1
|
O'Neill AF, Church AJ, Feraco A, Spidle J, Wall CB, Kim HB, Elisofon S, Vakili K, Pimkin M, Dharia NV, Shelman NR, Perez-Atayde AR, Rodriguez-Galindo C. Clinical and immunophenotype correlating with response to immunotherapy in paediatric patients with primary liver carcinoma. A case series. EBioMedicine 2024; 104:105147. [PMID: 38749302 PMCID: PMC11108818 DOI: 10.1016/j.ebiom.2024.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Paediatric hepatocellular carcinomas (HCC) traditionally arise in the context of a normal structural and functional liver and carry a dismal prognosis. While chemotherapy is the frontline standard, there is emerging interest in the study of immunotherapies for paediatric patients with relapsed/refractory disease. There is limited data to support whether immunotherapies will be of utility in this patient population. METHODS Six paediatric patients (median age:16 years, range: 12-17 at the time of treatment) with advanced hepatocellular neosplams, either conventional hepatocellular or fibrolamellar carcinoma, were treated with immunotherapy. Patients were consented to institutional genomic profiling and biobanking protocols. Baseline samples and serial tissue samples, when available, were evaluated for somatic mutation rate, actionable gene mutations, and pan-immune bulk RNA expression profiling. Results were correlated with clinical course. FINDINGS Three patients responded to checkpoint inhibition: one achieved a complete, durable response and the other two, prolonged stable disease. Three additional patients progressed. Diagnostic tissue from the complete responder demonstrated a higher relative mutational burden and robust immune infiltrate. Pre-treatment samples from the three responders demonstrated decreased expression of genes associated with T-cell dysfunction. INTERPRETATION A subset of patients with primary paediatric hepatocellular tumours will respond to immunotherapy. Immunotherapies are currently under prospective study for relapsed/refractory liver tumours in paediatric patients. Results from this report support the prospective collection of serial serum and tissue samples which may further identify genomic and immunophenotypic patterns predictive of response. FUNDING This work was supported by Philanthropic funds (Pan Mass Challenge, Team Angus and Team Perspective).
Collapse
Affiliation(s)
- Allison F O'Neill
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA.
| | - Alanna J Church
- Boston Children's Hospital and Harvard Medical School, Department of Pathology, Boston, MA, USA
| | - Angela Feraco
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | - Jennifer Spidle
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | - Catherine B Wall
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | - Heung Bae Kim
- Boston Children's Hospital and Harvard Medical School, Department of Surgery, Boston, MA, USA
| | - Scott Elisofon
- Boston Children's Hospital and Harvard Medical School, Department of Hepatology, Boston, MA, USA
| | - Khashayar Vakili
- Boston Children's Hospital and Harvard Medical School, Department of Surgery, Boston, MA, USA
| | - Max Pimkin
- Dana-Farber Cancer Institute/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | | | - Nathan R Shelman
- University of Kentucky, Department of Pathology, Lexington, KY, USA
| | - Antonio R Perez-Atayde
- Boston Children's Hospital and Harvard Medical School, Department of Pathology, Boston, MA, USA
| | - Carlos Rodriguez-Galindo
- St. Jude Children's Research Hospital, Departments of Global Pediatric Medicine and Oncology, Memphis, TN, USA
| |
Collapse
|
2
|
Karayazili M, Celtik U, Ataseven E, Nart D, Ergun O. Evaluation of surgical strategies and long-term outcomes in pediatric hepatocellular carcinoma. Pediatr Surg Int 2024; 40:144. [PMID: 38819667 DOI: 10.1007/s00383-024-05721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Hepatocellular carcinoma (HCC), the second most common pediatric malignant liver tumor after hepatoblastoma, represents 1% of all pediatric tumors. METHODS A retrospective study was conducted on children with HCC treated at our center from March 2002 to October 2022, excluding those with inadequate follow-up or records. Demographic data, initial complaints, alpha-fetoprotein (AFP) values, underlying disease, size and histopathological features of the masses, chemotherapy, and long-term outcomes were analyzed. RESULTS Fifteen patients (8 boys, 7 girls) with a mean age of 11.4 ± 4.1 years (0.8-16.4 years) were analyzed. The majority presented with abdominal pain, with a median AFP of 3.9 ng/mL. Hepatitis B cirrhosis in one patient (6.6%) and metabolic disease (tyrosinemia type 1) in two patients (13.3%) were the underlying diseases. Histopathological diagnoses were fibrolamellar HCC (n:8; 53.3%), HCC (n:6; 40%). Four of the 15 patients underwent liver transplantation, and 9 underwent surgical resection. Due to late diagnosis, two patients were considered inoperable (13.3%). The survival rate for the four patients who underwent liver transplantation was found to be 75%. CONCLUSION Surgical treatment of various variants of HCC can be safely performed in experienced centers with a multidisciplinary approach, and outcomes are better than in adults.
Collapse
Affiliation(s)
- Merve Karayazili
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ulgen Celtik
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Eda Ataseven
- Department of Pediatric Oncology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Deniz Nart
- Department of Pathology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Orkan Ergun
- Department of Pediatric Surgery, Faculty of Medicine, Ege University, Izmir, Turkey.
| |
Collapse
|
3
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie „Diagnostik und Therapie biliärer Karzinome“ – Langversion 4.0. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e213-e282. [PMID: 38364849 DOI: 10.1055/a-2189-8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein, Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
4
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms“ – Langversion 4.0. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e67-e161. [PMID: 38195102 DOI: 10.1055/a-2189-6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
5
|
Dong Y, Cekuolis A, Schreiber-Dietrich D, Augustiniene R, Schwarz S, Möller K, Nourkami-Tutdibi N, Chen S, Cao JY, Huang YL, Wang Y, Taut H, Grevelding L, Dietrich CF. Review on Pediatric Malignant Focal Liver Lesions with Imaging Evaluation: Part I. Diagnostics (Basel) 2023; 13:3568. [PMID: 38066809 PMCID: PMC10706220 DOI: 10.3390/diagnostics13233568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant focal liver lesions (FLLs) are commonly reported in adults but rarely seen in the pediatric population. Due to the rarity, the understanding of these diseases is still very limited. In children, most malignant FLLs are congenital. It is very important to choose appropriate imaging examination concerning various factors. This paper will outline common pediatric malignant FLLs, including hepatoblastoma, hepatocellular carcinoma, and cholangiocarcinoma and discuss them against the background of the latest knowledge on comparable/similar tumors in adults. Medical imaging features are of vital importance for the non-invasive diagnosis and follow-up of treatment of FLLs in pediatric patients. The use of CEUS in pediatric patients for characterizing those FLLs that remain indeterminate on conventional B mode ultrasounds may be an effective option in the future and has great potential to be integrated into imaging algorithms without the risk of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Yi Dong
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Andrius Cekuolis
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | | | - Rasa Augustiniene
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania; (A.C.); (R.A.)
| | - Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Kliniken Duisburg GmbH, 47055 Duisburg, Germany;
| | - Kathleen Möller
- Medical Department I/Gastroenterology, SANA Hospital Lichtenberg, 10365 Berlin, Germany;
| | - Nasenien Nourkami-Tutdibi
- Saarland University Medical Center, Hospital of General Pediatrics and Neonatology, 66421 Homburg, Germany;
| | - Sheng Chen
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Jia-Ying Cao
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Yun-Lin Huang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Ying Wang
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; (Y.D.); (S.C.); (J.-Y.C.); (Y.-L.H.); (Y.W.)
| | - Heike Taut
- Children’s Hospital, Universitätsklinikum Dresden, Technische Universität Dresden, 01069 Dresden, Germany;
| | - Lara Grevelding
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, University Hospital Frankfurt, Goethe University, 60323 Frankfurt, Germany
| | - Christoph F. Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, 3013 Bern, Switzerland
| |
Collapse
|
6
|
Hamaya S, Oura K, Morishita A, Masaki T. Cisplatin in Liver Cancer Therapy. Int J Mol Sci 2023; 24:10858. [PMID: 37446035 DOI: 10.3390/ijms241310858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor and is often diagnosed at an unresectable advanced stage. Systemic chemotherapy as well as transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC) are used to treat advanced HCC. TACE and HAIC have long been the standard of care for patients with unresectable HCC but are limited to the treatment of intrahepatic lesions. Systemic chemotherapy with doxorubicin or chemohormonal therapy with tamoxifen have also been considered, but neither has demonstrated survival benefits. In the treatment of unresectable advanced HCC, cisplatin is administered transhepatic arterially for local treatment. Subsequently, for cisplatin-refractory cases due to drug resistance, a shift to systemic therapy with a different mechanism of action is expected to produce new antitumor effects. Cisplatin is also used for the treatment of liver tumors other than HCC. This review summarizes the action and resistance mechanism of cisplatin and describes the treatment of the major hepatobiliary cancers for which cisplatin is used as an anticancer agent, with a focus on HCC.
