1
|
Meerschaert KA, Chiu IM. The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2025; 22:206-221. [PMID: 39578592 DOI: 10.1038/s41575-024-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Visceral pain is a major clinical problem and one of the most common reasons patients with gastrointestinal disorders seek medical help. Peripheral sensory neurons that innervate the gut can detect noxious stimuli and send signals to the central nervous system that are perceived as pain. There is a bidirectional communication network between the gastrointestinal tract and the nervous system that mediates pain through the gut-brain axis. Sensory neurons detect mechanical and chemical stimuli within the intestinal tissues, and receive signals from immune cells, epithelial cells and the gut microbiota, which results in peripheral sensitization and visceral pain. This Review focuses on molecular communication between these non-neuronal cell types and neurons in visceral pain. These bidirectional interactions can be dysregulated during gastrointestinal diseases to exacerbate visceral pain. We outline the anatomical pathways involved in pain processing in the gut and how cell-cell communication is integrated into this gut-brain axis. Understanding how bidirectional communication between the gut and nervous system is altered during disease could provide new therapeutic targets for treating visceral pain.
Collapse
Affiliation(s)
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Baldwin A, States G, Pikov V, Gunalan P, Elyahoodayan S, Kilgore K, Meng E. Recent advances in facilitating the translation of bioelectronic medicine therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 33:100575. [PMID: 39896232 PMCID: PMC11781353 DOI: 10.1016/j.cobme.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bioelectronic medicine is a growing field which involves directly interfacing with the vagus, sacral, enteric, and other autonomic nerves to treat conditions. Therapies based on bioelectronic medicine could address previously intractable diseases and provide an alternative to pharmaceuticals. However, translating a bioelectronic medicine therapy to the clinic requires overcoming several challenges, including titrating stimulation parameters to an individual's physiology, selectively stimulating target nerves without inducing off-target activation or block, and improving accessibility to clinically approved devices. This review describes recent progress towards solving these problems, including advances in mapping and characterizing the human autonomic nervous system, new sensor technology and signal processing techniques to enable closed-loop therapies, new methods for selectively stimulating autonomic nerves without inducing off-target effects, and efforts to develop open-source implantable devices. Recent commercial successes in bringing bioelectronic medicine therapies to the clinic are highlighted showing how addressing these challenges can lead to novel therapies.
Collapse
Affiliation(s)
- Alex Baldwin
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Gregory States
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | | | - Pallavi Gunalan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Sahar Elyahoodayan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Kevin Kilgore
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| |
Collapse
|
3
|
Aoyagi K, Rivas E, Shababi R, Edwards R, LaValley M, Lechuga J, Napadow V, Neogi T. Safety and preliminary efficacy of transcutaneous auricular vagus nerve stimulation on chronic knee pain: A pilot trial. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100545. [PMID: 39687279 PMCID: PMC11647485 DOI: 10.1016/j.ocarto.2024.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Objective Transcutaneous auricular vagus nerve stimulation (tVNS) may be an innovative treatment for symptoms of knee osteoarthritis (OA) due to possible shared pathological mechanisms between diminished parasympathetic function, central pain mechanisms, and knee pain. Thus, we sought to test the safety and preliminary efficacy of tVNS in people with knee OA. Design A pilot trial in which participants received a 60-min tVNS was conducted. At baseline, immediately after, and 15 min after tVNS, we assessed knee pain, pressure pain threshold (PPT), temporal summation (TS), conditioned pain modulation (CPM), and high-frequency power of heart rate variability (HF). We examined the extent to which these outcome measures changed after tVNS using linear mixed models. Results 30 participants with knee OA were included, and all completed the intervention without any major side effects. Compared to baseline, knee pain was reduced by 1.27 (95 % CI, -1.74, -0.80) immediately after and by 1.87 (-2.33, -1.40) 15 min after tVNS; CPM improved by 0.11 (0.04, 0.19) and 0.07 (-0.01, 0.15); and HF improved by 213.29 (-0.38, 426.96) and 234.17 (20.49, 447.84). PPT and TS were not changed after tVNS. Conclusions Our preliminary data demonstrated that tVNS may be a safe pain-relieving treatment for people with knee OA. Our findings suggest that improvement of knee pain might be derived from improvement of parasympathetic function and central pain mechanisms as no local therapy was applied. A large study is needed to confirm that tVNS is a novel intervention to ameliorate knee pain in people with knee OA. Clinical Trial ClinicalTrials.gov (NCT05625178).
