, the structure of the body made up of trillions of bacteria, viruses, and fungi, has proven to play a crucial role in the context of the development of pathological processes in the body, starting from various infections, autoimmune diseases, atopies, and culminating in its involvement in the development of some forms of cancer, a diagnosis that is considered the most disabling for the patient from a psychological point of view. Therefore, being a cornerstone in the understanding and optimal treatment of a multitude of ailments, the body's microbiome has become an intensively studied subject in the scientific literature of the last decade. This review aims to bring the microbiome-asthma correlation up to date by classifying asthmatic patterns, emphasizing the development patterns of the microbiome starting from the perinatal period and the impact of pulmonary dysbiosis on asthmatic symptoms in children. Likewise, the effects of intestinal dysbiosis reflected at the level of homeostasis of the internal environment through the intestine-lung/vital organs axis, the circumstances in which it occurs, but also the main methods of studying bacterial variability used for diagnostic purposes and in research should not be omitted. In conclusion, we draw current and future therapeutic lines worthy of consideration both in obtaining and maintaining remission, as well as in delaying the development of primary acute episodes and preventing future relapses.
Collapse
Affiliation(s)
- Ancuta Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Jechel
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | | | - Silvia Fotea
- Clinical Medical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University of Galati, 800008 Galati, Romania
| | - Iuliana Magdalena Starcea
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adriana Mocanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Catalin Ghica
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alina Popp
- Faculty of General Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragos Munteanu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of General Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Delia Lidia Salaru
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Faculty of General Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
9
|
Liu CQ, Gao YJ, Lin GX, Liang JZ, Li YF, Wang YC, Chen WY, Chen WJ. Identification of thrombotic biomarkers in orthopedic surgery patients by plasma proteomics. J Orthop Surg Res 2023; 18:222. [PMID: 36944974 PMCID: PMC10028780 DOI: 10.1186/s13018-023-03672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Due to the poor specificity of D-dimer, more accurate thrombus biomarkers are clinically needed to improve the diagnostic power of VTE. METHODS The plasma samples were classified into low-risk group (n = 6) and high-risk group (n = 6) according to the Caprini Thrombosis Risk Assessment Scale score. Data-independent acquisition mass spectrometry (DIA-MS) was performed to identify the proteins in the 12 plasma samples. Bioinformatics analysis including volcano plot, heatmap, KEGG pathways and chord diagram analysis were drawn to analyze the significantly differentially expressed proteins (DEPs) between the two groups. Then, another 26 plasma samples were collected to verify the key proteins as potential biomarkers of VTE in orthopedic surgery patients. RESULTS A total of 371 proteins were identified by DIA-MS in 12 plasma samples. Volcano plotting showed that there were 30 DEPs. KEGG pathway enrichment analysis revealed that the DEPs were majorly involved in the blood coagulation pathway. The chord diagram analysis demonstrated that proteins SAA1, VWF, FLNA, ACTB, VINC, F13B, F13A and IPSP in the DEPs were significantly related to blood coagulation. VWF and F13B were selected for validation experiments. ELISA test showed that, as compared with those in the low-risk group, the level of VWF in the high-risk sera was significantly increased. CONCLUSIONS The level of VWF in the high-risk group of thrombosis after orthopedic surgery was significantly higher than that in the low-risk group of preoperative thrombosis, suggesting that VWF may be used as a potential thrombus biomarker in orthopedic surgery patients.
Collapse
Affiliation(s)
- Cui-Qing Liu
- School of Nursing, Jinan University, Guangzhou, 510613, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yu-Jing Gao
- School of Nursing, Jinan University, Guangzhou, 510613, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Geng-Xiong Lin
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Jun-Ze Liang
- College of Life Science and Technology, Jinan University, Guangzhou , China
| | - Yan-Fei Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Yi-Chun Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wen-Yan Chen
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wei-Ju Chen
- School of Nursing, Jinan University, Guangzhou, 510613, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
11
|
Kim K, Kim H, Sung GY. Effects of Indole-3-Lactic Acid, a Metabolite of Tryptophan, on IL-4 and IL-13-Induced Human Skin-Equivalent Atopic Dermatitis Models. Int J Mol Sci 2022; 23:13520. [PMID: 36362303 PMCID: PMC9655012 DOI: 10.3390/ijms232113520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Indole-3-lactic acid (I3LA) is a well-known metabolite involved in tryptophan metabolism. Indole derivatives are involved in the differentiation of immune cells and the synthesis of cytokines via the aryl hydrocarbon receptors for modulating immunity, and the indole derivatives may be involved in allergic responses. I3LA was selected as a candidate substance for the treatment of atopic dermatitis (AD), and its inhibitory effect on AD progression was investigated. Full-thickness human skin equivalents (HSEs) consisting of human-derived cells were generated on microfluidic chips and stimulated with major AD-inducing factors. The induced AD-HSEs were treated with I3LA for 7 days, and this affected the AD-associated genetic biomarkers and increased the expression of the major constituent proteins of the skin barrier. After the treatment for 14 days, the surface became rough and sloughed off, and there was no significant difference between the increased AD-related mRNA expression and the skin barrier protein expression. Therefore, the short-term use of I3LA for approximately one week is considered to be effective in suppressing AD.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
Li Y, Zhao P, Zhang Y, Zhen J, Zhao L, Cai Y, Lu Q, Huang G. Fecal-associated microbiome differences between phlegm-dampness constitution and balanced constitution. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|