Collapse
Affiliation(s)
- Sae Hamaya
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| |
Collapse
|
7
|
Schooler GR, Infante JC, Acord M, Alazraki A, Chavhan GB, Davis JC, Khanna G, Morani AC, Morin CE, Nguyen HN, Rees MA, Shaikh R, Srinivasan A, Squires JH, Tang E, Thacker PG, Towbin AJ. Imaging of pediatric liver tumors: A COG Diagnostic Imaging Committee/SPR Oncology Committee White Paper. Pediatr Blood Cancer 2023; 70 Suppl 4:e29965. [PMID: 36102690 PMCID: PMC10641897 DOI: 10.1002/pbc.29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
Primary hepatic malignancies are relatively rare in the pediatric population, accounting for approximately 1%-2% of all pediatric tumors. Hepatoblastoma and hepatocellular carcinoma are the most common primary liver malignancies in children under the age of 5 years and over the age of 10 years, respectively. This paper provides consensus-based imaging recommendations for evaluation of patients with primary hepatic malignancies at diagnosis and follow-up during and after therapy.
Collapse
Affiliation(s)
- Gary R. Schooler
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Juan C. Infante
- Department of Radiology, Nemours Children’s Health, Orlando, FL
| | - Michael Acord
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Adina Alazraki
- Department of Radiology and Imaging Sciences, Emory University, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Govind B. Chavhan
- Department of Diagnostic Imaging, Hospital for Sick Children and Department of Medical Imaging, University of Toronto, ON Canada
| | | | - Geetika Khanna
- Department of Radiology and Imaging Sciences, Emory University, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Ajaykumar C. Morani
- Singleton Department of Radiology, Texas Children’s Hospital and Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Cara E. Morin
- Department of Radiology, Cincinnati Children’s Hospital, Cincinnati, OH
| | - HaiThuy N. Nguyen
- Singleton Department of Radiology, Texas Children’s Hospital and Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Mitchell A. Rees
- Department of Radiology, Nationwide Children’s Hospital, Columbus, OH
| | - Raja Shaikh
- Department of Radiology, Boston Children’s Hospital, Boston, MA
| | - Abhay Srinivasan
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Judy H. Squires
- Department of Radiology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Elizabeth Tang
- Department of Radiology, Seattle Children’s Hospital, Seattle, WA
| | | | | |
Collapse
|
8
|
Liu J, Zhang Q, Wang C, Yang J, Yang S, Wang T, Wang B. Knockdown of BAP31 Overcomes Hepatocellular Carcinoma Doxorubicin Resistance through Downregulation of Survivin. Int J Mol Sci 2023; 24:ijms24087622. [PMID: 37108785 PMCID: PMC10142662 DOI: 10.3390/ijms24087622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The expression of B-cell receptor associated protein 31 (BAP31) is increased in many tumor types, and it is reported to participate in proliferation, migration, and apoptosis. However, the relationship between BAP31 and chemoresistance is uncertain. This study investigated the role of BAP31 in regulating the doxorubicin (Dox) resistance of hepatocellular carcinoma (HCC). The expression of proteins was assessed by Western blotting. The correlation between BAP31 expression and Dox resistance was examined by MTT and colony formation assays. Apoptosis was analyzed by flow cytometry and TdT-mediated dUTP nick end labeling assays. Western blot and immunofluorescence analyses were performed in the knockdown cell lines to explore the possible mechanisms. In this study, BAP31 was strongly expressed, and knockdown of BAP31 increased Dox chemosensitivity in cancer cells. Furthermore, the expression of BAP31 was higher in the Dox-resistant HCC cells than that in their parental cells; knockdown of BAP31 reduced the half maximal inhibitory concentration value and overcame Dox resistance in Dox-resistant HCC cells. In HCC cells, knockdown of BAP31 increased Dox-induced apoptosis and enhanced Dox chemosensitivity in vitro and in vivo. The potential mechanism by which BAP31 increased Dox-induced apoptosis is that BAP31 inhibited survivin expression by promoting FoxO1 nucleus-cytoplasm translocation. Knockdown of BAP31 and survivin had a synergistic effect on Dox chemosensitivity by enhancing the apoptosis of HCC cells. These findings reveal that BAP31 knockdown enhances Dox chemosensitivity through the downregulation of survivin, suggesting that BAP31 is a potential therapeutic target for improving the treatment response of HCC with resistance to Dox.
Collapse
Affiliation(s)
- Jingjing Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Qi Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Changli Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaying Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Sheng Yang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tianyi Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Vij M, Menon J, Subbiah K, Raju LP, Gowrisankar G, Shanmugum N, Kaliamoorthy I, Rammohan A, Rela M. Pathologic and Immunophenotypic Characterization of Syncytial Giant Cell Variant of Pediatric Hepatocellular Carcinoma. A Distinct Subtype. Fetal Pediatr Pathol 2023:1-10. [PMID: 37071763 DOI: 10.1080/15513815.2023.2201318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) in pediatrics has a uniformly poor prognosis. Complete surgical resection or liver transplantation remain the only curative options. In contrast to adult HCC, literature on pediatric HCC is sparse and a majority of the distinct subtypes are undefined with regards to their histology, immunohistochemistry and prognosis. CASE REPORT Two infants, one with biliary atresia and another with transaldolase deficiency, underwent living donor liver transplants. Explant-liver histopathology revealed tumor with diffuse neoplastic syncytial giant cell pattern. Immunophenotypic characterization highlighted expression of epithelial cell adhesion molecule, alpha fetoprotein and metallothionein. CONCLUSION HCC with syncytial giant cells variant can occur in infants with underlying liver disease, specifically in our experience, with biliary atresia and another with transaldolase deficiency.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Jagadeesh Menon
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Komalavalli Subbiah
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Lexmi Priya Raju
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Gowripriya Gowrisankar
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Naresh Shanmugum
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Gao ZX, Zhang ZS, Qin J, Zhang MZ, Cao JL, Li YY, Wang MQ, Hou LL, Fang D, Xie SQ. Aucubin enhances the antitumor activity of cisplatin through the inhibition of PD-L1 expression in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154715. [PMID: 36821999 DOI: 10.1016/j.phymed.2023.154715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality in the world. However, the anticancer effects of aucubin against HCC have yet to be reported. Cisplatin often decreased CD8+ tumor-infiltrating lymphocytes in the tumor microenvironment through increasing programmed death-ligand 1 (PD-L1) expression, which seriously affected the prognostic effect of cisplatin in the treatment of patients with HCC. Therefore, it is necessary to identify a novel therapeutic avenue to increase the sensitivity of cisplatin against HCC. PURPOSE This study aims to evaluate the anti-tumor effect of aucubin on HCC, and also to reveal the synergistic effects and mechanism of aucubin and cisplatin against HCC. STUDY DESIGN AND METHODS An H22 xenograft mouse model was established for the in vivo experiments. Cancer cell proliferation was detected by MTT assay. RT-qPCR was performed to analyze CD274 mRNA expression in vitro. Western blotting was employed to determine the expression levels of the PD-L1, p-Akt, Akt, p-β-catenin, and β-catenin in vitro. Immunofluorescence was carried out to examine β-catenin nuclear accumulation in HCC cells. Immunohistochemistry was used to detect tumoral PD-L1 and CD8α expression in xenograft mouse model. RESULTS Aucubin inhibits tumor growth in a xenograft HCC mouse model, but did not affect HCC cell viability in vitro. Aucubin treatment significantly inhibited PD-L1 expression through inactivating Akt/β-catenin signaling pathway in HCC cells. Overexpression of PD-L1 dramatically reversed aucubin-mediated tumoral CD8+ T cell infiltration and alleviated the antitumor activity of aucubin in xenograft mouse model. Moreover, Cisplatin could induce the expression of PD-L1 through the activation of the Akt/β-catenin signaling pathway in HCC cells, which can be blocked by aucubin in vitro. In xenograft mouse model, cisplatin treatment induced PD-L1 expression and alleviated the infiltration of CD8+ T lymphocytes in the tumor microenvironment. Aucubin not only abrogated cisplatin-induced PD-L1 expression but also enhanced the antitumor efficacy of cisplatin in a mouse xenograft model of HCC. CONCLUSION Aucubin exerts antitumor activity against HCC and also enhances the antitumor activity of cisplatin by suppressing the Akt/β-catenin/PD-L1 axis.