Collapse
Affiliation(s)
- Kosaku Aoyagi
- Department of Physical Therapy and Movement Sciences, University of Texas at El Paso, United States
| | - Elias Rivas
- Department of Physical Therapy and Movement Sciences, University of Texas at El Paso, United States
| | - Roxanna Shababi
- Department of Physical Therapy and Movement Sciences, University of Texas at El Paso, United States
| | - Robert Edwards
- Brigham and Women's Hospital, Harvard Medical School, United States
| | | | - Julia Lechuga
- Department of Physical Therapy and Movement Sciences, University of Texas at El Paso, United States
| | - Vitaly Napadow
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, United States
| | - Tuhina Neogi
- Section of Rheumatology Boston University Chobanian & Avedisian School of Medicine, United States
| |
Collapse
|
4
|
Abouelmagd ME, Yousef O, Ibrahim IA, Elshahat A. Effectiveness of non-invasive vagal nerve stimulation in Parkinson's disease: A comprehensive systematic review and meta-analysis. J Clin Neurosci 2025; 133:111016. [PMID: 39733649 DOI: 10.1016/j.jocn.2024.111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by movement impairments. Vagus nerve stimulation (VNS) is a non-invasive brain stimulation technique that has shown promise in treating various neurological conditions, including PD. This systematic review aimed to evaluate the existing evidence on the efficacy of nVNS in managing PD symptoms. METHODS A comprehensive literature search was conducted to identify relevant studies published up to July 2024. The included studies investigated the effect of nVNS on various PD motor symptoms. The quality of studies was assessed using the Cochrane Risk of Bias 2 (ROB-2) and NIH tool for RCTs, single-arm studies, and case series studies respectively. Statistical analysis was conducted using Review Manager version 5.4.1 with outcomes expressed as Mean differences (MD) with 95% confidence intervals (CI). RESULTS The systematic review included eight randomized controlled trials (RCTs), one single-arm study, and one case series, encompassing a total of 217 patients with PD. The review revealed that nVNS in increasing Freezing of Gait (FOG) in PD (p = 0.04). However, no significant differences were found in UPDRS-III (p = 0.19 and p = 0.89 for on and off-medication conditions, respectively), UPDRS-II (p = 0.9), UPDRS-I (p = 0.46), Time Up and Go (p = 0.61), stand time (p = 0.87), walking speed (p = 0.22), or step length measured in meters (p = 0.8). Interestingly, a significant improvement was observed in step length measured in centimetres (p = 0.0005). No study reported serious adverse effects associated with nVNS treatment. CONCLUSION Our finding suggests a potential benefit of nVNS in reducing FOG in PD, but did not demonstrate a significant improvement in other motor symptoms. Larger, longer follow-up studies are needed to confirm the effect nVNS on PD management. PROSPERO number: CRD42024574822.
Collapse
Affiliation(s)
| | - Obai Yousef
- Faculty of Medicine, Tartous University, Syria.
| | - Ismail A Ibrahim
- Faculty of Health Sciences, Fenerbahce University, Istanbul, Turkey; Faculty of Health Sciences, Lomza State University of Applied Sciences, Łomża, Poland
| | | |
Collapse
|
5
|
Jerman I, Škafar M, Pihir J, Senica M. Evaluating PEMF vagus nerve stimulation through neck application: A randomized placebo study with volunteers. Electromagn Biol Med 2025:1-14. [PMID: 39972609 DOI: 10.1080/15368378.2025.2462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
This study investigates the effects of pulsed electromagnetic field (PEMF) therapy on vagus nerve stimulation through non-invasive neck applications. Exploring the efficacy of PEMF across different frequencies (6 hz, 16 hz, and 32 hz), this double-blind placebo-controlled trial included 485 volunteers to assess its impact on autonomic nervous system functions, particularly targeting sleep disturbances and anxiety. Results demonstrated significant improvements in sleep quality and reduction in anxiety levels, especially notable at 16 hz. These findings suggest that PEMF therapy, by modulating autonomic activity, offers a beneficial non-pharmacological treatment option for related disorders.
Collapse
Affiliation(s)
- I Jerman
- BION Institute, Ljubljana, Slovenia
| | - M Škafar
- BION Institute, Ljubljana, Slovenia
| | - J Pihir
- BION Institute, Ljubljana, Slovenia
| | - M Senica
- BION Institute, Ljubljana, Slovenia
| |
Collapse
|
6
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
7
|
Faraji N, Payami B, Ebadpour N, Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci Biobehav Rev 2025; 169:105990. [PMID: 39716559 DOI: 10.1016/j.neubiorev.2024.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
The rising prevalence of treatment-resistant neuropsychiatric disorders underscores the need for innovative and effective treatment strategies. The gut microbiota (GM) plays a pivotal role in the progression of these diseases, influencing the brain and mental health through the gut-brain axis (GBA). The vagus nerve plays a significant role in the GBA, making it a key area of focus for potential novel therapeutic interventions. Vagus nerve stimulation (VNS) was introduced and approved as a treatment for refractory forms of some neuropsychological disorders, such as depression and epilepsy. Considering its impact on several brain regions that play a vital part in mood, motivation, affection, and cognitive function, the VNS has shown significant therapeutic potential for treating a variety of neuropsychiatric disorders. Using VNS to target the bidirectional communication pathways linking the GM and the VN could present an exciting and novel approach to treating neuropsychological disorders. Imbalances in the GM, such as dysbiosis, can impair the communication pathways between the gut and the brain, contributing to the development of neuropsychological disorders. VNS shows potential for modulating these interconnected systems, helping to restore balance. Interestingly, the composition of the GM may also influence the effectiveness of VNS, as it has the potential to modify the brain's response to this therapeutic approach. This study provides a comprehensive analysis of a relatively unexplored but noteworthy interaction between VNS and GM in the treatment of neuropsychiatric disorders. In addition, we discussed the mechanisms, therapeutic potential, and clinical implications of VNS on the GBA across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navid Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Payami
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Epilepsy Research Center, Department of Neurosurgery, Münster University, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
8
|
Pervaz I, Thurn L, Vezzani C, Kaluza L, Kühnel A, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation alter pupil dilation? A living Bayesian meta-analysis. Brain Stimul 2025; 18:148-157. [PMID: 39884386 DOI: 10.1016/j.brs.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Transcutaneous vagus nerve stimulation (tVNS) has emerged as a promising technique to modulate autonomic functions, and pupil dilation has been recognized as a promising biomarker for tVNS-induced monoaminergic release. Nevertheless, studies on the effectiveness of various tVNS protocols have produced heterogeneous results on pupil dilation to date. METHODS Here, we synthesize the existing evidence and compare conventional ("continuous") and pulsed stimulation protocols using a Bayesian meta-analysis. To maintain a living version, we developed a Shiny App with the possibility to incorporate newly published studies in the future. Based on a systematic review, we included 18 studies (N = 771) applying either conventional or pulsed stimulation protocols. RESULTS Across studies, we found anecdotal evidence for the null hypothesis, showing that taVNS does not increase pupil size (g = 0.15, 95 % CI = [0.03, 0.27], BF01 = 1.0). Separating studies according to conventional vs. pulsed protocols revealed that studies using pulsed taVNS provide strong evidence for the alternative hypothesis(g = 0.36, 95 % CI = [0.19, 0.53], BF10 = 50.8) while conventional taVNS studies provide strong evidence for the null hypothesis (g = 0.002, CI = [-0.14, 0.14], BF01 = 21.9). CONCLUSION Our meta-analysis highlights differential effects of conventional and pulsed taVNS protocols on pupil dilation. These findings underscore the relevance of taVNS protocols in optimizing its use for specific applications that may require modulation of tonic vs. phasic monoaminergic responses and might also help to gain mechanistic insights into potential therapeutic effects.
Collapse
Affiliation(s)
- Ipek Pervaz
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lilly Thurn
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cecilia Vezzani
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Luisa Kaluza
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Partner Site Tübingen, Germany.
| |
Collapse
|
9
|
Hoffmann C, Wang J, Ali RP, D’Souza RS. Neuromodulation guide for the non-neuromodulator clinician: What it is and how it can benefit patients? BIOMOLECULES & BIOMEDICINE 2025; 25:304-313. [PMID: 39132949 PMCID: PMC11734817 DOI: 10.17305/bb.2024.10967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Neuromodulation is being utilized across a variety of medical subspecialties to treat both painful and non-painful medical conditions. However, publications on neuromodulation topics infrequently occur in journals targeting generalists and medical specialties outside of pain medicine and neurosurgery. This study reviewed implantable neuromodulation devices, their respective Food and Drug Administration-approved indications for use, as well as off-label usage, and the associated potential risks and benefits for each device. PubMed and Medline databases were queried for systematic reviews with or without meta-analyses and randomized controlled trials of implantable neuromodulation devices. The literature review resulted in 106 studies eligible for inclusion, and 67 were included in the final review. In conclusion, as the clinical volume of neuromodulation continues to grow, supporting and educating medical professionals who care for patients that receive implanted neuromodulation devices is paramount. It is likely the use of neuromodulation will continue to expand across all medical subspecialties, and as such, every clinician should have a baseline understanding of this treatment.