Collapse
Affiliation(s)
- Zi-Xuan Gao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jia Qin
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ming-Zhu Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jin-Lan Cao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ying-Ying Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Meng-Qing Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| |
Collapse
|
11
|
Bitzer M, Groß S, Albert J, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Kautz A, Krug D, Fougère CL, Lang H, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Langversion. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:e92-e156. [PMID: 37040776 DOI: 10.1055/a-2026-1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | | | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschrirugie, Eberhard-Karls Universität, Tübingen
| | | | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
12
|
Sumazin P, Peters TL, Sarabia SF, Kim HR, Urbicain M, Hollingsworth EF, Alvarez KR, Perez CR, Pozza A, Najaf Panah MJ, Epps JL, Scorsone K, Zorman B, Katzenstein H, O'Neill AF, Meyers R, Tiao G, Geller J, Ranganathan S, Rangaswami AA, Woodfield SE, Goss JA, Vasudevan SA, Heczey A, Roy A, Fisher KE, Alaggio R, Patel KR, Finegold MJ, López-Terrada DH. Hepatoblastomas with carcinoma features represent a biological spectrum of aggressive neoplasms in children and young adults. J Hepatol 2022; 77:1026-1037. [PMID: 35577029 PMCID: PMC9524481 DOI: 10.1016/j.jhep.2022.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the predominant liver cancers in children, though their respective treatment options and associated outcomes differ dramatically. Risk stratification using a combination of clinical, histological, and molecular parameters can improve treatment selection, but it is particularly challenging for tumors with mixed histological features, including those in the recently created hepatocellular neoplasm not otherwise specified (HCN NOS) provisional category. We aimed to perform the first molecular characterization of clinically annotated cases of HCN NOS. METHODS We tested whether these histological features are associated with genetic alterations, cancer gene dysregulation, and outcomes. Namely, we compared the molecular features of HCN NOS, including copy number alterations, mutations, and gene expression profiles, with those in other pediatric hepatocellular neoplasms, including HBs and HCCs, as well as HBs demonstrating focal atypia or pleomorphism (HB FPAs), and HBs diagnosed in older children (>8). RESULTS Molecular profiles of HCN NOS and HB FPAs revealed common underlying biological features that were previously observed in HCCs. Consequently, we designated these tumor types collectively as HBs with HCC features (HBCs). These tumors were associated with high mutation rates (∼3 somatic mutations/Mb) and were enriched with mutations and alterations in key cancer genes and pathways. In addition, recurrent large-scale chromosomal gains, including gains of chromosomal arms 2q (80%), 6p (70%), and 20p (70%), were observed. Overall, HBCs were associated with poor clinical outcomes. CONCLUSIONS Our study indicates that histological features seen in HBCs are associated with combined molecular features of HB and HCC, that HBCs are associated with poor outcomes irrespective of patient age, and that transplanted patients are more likely to have good outcomes than those treated with chemotherapy and surgery alone. These findings highlight the importance of molecular testing and early therapeutic intervention for aggressive childhood hepatocellular neoplasms. LAY SUMMARY We molecularly characterized a class of histologically aggressive childhood liver cancers and showed that these tumors are clinically aggressive and that their observed histological features are associated with underlying recurrent molecular features. We proposed a diagnostic algorithm to identify these cancers using a combination of histological and molecular features, and our analysis suggested that these cancers may benefit from specialized treatment strategies that may differ from treatment guidelines for other childhood liver cancers.
Collapse
Affiliation(s)
- Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Tricia L Peters
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Hyunjae R Kim
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Martin Urbicain
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Emporia Faith Hollingsworth
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Karla R Alvarez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Cintia R Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Alice Pozza
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mohammad Javad Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Jessica L Epps
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kathy Scorsone
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Howard Katzenstein
- Nemours Children's Specialty Care and Wolfson Children's Hospital, Jacksonville, FL, USA
| | - Allison F O'Neill
- Dana-Farber Cancer Institute and Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Department of Pediatric Oncology, Boston, MA, USA
| | | | - Greg Tiao
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jim Geller
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Arun A Rangaswami
- Department of Pediatrics/Division of Hematology-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Sarah E Woodfield
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - John A Goss
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Abdominal Transplantation, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Andras Heczey
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Angshumoy Roy
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Kevin E Fisher
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Rita Alaggio
- Department of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Kalyani R Patel
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Milton J Finegold
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| | - Dolores H López-Terrada
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Schultz SP, Holtestaul T, Marenco CW, Bader JO, Horton JD, Nelson DW. Prognostic Role of Lymph Node Sampling in Adolescent and Young Adults With Fibrolamellar Carcinoma. J Surg Res 2022; 276:261-271. [DOI: 10.1016/j.jss.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
|
14
|
Commander SJ, Cerullo M, Arjunji N, Leraas HJ, Thornton S, Ravindra K, Tracy ET. Improved Survival and Higher Rates of Surgical Resection Associated with Hepatocellular Carcinoma in Children as Compared to Young Adults. Int J Cancer 2022; 151:2206-2214. [PMID: 35841394 DOI: 10.1002/ijc.34215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
Hepatocellular adenocarcinoma (HCC) is the second most common primary hepatic malignancy in children with a 5-year overall survival of 30%. Few studies have examined the similarities and differences between pediatric and adult HCC. This paper aims to examine the relationship between tumor characteristics, treatments, and outcomes in pediatric and adult patients with HCC. The 2019 National Cancer Database was queried for patients with HCC. Patients were stratified by age: pediatric <21 years (n = 214) and young adults 21-40 (n = 1102). Descriptive statistics and chi square were performed. The mean age at diagnosis was 15.5 years (SD 5.6) in the pediatric and 33 years (5.3) in the adult group. Children had a comparable rate of metastasis (30% vs 28%, P = 0.47) and increased fibrolamellar histology (32% vs 9%). Surgical resection was more common in children compared with adults (74% vs 62%, P < 0.001), children also had more lymph nodes examined (39% vs 19%, P < 0.001), positive lymph nodes (35% vs 17%, P = 0.02), and surgical resection when metastasis were present at diagnosis (46% vs 18%, P < 0.001). The 1, 3, and 5-year overall survival was higher for pediatric patients than adults (81%, 65%, 55%, vs 70%, 54%, 48%,) Despite higher prevalence of fibrolamellar histology, greater number of positive lymph nodes, and comparable rates of metastasis at diagnosis, children with HCC have improved overall survival compared with adults. Age did not significantly contribute to survivorship, so it is likely that the more aggressive surgical approach contributed to the improved overall survival in pediatric patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Marcelo Cerullo
- Department of General Surgery, Duke University Medical Center
| | - Neha Arjunji
- School of Medicine, Duke University Medical Center
| | - Harold J Leraas
- Division of Pediatric Surgery, Duke University Medical Center
| | | | - Kadiyala Ravindra
- Division of Abdominal Transplantation, Duke University Medical Center
| | | |
Collapse
|
15
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
16
|
de Campos Vieira Abib S, Chui CH, Cox S, Abdelhafeez AH, Fernandez-Pineda I, Elgendy A, Karpelowsky J, Lobos P, Wijnen M, Fuchs J, Hayes A, Gerstle JT. International Society of Paediatric Surgical Oncology (IPSO) Surgical Practice Guidelines. Ecancermedicalscience 2022; 16:1356. [PMID: 35510137 PMCID: PMC9023308 DOI: 10.3332/ecancer.2022.1356] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/14/2022] Open
Abstract
Most children with tumors will require one or more surgical interventions as part of the care and treatment, including making a diagnosis, obtaining adequate venous access, performing a surgical resection for solid tumors (with staging and reconstruction), performing procedures for cancer prevention and its late effects, and managing complications of treatment; all with the goal of improving survival and quality of life. It is important for surgeons to adhere to sound pediatric surgical oncology principles, as they are closely associated with improved local control and survival. Unfortunately, there is a significant disparity in survival rates in low and middle income countries, when compared to those from high income countries. The International Society of Paediatric Surgical Oncology (IPSO) is the leading organization that deals with pediatric surgical oncology worldwide. This organization allows experts in the field from around the globe to gather and address the surgical needs of children with cancer. IPSO has been invited to contribute surgical guidance as part of the World Health Organization Initiative for Childhood Cancer. One of our goals is to provide surgical guidance for different scenarios, including those experienced in High- (HICs) and Low- and Middle-Income Countries (LMICs). With this in mind, the following guidelines have been developed by authors from both HICs and LMICs. These have been further validated by experts with the aim of providing evidence-based information for surgeons who care for children with cancer. We hope that this initiative will benefit children worldwide in the best way possible. Simone Abib, IPSO President Justin T Gerstle, IPSO Education Committee Chair Chan Hon Chui, IPSO Secretary.
Collapse
Affiliation(s)
- Simone de Campos Vieira Abib
- Pediatric Oncology Institute, GRAACC, Federal University of São Paulo, Rua Pedro de Toledo, 572 - Vila Clementino, São Paulo, SP 04021-001, Brazil
| | - Chan Hon Chui
- Surgery Centre for Children, Mount Elizabeth Medical Centre, 3 Mount Elizabeth, 228510, Singapore
| | - Sharon Cox
- Division of Paediatric Surgery, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
| | - Abdelhafeez H Abdelhafeez
- Department of Surgery, St Jude Research Hospital 262 Danny Thomas Place. MS133, Memphis, TN 38105, USA
| | - Israel Fernandez-Pineda
- Department of Pediatric Surgery, Virgen del Rocio Children’s Hospital, Av Manuel Siurot S/NN, Sevilla 41013, Spain
| | - Ahmed Elgendy
- Surgical Oncology Unit, Faculty of Medicine, Tanta University, Elgiesh Street, 31111, Tanta, Gharbeya, Egypt
| | - Jonathan Karpelowsky
- Department of Paediatric Surgery, Children’s Hospital at Westmead, Westmead NSW 2145, Australia
| | - Pablo Lobos
- Pediatric Surgery Division, Hospital Italiano de Buenos Aires, Andrés Lamas 812, Buenos Aires 1406, Argentina
| | - Marc Wijnen
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Huispostnummer KE 01.129.2, Postbus 85090, Utretcht 3508AB, The Netherlands
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University of Tuebingen, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany
| | - Andrea Hayes
- Department of Surgery, Howard University Hospital, 1851 9th Street NW, 4th Floor, Washington, DC 20059, USA
| | - Justin T Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
17
|
Song J, Zhou H, Gu D, Xu Y. Hepatocellular Carcinoma Differentiation: Research Progress in Mechanism and Treatment. Front Oncol 2022; 11:790358. [PMID: 35096588 PMCID: PMC8790246 DOI: 10.3389/fonc.2021.790358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Although progress has been made in diagnosis and treatment, morbidity and mortality continue to rise. Chronic liver disease and liver cirrhosis are still the most important risk factors for liver cancer. Although there are many treatments, it can only be cured by orthotopic liver transplantation (OLT) or surgical resection. And the worse the degree of differentiation, the worse the prognosis of patients with liver cancer. Then it can be considered that restoring a better state of differentiation may improve the prognosis. The differentiation treatment of liver cancer is to reverse the dedifferentiation process of hepatocytes to liver cancer cells by means of drugs, improve the differentiation state of the tumor, and restore the normal liver characteristics, so as to improve the prognosis. Understanding the mechanism of dedifferentiation of liver cancer can provide ideas for drug design. Liver enrichment of transcription factors, imbalance of signal pathway and changes of tumor microenvironment can promote the occurrence and development of liver cancer, and restoring its normal level can inhibit the malignant behavior of tumor. At present, some drugs have been proved to be effective, but more clinical data are needed to support the effectiveness and reliability of drugs. The differentiation treatment of liver cancer is expected to become an important part of the treatment of liver cancer in the future.