Collapse
Affiliation(s)
- Chelsey Hoffmann
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jinlan Wang
- Department of Spine, Mayo Clinic, Rochester, MN, USA
| | - Rushna P Ali
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Ryan S D’Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Lauinger AR, Sepe JJ. Vascularization, Innervation, and Inflammation: Pathways Connecting the Heart-Brain Axis and Implications in a Clinical Setting. Biomedicines 2025; 13:171. [PMID: 39857755 PMCID: PMC11762153 DOI: 10.3390/biomedicines13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
With an aging population, the incidence of both ischemic heart disease and strokes have become the most prevalent diseases globally. These diseases have similar risk factors, such as hypertension, diabetes, and smoking. However, there is also evidence of a relationship between the heart and the brain, referred to as the heart-brain axis. In this relationship, dysfunction of either organs can lead to injury to the other. There are several proposed physiologies to explain this relationship. These theories usually involve vascular, neuromodulatory, and inflammatory processes; however, few articles have explored and compared these different mechanisms of interaction between the heart and brain. A better understanding of the heart-brain axis can inform physicians of current and future treatment and preventive care options in heart and brain pathologies. The relationship between the brain and heart depends on inflammation, vascular anatomy and function, and neuromodulation. The pathways connecting these organs often become injured or dysfunctional when a major pathology, such as a myocardial infarction or stroke, occurs. This leads to long-term impacts on the patient's overall health and risk for future disease. This study summarizes the current research involved in the heart-brain axis, relates these interactions to different diseases, and proposes future research in the field of neurocardiology. Conditions of the brain and heart are some of the most prevalent diseases. Through understanding the connection between these two organs, we can help inform patients and physicians of novel therapeutics for these pathologies.
Collapse
Affiliation(s)
- Alexa R. Lauinger
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Joseph J. Sepe
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Lescrauwaet E, Sprengers M, Carrette E, Algoet C, Mertens A, Klooster D, Beumer S, Mestrom R, Raedt R, Boon P, Vonck K. Investigating the Working Mechanism of Transcranial Direct Current Stimulation. Neuromodulation 2025; 28:68-75. [PMID: 38878056 DOI: 10.1016/j.neurom.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is used to modulate neuronal activity, but the exact mechanism of action (MOA) is unclear. This study investigates tDCS-induced modulation of the corticospinal excitability and the underlying MOA. By anesthetizing the scalp before applying tDCS and by stimulating the cheeks, we investigated whether stimulation of peripheral and/or cranial nerves contributes to the effects of tDCS on corticospinal excitability. MATERIALS AND METHODS In a randomized cross-over study, four experimental conditions with anodal direct current stimulation were compared in 19 healthy volunteers: 1) tDCS over the motor cortex (tDCS-MI), 2) tDCS over the motor cortex with a locally applied topical anesthetic (TA) on the scalp (tDCS-MI + TA), 3) DCS over the cheek region (DCS-C), and 4) sham tDCS over the motor cortex(sham). tDCS was applied for 20 minutes at 1 mA. Motor evoked potentials (MEPs) were measured before tDCS and immediately, 15, 30, 45, and 60 minutes after tDCS. A questionnaire was used to assess the tolerability of tDCS. RESULTS A significant MEP amplitude increase compared with baseline was found 30 minutes after tDCS-MI, an effect still observed 60 minutes later; no time∗condition interaction effect was detected. In the other three conditions (tDCS-MI + TA, DCS-C, sham), no significant MEP modulation was found. The questionnaire indicated that side effects are significantly lower when the local anesthetic was applied before stimulation than in the other three conditions. CONCLUSIONS The significant MEP amplitude increase observed from 30 minutes on after tDCS-MI supports the modulatory effect of tDCS on corticospinal neurotransmission. This effect lasted one hour after stimulation. The absence of a significant modulation when a local anesthetic was applied suggests that effects of tDCS are not solely established through direct cortical stimulation but that stimulation of peripheral and/or cranial nerves also might contribute to tDCS-induced modulation.
Collapse
Affiliation(s)
- Emma Lescrauwaet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium.
| | - Mathieu Sprengers
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Evelien Carrette
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Chloé Algoet
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Ann Mertens
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Lab, Department of Psychiatry, Ghent University Hospital, Ghent, Belgium
| | - Steven Beumer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rob Mestrom
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- 4Brain, Department of Neurology, Reference Center for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Vitello MM, Laureys S, Thibaut A, Gosseries O. Non-pharmacologic interventions in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:197-216. [PMID: 39986722 DOI: 10.1016/b978-0-443-13408-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Severely brain-injured patients with disorders of consciousness pose significant challenges in terms of management, particularly due to the limited therapeutic options available. Despite the potential for some patients to benefit from interventions even years after the injury, clinicians often lack clear and reliable treatment strategies to promote patient recovery. In response to this clinical need, the field of neuromodulation has emerged as a promising alternative to traditional pharmacologic therapies. Both invasive and noninvasive brain stimulation techniques offer diverse possibilities for restoring physiologic neural activity and enhancing functional network integrity in these complex neurological disorders. This chapter offers a comprehensive overview of current neuromodulation techniques, exploring their potential applications and analyzing the existing evidence for their efficacy. Specifically, we describe transcranial electrical stimulation, transcranial magnetic stimulation, deep brain stimulation, low-intensity focused ultrasound, vagal nerve stimulation (including transcutaneous methods), spinal cord stimulation, and median nerve stimulation. While certain approaches show promise for patients with disorders of consciousness, there remains a pressing need for large-scale interventional clinical trials that will play an essential role for elucidating the underlying mechanisms of recovery and for refining stimulation parameters. This, together with the development of tailored individual interventions will move the field forward and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| |
Collapse
|
13
|
Anand A, Shrivastava A, Singh K, Barik R, Gayakwad D, Jailani S, Shamim, Dwivedi S. Neuroprotective Efficacy and Complementary Treatment with Medicinal Herbs: A Comprehensive Review of Recent Therapeutic Approaches in Epilepsy Management. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:60-73. [PMID: 39069797 DOI: 10.2174/0118715273332140240724093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Central Nervous System (CNS) disorders affect millions of people worldwide, with a significant proportion experiencing drug-resistant forms where conventional medications fail to provide adequate seizure control. This abstract delves into recent advancements and innovative therapies aimed at addressing the complex challenge of CNS-related drug-resistant epilepsy (DRE) management. The idea of precision medicine has opened up new avenues for epilepsy treatment. Herbs such as curcumin, ginkgo biloba, panax ginseng, bacopa monnieri, ashwagandha, and rhodiola rosea influence the BDNF pathway through various mechanisms. These include the activation of CREB, inhibition of NF-κB, modulation of neurotransmitters, reduction of oxidative stress, and anti- inflammatory effects. By promoting BDNF expression and activity, these herbs support neuroplasticity, cognitive function, and overall neuronal health. Novel antiepileptic drugs (AEDs) with distinct mechanisms of action demonstrate efficacy in refractory cases where traditional medications falter. Additionally, repurposing existing drugs for antiepileptic purposes presents a cost-effective strategy to broaden therapeutic choices. Cannabidiol (CBD), derived from cannabis herbs, has garnered attention for its anticonvulsant properties, offering a potential adjunctive therapy for refractory seizures. In conclusion, recent advances and innovative therapies represent a multifaceted approach to managing drug-resistant epilepsy. Leveraging precision medicine, neurostimulation technologies, novel pharmaceuticals, and complementary therapies, clinicians can optimize treatment outcomes and improve the life expectancy of patients living with refractory seizures. Genetic testing and biomarker identification now allow for personalized therapeutic approaches tailored to individual patient profiles. Utilizing next-generation sequencing techniques, researchers have elucidated genetic mutations.
Collapse
Affiliation(s)
- Amit Anand
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Aman Shrivastava
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Rakesh Barik
- GITAM School of Pharmacy, GITAM University, Hyderabad, Telangana, India
| | - Devshree Gayakwad
- Acropolis Institute of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
| | - S Jailani
- Formulation R&D Department, Alpha Pharma, KAEC, Rabigh, Kingdom of Saudi Arabia
| | - Shamim
- IIMT College of Medical Sciences, IIMT University, Ganga Nagar, Meerut, Uttar Pradesh, India
| | - Sumeet Dwivedi
- Acropolis Institute of Pharmaceutical Education and Research, Indore, Madhya Pradesh, India
| |
Collapse
|
14
|
Wei J, Xie L, Wan M, Kong M, Zhang M, Li J. Transcutaneous auricular vagus nerve stimulation treatment for cutaneous dirt-adherent disease complicated with rosacea. Indian J Dermatol Venereol Leprol 2024; 0:1-3. [PMID: 39912168 DOI: 10.25259/ijdvl_1282_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 02/07/2025]
Affiliation(s)
- Jinyu Wei
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijuan Xie
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mei Wan
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Minmin Kong
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
15
|
Atalar K, Alim E, Yigman Z, Belen HB, Erten F, Sahin K, Soylu A, Dizakar SOA, Bahcelioglu M. Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model. J Anat 2024. [PMID: 39707162 DOI: 10.1111/joa.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1β, IL-6, IL-10, and TNF-α cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF- α while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.