Collapse
Affiliation(s)
- Jianning Song
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Guangzhou Medical University, Shenzhen, China
| | - Hongzhong Zhou
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China
| | - Yong Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, China.,Guangzhou Medical University, Shenzhen, China
| |
Collapse
|
18
|
Chang WI, Lin C, Liguori N, Honeyman JN, DeNardo B, El-Deiry W. Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Front Pharmacol 2022; 12:747895. [PMID: 35126101 PMCID: PMC8811504 DOI: 10.3389/fphar.2021.747895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal fusions encoding novel molecular drivers have been identified in several solid tumors, and in recent years the identification of such pathogenetic events in tumor specimens has become clinically actionable. Pediatric sarcomas and other rare tumors that occur in children as well as adults are a group of heterogeneous tumors often with driver gene fusions for which some therapeutics have already been developed and approved, and others where there is opportunity for progress and innovation to impact on patient outcomes. We review the chromosomal rearrangements that represent oncogenic events in pediatric solid tumors outside of the central nervous system (CNS), such as Ewing Sarcoma, Rhabdomyosarcoma, Fibrolamellar Hepatocellular Carcinoma, and Renal Cell Carcinoma, among others. Various therapeutics such as CDK4/6, FGFR, ALK, VEGF, EGFR, PDGFR, NTRK, PARP, mTOR, BRAF, IGF1R, HDAC inhibitors are being explored among other novel therapeutic strategies such as ONC201/TIC10.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| | - Claire Lin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Nicholas Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joshua N. Honeyman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Pediatric Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Bradley DeNardo
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| |
Collapse
|
19
|
Sabrina V, Michael B, Jörg A, Peter B, Wolf B, Susanne B, Thomas B, Frank D, Matthias E, Markus F, Christian LF, Paul F, Andreas G, Eleni G, Martin G, Elke H, Thomas H, Ralf-Thorsten H, Wolf-Peter H, Peter H, Achim K, Gabi K, Jürgen K, David K, Frank L, Hauke L, Thomas L, Philipp L, Andreas M, Alexander M, Oliver M, Silvio N, Huu Phuc N, Johann O, Karl-Jürgen O, Philipp P, Kerstin P, Philippe P, Thorsten P, Mathias P, Ruben P, Jürgen P, Jutta R, Peter R, Johanna R, Ulrike R, Elke R, Barbara S, Peter S, Irene S, Andreas S, Dietrich VS, Daniel S, Marianne S, Alexander S, Andreas S, Nadine S, Christian S, Andrea T, Anne T, Jörg T, Ingo VT, Reina T, Arndt V, Thomas V, Hilke V, Frank W, Oliver W, Heiner W, Henning W, Dane W, Christian W, Marcus-Alexander W, Peter G, Nisar M. S3-Leitlinie: Diagnostik und Therapie des hepatozellulären Karzinoms. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e56-e130. [PMID: 35042248 DOI: 10.1055/a-1589-7568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Voesch Sabrina
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| | - Bitzer Michael
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| | - Albert Jörg
- Abteilung für Gastroenterologie, Hepatologie und Endokrinologie, Stuttgart
| | | | - Bechstein Wolf
- Klinik für Allgemein-, Viszeral-, Transplantations- und Thoraxchirurgie, Universitätsklinikum Frankfurt, Frankfurt am Main
| | | | - Brunner Thomas
- Klinik für Strahlentherapie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg
| | - Dombrowski Frank
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald
| | | | - Follmann Markus
- Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V. Berlin
| | | | | | - Geier Andreas
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Gkika Eleni
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg, Freiburg
| | | | - Hammes Elke
- Lebertransplantierte Deutschland e. V., Ansbach
| | - Helmberger Thomas
- Institut für Radiologie, Neuroradiologie und minimal-invasive Therapie, München Klinik Bogenhausen, München
| | | | - Hofmann Wolf-Peter
- Gastroenterologie am Bayerischen Platz, medizinisches Versorgungszentrum, Berlin
| | | | | | - Knötgen Gabi
- Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
| | - Körber Jürgen
- Klinik Nahetal, Fachklinik für onkologische Rehabilitation und Anschlussrehabilitation, (AHB), Bad Kreuznach
| | - Krug David
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel
| | | | - Lang Hauke
- Klinik für Allgemein-, Viszeral und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz
| | - Langer Thomas
- Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V. Berlin
| | - Lenz Philipp
- Universitätsklinikum Münster, Zentrale Einrichtung Palliativmedizin, Münster
| | - Mahnken Andreas
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
| | - Meining Alexander
- Medizinische Klinik und Poliklinik II des Universitätsklinikums Würzburg, Würzburg
| | - Micke Oliver
- Klinik für Strahlentherapie und Radioonkologie, Franziskus Hospital Bielefeld, Bielefeld
| | - Nadalin Silvio
- Universitätsklinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Tübingen, Tübingen
| | | | | | - Oldhafer Karl-Jürgen
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Semmelweis Universität, Asklepios Campus Hamburg, Hamburg
| | - Paprottka Philipp
- Abteilung für interventionelle Radiologie, Klinikum rechts der Isar der Technischen Universität München, München
| | - Paradies Kerstin
- Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
| | - Pereira Philippe
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, Klinikum am Gesundbrunnen, SLK-Kliniken Heilbronn GmbH, Heilbronn
| | - Persigehl Thorsten
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln, Köln
| | | | | | - Pohl Jürgen
- Interventionelles Endoskopiezentrum und Schwerpunkt Gastrointestinale Onkologie, Asklepios Klinik Altona, Hamburg
| | - Riemer Jutta
- Lebertransplantierte Deutschland e. V., Bretzfeld
| | - Reimer Peter
- Institut für diagnostische und interventionelle Radiologie, Städtisches Klinikum Karlsruhe gGmbH, Karlsruhe
| | - Ringwald Johanna
- Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Tübingen
| | | | - Roeb Elke
- Medizinische Klinik II, Universitätsklinikum Gießen und Marburg GmbH, Gießen
| | - Schellhaas Barbara
- Medizinische Klinik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - Schirmacher Peter
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg
| | - Schmid Irene
- Zentrum Pädiatrische Hämatologie und Onkologie, Dr. von Haunersches Kinderspital, Klinikum der Universität München, München
| | | | | | - Seehofer Daniel
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig
| | - Sinn Marianne
- Medizinische Klinik II, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | | | - Stengel Andreas
- Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Tübingen
| | | | | | - Tannapfel Andrea
- Institut für Pathologie der Ruhr-Universität Bochum am Berufsgenossenschaftlichen Universitätsklinikum Bergmannsheil, Bochum
| | - Taubert Anne
- Kliniksozialdienst, Universitätsklinikum Heidelberg, Bochum
| | - Trojan Jörg
- Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
| | | | - Tholen Reina
- Deutscher Verband für Physiotherapie e. V., Köln
| | - Vogel Arndt
- Klinik für Gastroenterologie, Hepatologie, Endokrinologie der Medizinischen Hochschule Hannover, Hannover
| | - Vogl Thomas
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt
| | - Vorwerk Hilke
- Klinik für Strahlentherapie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
| | - Wacker Frank
- Institut für Diagnostische und Interventionelle Radiologie der Medizinischen Hochschule Hannover, Hannover
| | - Waidmann Oliver
- Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
| | - Wedemeyer Heiner
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie Medizinische Hochschule Hannover, Hannover
| | - Wege Henning
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Wildner Dane
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Lauf an der Pegnitz
| | | | | | - Galle Peter
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Mainz, Mainz
| | - Malek Nisar
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| |
Collapse
|
20
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Sintusek P, Phewplung T, Sanpavat A, Poovorawan Y. Liver tumors in children with chronic liver diseases. World J Gastrointest Oncol 2021; 13:1680-1695. [PMID: 34853643 PMCID: PMC8603454 DOI: 10.4251/wjgo.v13.i11.1680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver tumors are rare in children, but the incidence may increase in some circumstances and particularly in chronic liver diseases. Most liver tumors consequent to chronic liver diseases are malignant hepatocellular carcinoma. Other liver tumors include hepatoblastoma, focal nodular hyperplasia, adenoma, pseudotumor, and nodular regenerative hyperplasia. Screening of suspected cases is beneficial. Imaging and surrogate markers of alpha-fetoprotein are used initially as noninvasive tools for surveillance. However, liver biopsy for histopathology evaluation might be necessary for patients with inconclusive findings. Once the malignant liver tumor is detected in children with cirrhosis, liver transplantation is currently considered the preferred option and achieves favorable outcomes. Based on the current evidence, this review focuses on liver tumors with underlying chronic liver disease, their epidemiology, pathogenesis, early recognition, and effective management.