Collapse
Affiliation(s)
- Kerem Atalar
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Ece Alim
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Zeynep Yigman
- Department of Histology and Embryology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Türkiye
| | - Hayrunnisa Bolay Belen
- Department of Neurology and Algology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Türkiye
| | - Kazım Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ayse Soylu
- Department of Anatomy Faculty of Medicine, Gazi University, Ankara, Türkiye
| | | | - Meltem Bahcelioglu
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| |
Collapse
|
16
|
Wang C, Wu B, Lin R, Cheng Y, Huang J, Chen Y, Bai J. Vagus nerve stimulation: a physical therapy with promising potential for central nervous system disorders. Front Neurol 2024; 15:1516242. [PMID: 39734634 PMCID: PMC11671402 DOI: 10.3389/fneur.2024.1516242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024] Open
Abstract
The diseases of the central nervous system (CNS) often cause irreversible damage to the human body and have a poor prognosis, posing a significant threat to human health. They have brought enormous burdens to society and healthcare systems. However, due to the complexity of their causes and mechanisms, effective treatment methods are still lacking. Vagus nerve stimulation (VNS), as a physical therapy, has been utilized in the treatment of various diseases. VNS has shown promising outcomes in some CNS diseases and has been approved by the Food and Drug Administration (FDA) in the United States for epilepsy and depression. Moreover, it has demonstrated significant potential in the treatment of stroke, consciousness disorders, and Alzheimer's disease. Nevertheless, the exact efficacy of VNS, its beneficiaries, and its mechanisms of action remain unclear. This article discusses the current clinical evidence supporting the efficacy of VNS in CNS diseases, providing updates on the progress, potential, and potential mechanisms of action of VNS in producing effects on CNS diseases.
Collapse
Affiliation(s)
- Chaoran Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bangqi Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ruolan Lin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yupei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingjie Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyan Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Bai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Postgraduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Liu M, Liu M, Zhang B, Fang M, Chen K, Zhang Y, Wang Q, Tian C, Wu L, Li Z. Research hotspots and frontiers of vagus nerve stimulation in stroke: a bibliometric analysis. Front Neurosci 2024; 18:1510658. [PMID: 39723424 PMCID: PMC11668697 DOI: 10.3389/fnins.2024.1510658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Vagus nerve stimulation (VNS) has emerged as a promising therapeutic approach for stroke treatment, drawing significant attention due to its potential benefits. However, despite this growing interest, a systematic bibliometric analysis of the research landscape is yet to be conducted. Methods We performed a comprehensive search of the Web of Science Core Collection (WoSCC) database for literature published between January 1, 2005, and August 31, 2024. CiteSpace and the Bibliometrix package in R software were used to generate knowledge maps and conduct a bibliometric analysis. This analysis focused on publication output, geographic distribution, institutional involvement, author and co-cited author networks, journal and co-cited journal relationships, co-cited references, and keyword trends. Results During the study period, 316 publications on VNS in stroke were identified, authored by 1,631 researchers from 1,124 institutions across 172 countries or regions. The number of publications showed steady growth, with the United States of America (USA) leading as the primary contributor. The University of Texas System emerged as the most active research institution. Frontiers in Neuroscience published the highest number of articles, while Stroke had the most citations. Professor Michael P. Kilgard authored the largest number of papers and was also the most frequently cited researcher. The main research trends focus on investigating VNS mechanisms via animal models and exploring its application in improving post-stroke sensorimotor function in the upper limbs. Moreover, VNS is showing promise in enhancing non-motor functions, such as swallowing, speech, and cognition, while addressing complications like post-stroke insomnia, depression, and disruptions in gut microbiota. Conclusion This bibliometric study offers a comprehensive overview of the research landscape and emerging trends in VNS for stroke rehabilitation, providing a solid foundation and reference point for future research directions in this field.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohan Zhang