Collapse
Affiliation(s)
- Palittiya Sintusek
- Thai Pediatric Gastroenterology, Hepatology and Immunology Research Unit, Department of Pediatrics, Division of Gastroenterology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Teerasak Phewplung
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Whitlock RS, Loo C, Patel K, Bista R, Goss JA, Heczey A, Khan O, Lopez-Terrada D, Masand P, Nguyen H, Mahvash A, Vasudevan SA, Kukreja K. Transarterial Radioembolization Treatment as a Bridge to Surgical Resection in Pediatric Hepatocellular Carcinoma. J Pediatr Hematol Oncol 2021; 43:e1181-e1185. [PMID: 33769387 DOI: 10.1097/mph.0000000000002089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Children with unresectable hepatocellular carcinoma (HCC) have a poor prognosis and limited treatment options. Transarterial radioembolization (TARE) using Yttrium-90 (Y90) has emerged as a potential bridge therapy to hepatic resection or transplantation for HCC with very limited studies in children. OBSERVATIONS Here we present the clinical course of 2 children successfully treated with TARE Y90 for initially unresectable fibrolamellar HCC (FL-HCC) and bridged to partial hemihepatectomy with >1-year overall survival post-TARE. CONCLUSION Although there have been prior published reports of pediatric patients with HCC being treated with TARE Y90 and some being able to undergo subsequent orthotopic liver transplantation, this is the first report of pediatric HCC patients treated with TARE Y90 as a bridge to nontransplant resections and going on to have >1-year overall survival.
Collapse
Affiliation(s)
- Richard S Whitlock
- Michael E. DeBakey Department of Surgery, Division of Pediatric Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Caitlyn Loo
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kalyani Patel
- Department of Pathology and Immunology, Texas Children's Hospital Liver Tumor Center, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Ranjan Bista
- Department of Pediatrics, Texas Tech University Health Sciences Center, El Paso, TX
| | - John A Goss
- E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Michael Texas Children's Hospital Liver Tumor Center, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Andras Heczey
- Department of Pediatrics, Texas Children's Cancer Center, Center for Cell and Gene Therapy, Texas Children's Liver Tumor Center, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Osman Khan
- Division of Hematology and Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Texas Children's Hospital Liver Tumor Center, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Prakash Masand
- Singleton Department of Pediatric Radiology, Texas Children's Hospital Liver Tumor Program, Baylor College of Medicine
| | - HaiThuy Nguyen
- Singleton Department of Pediatric Radiology, Texas Children's Hospital Liver Tumor Program, Baylor College of Medicine
| | - Armeen Mahvash
- Department of Interventional Radiology, MD Anderson Cancer Center
| | - Sanjeev A Vasudevan
- Michael E. DeBakey Department of Surgery, Division of Pediatric Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Kamlesh Kukreja
- Singleton Department of Pediatric Radiology, Division of Interventional Radiology, Texas Children's Hospital Liver Tumor Program, Baylor College of Medicine, Houston
| |
Collapse
|
23
|
Abstract
PURPOSE Pediatric hepatocellular carcinoma is rarely seen in childhood. It constitutes approximately 1% of childhood solid organ malignancies. Pediatric hepatocellular carcinoma is the second most common malignant liver tumor after hepatoblastoma in children. In this review, we aimed to review the diagnosis and treatment of pediatric hepatocellular carcinoma in the light of the latest literature. METHODS We reviewed the literature in terms of the diagnosis and treatment of pediatric hepatocellular carcinoma. RESULTS Hepatocellular carcinoma (HCC) and hepatoblastoma constitute 0.5-1.5% of all childhood malignant tumors. HCC is responsible for 27% of all liver tumors and 4% of all pediatric liver transplantations. While 99.6% of HCC is seen in adults, only 0.4% of it is seen in pediatric patients. Etiological predisposition and biological behavior are different from adults. In a child with cirrhosis or liver disease, HCC should be suspected in the presence of a high level of AFP and an abnormal nodule on ultrasonography. Hepatoblastoma should be considered first in the differential diagnosis. CONCLUSION Treatment of pediatric HCC is challenging. Complete surgical resection is essential for the cure. To this end, different neoadjuvant chemotherapy protocols have been designed to convert non-resectable tumors into resectable tumors. For tumors that cannot be resected, liver transplantation for each patient with childhood HCC should be decided individually.
Collapse
Affiliation(s)
- Fatma İlknur Varol
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Faculty of Medicine, Inonu University, 244280, Malatya, Turkey.
| |
Collapse
|
24
|
Valamparampil JJ, Shanmugam N, Vij M, Reddy MS, Rela M. Hepatocellular Carcinoma in Paediatric Patients with Alagille Syndrome: Case Series and Review of Literature. J Gastrointest Cancer 2021; 51:1047-1052. [PMID: 32180165 DOI: 10.1007/s12029-020-00391-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Joseph J Valamparampil
- Institute of Liver Disease and Transplantation, Dr. Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India.
| | - Naresh Shanmugam
- Institute of Liver Disease and Transplantation, Dr. Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
| | - Mukul Vij
- Institute of Liver Disease and Transplantation, Dr. Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
| | - Mettu Srinivas Reddy
- Institute of Liver Disease and Transplantation, Dr. Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr. Rela Institute & Medical Centre, Bharat Institute of Higher Education and Research, Chennai, India
- Kings College Hospital, London, UK
| |
Collapse
|
25
|
Kelgeri C, Renz D, McGuirk S, Schmid I, Sharif K, Baumann U. Liver Tumours in Children: The Hepatologist's View. J Pediatr Gastroenterol Nutr 2021; 72:487-493. [PMID: 33264187 DOI: 10.1097/mpg.0000000000003006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Diagnostic and therapeutic innovations have changed the way we now approach liver tumours in children and adolescents. Novel imaging tools, increasing awareness, and surveillance has led to early diagnosis of benign and malignant liver tumours. Multidisciplinary interventions have favourably altered the natural course in some liver tumours. The role of liver transplantation is expanding and has become fully integrated into today's therapeutic algorithms. Transarterial locoregional and ablation therapies have been successful in adults and are being explored in children to facilitate resectability and improve outcome. For the first time, North American, Japanese, and European experts have designed a global trial to optimize management of malignant liver tumours and aim to find signature molecular profiles that will translate to individualised treatment strategies.This article aims to offer an overview of recent advances in our understanding of liver tumours in children. It focuses on the paediatric hepatologist's view and their role in the multidisciplinary management of benign and malignant liver tumours.
Collapse
Affiliation(s)
- Chayarani Kelgeri
- Paediatric Liver Unit including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, UK
| | - Diane Renz
- Institute of Diagnostic and Interventional Radiology, Department of Paediatric Radiology, Medizinische Hochschule Hannover, Germany
| | - Simon McGuirk
- Department of Radiology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Irene Schmid
- Paediatric Oncology, Ludwig Maximilians University, Munich, Germany
| | - Khalid Sharif
- Paediatric Liver Unit including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ulrich Baumann
- Paediatric Gastroenterology and Hepatology, Medizinische Hochschule Hannover, Germany
| |
Collapse
|
26
|
Jain AK, Anand R, Lerret S, Yanni G, Chen JY, Mohammad S, Doyle M, Telega G, Horslen S. Outcomes following liver transplantation in young infants: Data from the SPLIT registry. Am J Transplant 2021; 21:1113-1127. [PMID: 32767649 PMCID: PMC7867666 DOI: 10.1111/ajt.16236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Liver transplantation (LT) in young patients is being performed with greater frequency. We hypothesized that objective analysis of pre-, intra-, and postoperative events would help understand contributors to successful outcomes and guide transplant decision processes. We queried SPLIT registry for pediatric transplants between 2011 and 2018. Outcomes were compared for age groups: 0-<3, 3-<6, 6-<12 months, and 1-<3 years (Groups A, B, C, D respectively) and by weight categories: <5, 5-10, >10 kg; 1033 patients were available for analysis. Cholestatic disease and fulminant failure were highest in group A and those <5 kg; and biliary atresia in group C (72.8%). Group A had significantly higher life support dependence (34.6%; P < .001), listing as United Network for Organ Sharing status 1a/1b (70.4%; P < .001), and shortest wait times (P < .001). The median (interquartile range) for international normalized ratio and bilirubin were highest in group A (3.0 [2.1-3.9] and 16.7 [6.8-29.7] mg/dL) and those <5 kg (2.6 [1.8-3.4] and 13.5 [3.0-28.4] mg/dL). A pediatric end -stage liver disease score ≥40, postoperative hospital stays, rejection, and nonanastomotic biliary strictures were highest in group A with lowest survival at 93.1%. Infants 0 to <3 months and those <5 kg need more intensive care with lower survival and higher complications. Importantly, potential LT before reaching status 1a/1b and aggressive postoperative management may positively influence their outcomes.
Collapse
Affiliation(s)
- Ajay K. Jain
- Saint Louis University, Saint Louis, Missouri, USA
| | | | - Stacee Lerret
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - George Yanni
- Pediatrics, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | | | - Saeed Mohammad
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Majella Doyle
- Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Greg Telega
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Simon Horslen
- Liver and Small Bowel Transplantation, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|
27
|
Moreno F, Rose A, Chaplin MA, Cipolla MC, García Lombardi M, Nana M, Cervio G, Halac E, Viso M, Ayarzabal V, Bosaleh A, Liberto D, Sarabia E, Rizzi A, Morici M, Streitenberger P, de Dávila MTG. Childhood liver tumors in Argentina: Incidence trend and survival by treatment center. A report from the national pediatric cancer registry, ROHA network 2000-2015. Pediatr Blood Cancer 2020; 67:e28583. [PMID: 32737960 DOI: 10.1002/pbc.28583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Information on the epidemiology of pediatric liver tumors in Latin America is limited. PURPOSE To describe the incidence of liver tumors in a pediatric registry in Argentina according to geographic region, national trends over 16 years, and survival related to stage, age, sex, and care center. METHODS Newly diagnosed liver tumors cases are registered in the Argentine Pediatric Oncology Hospital Registry (ROHA) with an estimated coverage of 91% of national cases. Age-standardized incidence rate per millon (ASR) was calculated based on the National Vital Statistics Reports. Five-year overall survival (OS) was estimated using the Kaplan-Meier method. The log-rank test was used to compare subgroup survival. RESULTS Two hundred seven cases of hepatoblastoma (HB) and 73 of hepatocellular carcinoma (HCC) were identified. ASR of liver tumors was 1.8/million (95% confidence Interval [CI], 1.6-2.0) per year. ASR was 1.4 (1.2-1.6) for HB and 0.4 (0.3-0.5) for HCC. For HB, the highest incidence was found in the northwest region including the Altiplano. OS was 60.4% (53.4-66.8) for HB and 36.1% (25.2-47.2) for HCC. Five-year survival rate of children with metastatic HB treated at liver transplant hospitals (LTH) was 54.2% (30.3-73.0) compared to 13.3% (2.2-34.6) for those seen at other hospitals (OH) (P = .02), while for HCC this rate was 46.3% (30.7-60.6) at LTH compared to 17.5% (3.1-41.9) at OH (P = .01). CONCLUSIONS The incidence rate of pediatric liver tumors was stable over the 16-year study period. Patients may benefit if at treatment initiation they are evaluated jointly with LTH specialists to define treatment strategies.
Collapse
Affiliation(s)
- Florencia Moreno
- Argentinian Pediatric Oncology Registry, Ministry of Health, National Cancer Institute, Buenos Aires, Argentina
| | - Adriana Rose
- Garrahan Pediatric Hospital, Buenos Aires, Argentina
| | - M Agustina Chaplin
- Argentinian Pediatric Oncology Registry, Ministry of Health, National Cancer Institute, Buenos Aires, Argentina
| | - M Cristina Cipolla
- Nacional Department of Maternity, Childhood, and Adolescence, Ministry of Health, Buenos Aires, Argentina
| | | | - Mariana Nana
- Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | | | - Esteban Halac
- Garrahan Pediatric Hospital, Buenos Aires, Argentina
| | | | | | | | | | - Elena Sarabia
- Dr Humberto J. Notti Children's Hospital, Mendoza, Argentina
| | - Ana Rizzi
- Garrahan Pediatric Hospital, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
28
|
Pearson H, Marshall LV, Carceller F. Sorafenib in pediatric hepatocellular carcinoma from a clinician perspective. Pediatr Hematol Oncol 2020; 37:412-423. [PMID: 32183592 DOI: 10.1080/08880018.2020.1740844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatocellular Carcinoma (HCC) is a rare tumor in children and normally carries poor outcomes. The most frequently employed chemotherapy regimen includes cisplatin and doxorubicin (PLADO), but this combination offers limited efficacy. Sorafenib is a multi-tyrosine kinase inhibitor which, following positive studies in adults with HCC, has begun to be introduced in conjunction with PLADO in pediatric oncology with some encouraging results. Based on these findings, the use of sorafenib is become more common in children with unresectable and/or metastatic HCC. The care of patients receiving sorafenib requires appropriate expertise and standardized pediatric guidelines are lacking. An increasing number of children with HCC are expected to receive sorafenib in the years to come. Pediatric oncology clinicians have a key role in identifying side effects early and clinicians caring for children receiving sorafenib need to be familiar with these. This review article provides suitable and practical information on sorafenib for educational development to optimize clinical care and facilitate enhanced patient/parent education. The article addresses specific areas including mechanisms of action, pre-clinical and clinical evidence, dosing and drug administration and toxicities of sorafenib. Clinical research and recommendations for managing sorafenib-related side effects are discussed. Underpinned by research, this article provides pediatric oncology clinicians with the knowledge required to deliver optimal care to children receiving sorafenib.
Collapse
Affiliation(s)
- Helen Pearson
- The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.,The Institute of Cancer Research, Division of Clinical Studies and Cancer Therapeutics, Sutton, Surrey, United Kingdom
| | - Fernando Carceller
- The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom.,The Institute of Cancer Research, Division of Clinical Studies and Cancer Therapeutics, Sutton, Surrey, United Kingdom
| |
Collapse
|
29
|
Affiliation(s)
- Rubens Chojniak
- Department of Imaging, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Sindhi R, Rohan V, Bukowinski A, Tadros S, de Ville de Goyet J, Rapkin L, Ranganathan S. Liver Transplantation for Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12030720. [PMID: 32204368 PMCID: PMC7140094 DOI: 10.3390/cancers12030720] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Unresectable hepatocellular carcinoma (HCC) was first removed successfully with total hepatectomy and liver transplantation (LT) in a child over five decades ago. Since then, children with unresectable liver cancer have benefitted greatly from LT and a confluence of several equally important endeavors. Regional and trans-continental collaborations have accelerated the development and standardization of chemotherapy regimens, which provide disease control to enable LT, and also serve as a test of unresectability. In the process, tumor histology, imaging protocols, and tumor staging have also matured to better assess response and LT candidacy. Significant trends include a steady increase in the incidence of and use of LT for hepatoblastoma, and a significant improvement in survival after LT for HCC with each decade. Although LT is curative for most unresectable primary liver sarcomas, such as embryonal sarcoma, the malignant rhabdoid tumor appears relapse-prone despite chemotherapy and LT. Pediatric liver tumors remain rare, and diagnostic uncertainty in some settings can potentially delay treatment or lead to the selection of less effective chemotherapy. We review the current knowledge relevant to diagnosis, LT candidacy, and post-transplant outcomes for these tumors, emphasizing recent observations made from large registries or larger series.
Collapse
Affiliation(s)
- Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
- Correspondence: ; Tel.: +1-412-692-7123
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC 29403, USA;
| | - Andrew Bukowinski
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Sameh Tadros
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Jean de Ville de Goyet
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy;
| | - Louis Rapkin
- Department of Hematology/Oncology, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Sarangarajan Ranganathan
- Department of Pathology, Children’s Hospital Medical Center of Cincinnati, Cincinnati, OH 45229, USA;
| |
Collapse
|
31
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
32
|
Kumar A, Acharya SK, Singh SP, Arora A, Dhiman RK, Aggarwal R, Anand AC, Bhangui P, Chawla YK, Datta Gupta S, Dixit VK, Duseja A, Kalra N, Kar P, Kulkarni SS, Kumar R, Kumar M, Madhavan R, Mohan Prasad V, Mukund A, Nagral A, Panda D, Paul SB, Rao PN, Rela M, Sahu MK, Saraswat VA, Shah SR, Shalimar, Sharma P, Taneja S, Wadhawan M. 2019 Update of Indian National Association for Study of the Liver Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri II Recommendations. J Clin Exp Hepatol 2020; 10:43-80. [PMID: 32025166 PMCID: PMC6995891 DOI: 10.1016/j.jceh.2019.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/15/2019] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major causes of morbidity, mortality, and healthcare expenditure in patients with chronic liver disease in India. The Indian National Association for Study of the Liver (INASL) had published its first guidelines on diagnosis and management of HCC (The Puri Recommendations) in 2014, and these guidelines were very well received by the healthcare community involved in diagnosis and management of HCC in India and neighboring countries. However, since 2014, many new developments have taken place in the field of HCC diagnosis and management, hence INASL endeavored to update its 2014 consensus guidelines. A new Task Force on HCC was constituted that reviewed the previous guidelines as well as the recent developments in various aspects of HCC that needed to be incorporated in the new guidelines. A 2-day round table discussion was held on 5th and 6th May 2018 at Puri, Odisha, to discuss, debate, and finalize the revised consensus statements. Each statement of the guideline was graded according to the Grading of Recommendations Assessment Development and Evaluation system with minor modifications. We present here the 2019 Update of INASL Consensus on Prevention, Diagnosis, and Management of Hepatocellular Carcinoma in India: The Puri-2 Recommendations.