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Chen
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yishen Zhang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Chunyan Tian
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Rehabilitation Clinical Medicine Research Center, Zhengzhou, China
| |
Collapse
|
18
|
Brem S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav Immun Health 2024; 42:100859. [PMID: 39512605 PMCID: PMC11541944 DOI: 10.1016/j.bbih.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 11/15/2024] Open
Abstract
Immuno-oncology, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer care with dramatic, long-term responses and increased survival, including patients with metastatic cancer to the brain. Glioblastomas, and other primary brain tumors, are refractory to ICIs as monotherapy or in combination with standard therapy. The tumor microenvironment (TME) poses multiple biological hurdles: blood-brain barrier, immune suppression, heterogeneity, and tumor infiltration. Genomic analysis of the senescence-associated secretory phenotype (SASP) and preclinical models of glioma suggest that an exciting approach would entail reprogramming of the glioma microenvironment, attenuating the pro-inflammatory, pro-tumorigenic cytokines of the SASP, especially interleukin-6 (IL-6). A testable hypothesis now proposed is to modulate the immune system by harnessing the body's 'inflammatory reflex' to reduce cytokines. Vagus nerve stimulation can activate T cell immunity by the cholinergic, α7nicotinic acetylcholine receptor agonist (α7nAchR), and suppress IL-6 systemically, as well as other pro-inflammatory cytokines of the SASP, interleukin -1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). The hypothesis predicts that electrical activation of the vagus nerve, with cytokine reduction, in combination with ICIs, would convert an immune resistant ("cold") tumor to an immune responsive ("hot") tumor, and halt glioma progression. The hypothesis also envisions cancer as an immune "dysautonomia" whereby a therapeutic intervention, vagus nerve stimulation (VNS), resets the systemic and local cytokine levels. A prospective, randomized, phase II clinical trial, to confirm the hypothesis, is a logical, exigent, next step. Cytokine reduction by VNS could also be useful for other forms of human cancer, e.g., breast, colorectal, head and neck, lung, melanoma, ovarian, pancreatic, and prostate cancer, as the emerging field of "cancer neuroscience" shows a role for neural regulation of multiple tumor types. Because IL-6, and companion pro-inflammatory cytokines, participate in the initiation, progression, spread and recurrence of cancer, minimally invasive VNS could be employed to suppress glioma or cancer progression, while also mitigating depression and/or seizures, thereby enhancing quality of life. The current hypothesis reimagines glioma pathophysiology as a dysautonomia with the therapeutic objective to reset the autonomic nervous system and form an immune responsive state to halt tumor progression and prevent recurrence. VNS, as a novel method to control cancer, can be administered with ICIs, standard therapy, or in clinical trials, combined with emerging immunotherapy: dendritic cell, mRNA, or chimeric antigen receptor (CAR) T cell vaccines.
Collapse
Affiliation(s)
- Steven Brem
- University of Pennsylvania, Department of Neurosurgery, Perelman Center for Advanced Medicine, 15-141, 3400 Civic Center Blvd., Philadelphia, PA, 19104, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
19
|
Duff IT, Likar R, Perruchoud C, Kampusch S, Köstenberger M, Sator S, Stremnitzer C, Wolf A, Neuwersch-Sommeregger S, Abd-Elsayed A. Clinical Efficacy of Auricular Vagus Nerve Stimulation in the Treatment of Chronic and Acute Pain: A Systematic Review and Meta-analysis. Pain Ther 2024; 13:1407-1427. [PMID: 39382792 PMCID: PMC11543973 DOI: 10.1007/s40122-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Current guidelines for pain treatment recommend a personalized, multimodal and interdisciplinary approach as well as the use of a combination of drug and non-drug therapies. Risk factors for chronification should already be reduced in patients with acute pain, e.g., after surgery or trauma. Auricular vagus nerve stimulation (aVNS) could be an effective non-drug therapy in the multimodal treatment of chronic and acute pain. The aim of this systematic review and meta-analysis is to evaluate the clinical efficacy and safety of aVNS in treating chronic and acute pain conditions. METHODS A systematic literature search was performed regarding the application of auricular electrical stimulation in chronic and acute pain. Studies were classified according to their level of evidence (Jadad scale), scientific validity and risk of bias (RoB 2 tool) and analyzed regarding indication, method, stimulation parameters, duration of treatment and efficacy and safety. A meta-analysis on (randomized) controlled trials (using different comparators) was