Collapse
Key Words
- AFP, alpha-fetoprotein
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- DAA, direct-acting antiviral
- DALY, disability-adjusted life-year
- DNA, deoxyribonucleic acid
- GRADE, Grading of Recommendations Assessment Development and Evaluation
- Gd-BOPTA, gadolinium benzyloxypropionictetraacetate
- Gd-EOB-DTPA, gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid
- HBV, hepatitis B virus
- HBeAg, hepatitis B envelope antigen
- HCC, hepatocellular carcinoma
- HIV, human immunodeficiency virus
- IARC, International Agency for Research on Cancer
- IFN, interferon
- INASL, Indian National Association for Study of the Liver
- MiRNA, micro-RNA
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PIVKA, protein induced by vitamin K absence
- RFA
- RNA, ribonucleic acid
- SVR, sustained virological response
- TACE
- TACE, trans-arterial chemoembolization
- TARE, transarterial radioembolization
- TNF, tumor necrosis factor
- WHO, World Health Organization
- liver cancer
- targeted therapy
- transplant
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, KIIT University, Patia, Bhubaneswar, Odisha, 751 024, India
| | - Shivaram P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, Dock Road, Manglabag, Cuttack, Odisha, 753 007, India
| | - Anil Arora
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Radha K. Dhiman
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Anil C. Anand
- Department of Gastroenterology, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Prashant Bhangui
- Medanta Institute of Liver Transplantation and Regenerative Medicine, Medanta the Medicity, CH Baktawar Singh Road, Sector 38, Gurugram, Haryana, 122 001, India
| | - Yogesh K. Chawla
- Department of Gastroenterology, Kalinga Institute of Medical Sciences (KIMS), Kushabhadra Campus (KIIT Campus-5), Patia, Bhubaneswar, Odisha, 751 024, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Vinod K. Dixit
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Naveen Kalra
- Department of Radio Diagnosis and Imaging, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Premashish Kar
- Department of Gastroenterology and Hepatology, Max Super Speciality Hospital, Vaishali, Ghaziabad, Uttar Pradesh, 201 012, India
| | - Suyash S. Kulkarni
- Division of Interventional Radiology, Tata Memorial Hospital, Dr. E Borges Road, Parel, Mumbai, Maharashtra, 400 012, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Ram Madhavan
- Department of Radiation Oncology, Amrita Institute of Medical Sciences, Amrita University, Peeliyadu Road, Ponekkara, Edappally, Kochi, Kerala, 682 041, India
| | - V.G. Mohan Prasad
- Department of Gastroenterology, VGM Gastro Centre, 2100, Trichy Road, Rajalakshmi Mills Stop, Singanallur, Coimbatore, Tamil Nadu, 641 005, India
| | - Amar Mukund
- Department of Radiology, Institute of Liver & Biliary Sciences, Sector D-1, Vasant Kunj, New Delhi, 110 070, India
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Dipanjan Panda
- Department of Oncology, Institutes of Cancer, Indraprastha Apollo Hospital, Sarita Vihar, New Delhi, 110 076, India
| | - Shashi B. Paul
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Padaki N. Rao
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, No. 6-3-661, Punjagutta Road, Somajiguda, Hyderabad, Telangana, 500 082, India
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Gleneagles Global Health City, 439, Cheran Nagar, Perumbakkam, Chennai, Tamil Nadu, 600 100, India
| | - Manoj K. Sahu
- Department of Medical Gastroenterology, IMS & SUM Hospital, K8 Kalinga Nagar, Shampur, Bhubaneswar, Odisha 751 003, India
| | - Vivek A. Saraswat
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226 014, India
| | - Samir R. Shah
- Department of Gastroenterology, Jaslok Hospital & Research Centre, 15, Dr Deshmukh Marg, Pedder Road, Mumbai, Maharashtra, 400 026, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110 029, India
| | - Praveen Sharma
- Institute of Liver Gastroenterology & Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi, 110 060, India
| | - Sunil Taneja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Manav Wadhawan
- Liver & Digestive Diseases Institute, Institute of Liver & Digestive Diseases, BLK Super Specialty Hospital, Delhi, 110 005, India
| | | |
Collapse
|
33
|
Mhlanga P, Perumal PO, Somboro AM, Amoako DG, Khumalo HM, Khan RB. Mechanistic Insights into Oxidative Stress and Apoptosis Mediated by Tannic Acid in Human Liver Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20246145. [PMID: 31817549 PMCID: PMC6940809 DOI: 10.3390/ijms20246145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
The study investigated the cytotoxic effect of a natural polyphenolic compound Tannic acid (TA) on human liver hepatocellular carcinoma (HepG2) cells and elucidated the possible mechanisms that lead to apoptosis and oxidative stress HepG2 cell. The HepG2 cells were treated with TA for 24 h and various assays were conducted to determine whether TA could induce cell death and oxidative stress. The cell viability assay was used to determine the half maximal inhibitory concentration (IC50), caspase activity and cellular ATP were determined by luminometry. Microscopy was employed to determine deoxyribonucleic acid (DNA) integrity, while thiobarbituric acid (TBARS) and nitric oxide synthase (NOS) assays were used to elucidate cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Western blotting was used to confirm protein expression. The results revealed that tannic acid induced caspase activation and increased the presence of cellular ROS and RNS, while downregulating antioxidant expression. Tannic acid also showed increased cell death and increased DNA fragmentation. In conclusion, TA was able to induce apoptosis by DNA fragmentation via caspase-dependent and caspase-independent mechanism. It was also able to induce oxidative stress, consequently contributing to cell death.
Collapse
Affiliation(s)
- Priscilla Mhlanga
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Pearl O. Perumal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Anou M. Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Daniel G. Amoako
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
- Correspondence: (D.G.A.); (R.B.K.); Tel.: +270-73-200-1919 (D.G.A.); +27-829-065-934 (R.B.K.)
| | - Hezekiel M. Khumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
| | - Rene B. Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (P.M.); (P.O.P.); (H.M.K.)
- Correspondence: (D.G.A.); (R.B.K.); Tel.: +270-73-200-1919 (D.G.A.); +27-829-065-934 (R.B.K.)
| |
Collapse
|
34
|
Santiago-Reynoso J, Zamaripa-Martínez KS, Dorantes-Loya JM, Gaytán-Fernández GJ, Apolinar-Jiménez E, Paz-Gómez F, Farias-Serratos F, Maldonado-Vega M. Hepatocellular Carcinoma of Fibrolamellar Type in an Adolescent: Case Report and Literature Review. Gastrointest Tumors 2019; 6:43-50. [PMID: 31602376 DOI: 10.1159/000499581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
We present a female patient, 13 years old, with diagnosis of hepatocellular carcinoma of fibrolamellar type, which was rapidly evolving. The fibrolamellar hepatocellular carcinoma invaded more than 80% of the hepatic parenchyma without surgical possibility or liver transplantation. Measures applied corresponded to chemotherapy of 1 cycle of cisplatin 40 mg/s/5 days + vincristine 1.5 mg/m<sup>2</sup>/day, 5-fluorouracil, doxorubicin, and dexrazoxane. The case presented aggressive evolution of hepatocellular carcinoma, which led to acute liver failure, with hyperammonemia, sepsis, pulmonary focus plus septic shock, grade III-IV encephalopathy, portal hypertension, and ascites with intra-abdominal hypertension. Death occurred due to multiple organ failure, which involved respiratory failure type KDIGO 1 and 2, acute liver failure, severe pneumonia, pericardial effusion, AKIN 2 acute kidney injury, carcinoma, and pulmonary metastasis. This type of ailment is infrequent in children and adolescents, and the first symptoms are crucial to achieve treatment possibilities.
Collapse
Affiliation(s)
- Javier Santiago-Reynoso
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| | - Karina Senyase Zamaripa-Martínez
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| | - Juan Manuel Dorantes-Loya
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| | - Guillermo J Gaytán-Fernández
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico.,Hospital General Regional de León, León, Mexico
| | - Evelia Apolinar-Jiménez
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| | - Francisco Paz-Gómez
- Unidad de Patología, Hospital Regional de Alta Especialidad del Bajío (HRAEB), León, Mexico
| | - Felipe Farias-Serratos
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| | - María Maldonado-Vega
- Hospital Regional de Alta Especialidad del Bajío (HRAEB), Servicio de Oncopediatría, Dirección de Planeación, Enseñanza e Investigación, León, Mexico
| |
Collapse
|
35
|
Schooler GR. American College of Radiology LI-RADS in pediatric patients: the good, the bad, and the future. Pediatr Radiol 2019; 49:707-709. [PMID: 31069469 DOI: 10.1007/s00247-019-04351-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Gary R Schooler
- Pediatric Radiology, Department of Radiology, Duke University Medical Center, 1905 McGovern-Davison Children's Health Center, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Ludwig DR, Romberg EK, Fraum TJ, Rohe E, Fowler KJ, Khanna G. Diagnostic performance of Liver Imaging Reporting and Data System (LI-RADS) v2017 in predicting malignant liver lesions in pediatric patients: a preliminary study. Pediatr Radiol 2019; 49:746-758. [PMID: 31069473 DOI: 10.1007/s00247-019-04358-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/26/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Liver Imaging Reporting and Data System (LI-RADS) has standardized the evaluation of hepatic lesions in adults at risk of developing hepatocellular carcinoma (HCC). There is no accepted imaging algorithm for diagnosing HCC in the pediatric population. OBJECTIVE The aim of our study was to evaluate the diagnostic accuracy and inter-rater reliability of LI-RADS version 2017 (v2017) for diagnosing HCC in a pediatric cohort. MATERIALS AND METHODS This retrospective, Institutional Review Board-approved study involved review of all abdominal dynamic contrast-enhanced imaging at a tertiary children's hospital during a 10-year period, yielding 151 liver lesions in patients <18 years. Cases with active extrahepatic malignancy or an inadequate reference standard were excluded. Two readers independently evaluated all included hepatic lesions using LI-RADS criteria. Pathology and imaging follow-up were used as reference standards. RESULTS A total of 41 lesions in 41 patients met criteria for evaluation (3 HCCs, 8 non-HCC malignancies, 30 benign lesions). A LI-RADS designation of definite HCC had high sensitivity (Reader 1/Reader 2: 100%, 95% confidence interval [CI] 31-100%) and high specificity (Reader 1: 84%, 95% CI: 68-93%; Reader 2: 97%, 95% CI: 85-100%) for predicting HCC. However, positive predictive value was only 33% (95% CI: 9-69%) and 75% (95% CI: 22-99%) for Reader 1 and Reader 2, respectively. For predicting any type of hepatic malignancy, a LI-RADS designation of definitely or likely malignant (i.e. not necessarily HCC) had a sensitivity of 100% (95% CI: 74-100%) and 90% (95% CI: 61-100%) for Reader 1 and Reader 2, respectively, and a negative predictive value (NPV) of 100% (95% CI: 81-100%) and 96% (95% CI: 83-99%) for Reader 1 and Reader 2, respectively. Interobserver agreement was substantial for the overall LI-RADS category (weighted κ=0.62; 95% CI: 0.38-0.86). CONCLUSION The positive predictive value of LI-RADS v2017 for diagnosing HCC was limited by the low frequency of HCC among pediatric patients. However, a LI-RADS designation of definitely or likely malignant had high sensitivity and NPV for any type of hepatic malignancy and may serve to direct clinical management by selecting patients for tissue sampling.
Collapse
Affiliation(s)
- Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, Box 8131, Saint Louis, MO, 63110, USA
| | - Erin K Romberg
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, Box 8131, Saint Louis, MO, 63110, USA
| | - Eric Rohe
- Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Kathryn J Fowler
- Department of Radiology, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - Geetika Khanna
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, Box 8131, Saint Louis, MO, 63110, USA.
| |
Collapse
|
37
|
Chen E, Rangaswami A, Esquivel CO, Concepcion W, Lungren M, Thakor AS, Yoo CH, Donaldson SS, Hiniker SM. Orthotopic Liver Transplantation After Stereotactic Body Radiotherapy for Pediatric Hepatocellular Carcinoma with Central Biliary Obstruction and Nodal Involvement. Cureus 2018; 10:e3499. [PMID: 30648040 PMCID: PMC6318132 DOI: 10.7759/cureus.3499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here we describe the case of a 10-year-old boy with a history of chronic hepatitis B who was diagnosed with hepatocellular carcinoma (HCC) with a large central hepatic mass and metastatic disease in a celiac lymph node. His tumor was unresectable, due to location and lack of clear margins, and he could not receive chemotherapy due to elevated bilirubin. He was treated with stereotactic body radiotherapy (SBRT) to the primary site and involved nodal region. After completing radiotherapy, his total bilirubin level fell below 1.0 mg/dL, allowing him to begin systemic therapy with cisplatin and doxorubicin. At three months after SBRT, his bilirubin was 0.1 mg/dL, alpha-fetoprotein (AFP) was 88 ng/mL, and imaging demonstrated a decrease in tumor size (total volume 28.7 cc), with no evidence of local or distant disease progression. He then developed distant disease within the liver, but his disease remained controlled at the primary site and nodes that had been treated with SBRT. He underwent orthotopic liver transplantation (OLT) with an uneventful operative course and remains with no evidence of disease at seven months after OLT. This is one of the first reported cases of successful downstaging of pediatric HCC with nodal involvement to allow for OLT, and it argues for consideration of similar patients for OLT.
Collapse
Affiliation(s)
- Emily Chen
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Arun Rangaswami
- Pediatric Hematology / Oncology, Lucile Packard Children's Hospital, Stanford, USA
| | | | | | - Matt Lungren
- Interventional Radiology, Stanford University School of Medicine, Stanford, USA
| | - Avnesh S Thakor
- Interventional Radiology, Stanford University School of Medicine, Stanford, USA
| | - Christopher H Yoo
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Sarah S Donaldson
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Susan M Hiniker
- Radiation Oncology, Stanford University Medical Center, Stanford, USA
| |
Collapse
|
38
|
Angelico R, Grimaldi C, Saffioti MC, Castellano A, Spada M. Hepatocellular carcinoma in children: hepatic resection and liver transplantation. Transl Gastroenterol Hepatol 2018; 3:59. [PMID: 30363724 DOI: 10.21037/tgh.2018.09.05] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a rare malignancy in children and at the time of diagnosis up to 80% of pediatric HCC are unresectable due to large and multiple lesions. The majority of pediatric HCC occurs on a background of normal liver, and consequently the absence of concomitant chronic liver disease generally allows tolerating pre- and post-operative chemotherapy. Based on the large experiences of adult HCC and pediatric hepatoblastoma, in the last years a multidisciplinary aggressive treatment composed of surgical resection and chemotherapy (based on cisplatin and doxorubicin) has been proposed, improving patient outcomes and recurrence rate in children with HCC. However, the overall survival rate in children with HCC is not satisfactory yet; while the 5-year survival rate may achieve up to 70-80% in non-metastatic resectable HCC, it remains <20% in children with unresectable HCC. The mainstay of the pediatric HCC therapeutic strategy is the radical tumor resection, weather by hepatic resection or liver transplantation, nevertheless the best surgical approaches as well as the optimal neoadjuvant and adjuvant treatment are still under debate. Different strategies have been explored to convert unresectable HCC into resectable tumors by extending criteria for surgical treatment and/or associating multi-modal treatments, such as systemic and local-regional therapy, but universal recommendation needs to be defined yet. The purpose of this review is to outline the role of different surgical approaches, including hepatic resection and liver transplantation, in pediatric HCC with or without underlying chronic liver disease.
Collapse
Affiliation(s)
- Roberta Angelico
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Chiara Grimaldi
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Maria Cristina Saffioti
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Aurora Castellano
- Division of Oncohematology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Division of Abdominal Transplantation and Hepatobiliopancreatic Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
39
|
Masand PM. Magnetic resonance imaging features of common focal liver lesions in children. Pediatr Radiol 2018; 48:1234-1244. [PMID: 30078045 DOI: 10.1007/s00247-018-4218-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
Magnetic resonance imaging (MRI) is commonly used to characterize focal liver masses in the pediatric population. MRI is the preferred modality because of its superior contrast resolution and utility for obtaining functional sequences such as diffusion-weighted imaging (DWI). MR exams performed with a hepatocyte-specific gadolinium-based contrast agent can characterize focal liver lesions, which helps in differentiating a common benign entity such as focal nodular hyperplasia from other liver pathology when the background liver is normal. The most common benign focal lesion is a hemangioma, and metastases followed by hepatoblastoma are the most common malignant lesions. This article can help radiologists become familiar with the pre- and post-contrast imaging features of common pediatric liver masses.
Collapse
Affiliation(s)
- Prakash M Masand
- Cardiovascular Imaging, Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin St., Houston, TX, 77030, USA. .,Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
40
|
Khan T, Stewart M, Blackman S, Rousseau R, Donoghue M, Cohen K, Seibel N, Fleury M, Benettaib B, Malik R, Vassal G, Reaman G. Accelerating Pediatric Cancer Drug Development: Challenges and Opportunities for Pediatric Master Protocols. Ther Innov Regul Sci 2018; 53:270-278. [PMID: 29759018 DOI: 10.1177/2168479018774533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although outcomes for children with cancer have significantly improved over the past 40 years, there has been little progress in the treatment of some pediatric cancers, particularly when advanced. Additionally, clinical trial options and availability are often insufficient. Improved genomic and immunologic understanding of pediatric cancers, combined with innovative clinical trial designs, may provide an enhanced opportunity to study childhood cancers. Master protocols, which incorporate the use of precision medicine approaches, coupled with the ability to quickly assess the safety and effectiveness of new therapies, have the potential to accelerate early-phase clinical testing of novel therapeutics and which may result in more rapid approval of new drugs for children with cancer. Designing and conducting master protocols for children requires addressing similar principles and requirements as traditional adult oncology trials, but there are also unique considerations for master protocols conducted in children with cancer. The purpose of this paper is to define the key challenges and opportunities associated with this approach in order to ensure that master protocols can be adapted to benefit children and adolescents and ensure that adequate data are captured to advance, in parallel, the clinical development of investigational agents for children with cancer.
Collapse
Affiliation(s)
- Tahira Khan
- 1 Genentech Inc, a member of the Roche Group, South San Francisco, CA, USA
| | - Mark Stewart
- 2 Friends of Cancer Research, Washington, DC, USA
| | | | - Raphaël Rousseau
- 1 Genentech Inc, a member of the Roche Group, South San Francisco, CA, USA
| | | | - Kenneth Cohen
- 5 Department of Pediatrics and Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Nita Seibel
- 6 USA National Cancer Institute, Bethesda, MD, USA
| | - Mark Fleury
- 7 American Cancer Society Cancer Action Network Inc, Washington, DC, USA
| | | | | | - Gilles Vassal
- 10 Department of Clinical Research, Institut Gustave Roussy, Paris-Sud University, Paris, France
| | | |
Collapse
|