performed for chronic and acute pain conditions, respectively, including subgroup analysis for percutaneous (pVNS-needle electrodes) and transcutaneous (tVNS-surface electrodes) aVNS. The visual analog pain scale (VAS) was defined as primary efficacy endpoint. RESULTS A total of n = 1496 patients were treated with aVNS in 23 identified and analyzed studies in chronic pain, 12 studies in acute postoperative pain and 7 studies in experimental acute pain. Of these, seven studies for chronic pain and six studies for acute postoperative pain were included in the meta-analysis. In chronic pain conditions, including back pain, migraine and abdominal pain, a statistically significant reduction in VAS pain intensity for active compared to sham aVNS or control treatment with an effect size Hedges' g/mean difference of - 1.95 (95% confidence interval [CI]: - 3.94 to 0.04, p = 0.008) could be shown and a more favorable effect in pVNS compared to tVNS (- 5.40 [- 8.94; - 1.85] vs. - 1.00 [- 1.55; - 0.44]; p = 0.015). In acute pain conditions, single studies showed significant improvements with aVNS, e.g., in kidney donor surgery or tonsillectomy but, overall, a non-statistically significant reduction in VAS pain intensity for active compared to sham aVNS or control with - 0.70 [- 2.34; 0.93] (p = 0.15) could be observed in the meta-analysis. In acute pain results vary greatly between studies depending especially on co-medication and timepoints of assessment after surgery. A significant reduction in analgesics or opiate intake was documented in most studies evaluating this effect in chronic and acute pain. In 3 of the 12 randomized controlled trials in patients with chronic pain, a sustainable pain reduction over a period of up to 12 months was shown. Overall, aVNS was very well tolerated. CONCLUSION This systematic review and meta-analysis indicate that aVNS can be an effective and safe non-drug treatment in patients with specific chronic and acute postoperative pain conditions. Further research is needed to identify the influence of simulation parameters and find optimal and standardized treatment protocols while considering quality-of-life outcome parameters and prolonged follow-up periods. A more standardized approach and harmonization in study designs would improve comparability and robustness of outcomes.
Collapse
Affiliation(s)
- Irina T Duff
- Neurosurgery Department, Johns Hopkins University, Baltimore, MD, USA
| | - Rudolf Likar
- Department for Anesthesia and Critical Care, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
- Sigmund Freud University, Vienna, Austria
| | | | | | - Markus Köstenberger
- Department for Anesthesia and Critical Care, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
- Medical University of Graz, Graz, Austria
| | - Sabine Sator
- Department for Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Wolf
- Department of Anesthesia, Krankenhaus St. Vinzenz, Zams, Austria
| | - Stefan Neuwersch-Sommeregger
- Medical University of Graz, Graz, Austria
- Department for Anesthesiology and Intensive Care, Krankenhaus der Barmherzigen Brüder, St. Veit/Glan, Austria
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
20
|
Förster CY. Transcutaneous Non-Invasive Vagus Nerve Stimulation: Changing the Paradigm for Stroke and Atrial Fibrillation Therapies? Biomolecules 2024; 14:1511. [PMID: 39766218 PMCID: PMC11673676 DOI: 10.3390/biom14121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
A new therapeutic approach, known as neuromodulation therapy-which encompasses a variety of interventional techniques meant to alter the nervous system in order to achieve therapeutic effects-has emerged in recent years as a result of advancements in neuroscience. Currently used methods for neuromodulation include direct and indirect approaches, as well as invasive and non-invasive interventions. For instance, the two primary methods of stimulating the vagus nerve (VN) are invasive VN stimulation (iVNS) and transcutaneous VN stimulation (tVNS). Since the latter is non-invasive, basic, clinical, and translational studies have focused on transcutaneous auricular VN stimulation (taVNS), the primary tVNS therapy, because of its advantages over iVNS, including ease of use, greater accessibility, and a lower side effect profile. taVNS is currently used as a novel neuromodulatory application to treat cardiovascular, mental, and autoimmune diseases. Future applications of this non-invasive neuromodulation technology to conditions like atrial fibrillation (AF) or ischemic stroke are highly likely due to its advancement.
Collapse
Affiliation(s)
- Carola Y Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Cerebrovascular Sciences and Neuromodulation, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
21
|
Liu FJ, Wu J, Gong LJ, Yang HS, Chen H. Non-invasive vagus nerve stimulation in anti-inflammatory therapy: mechanistic insights and future perspectives. Front Neurosci 2024; 18:1490300. [PMID: 39605787 PMCID: PMC11599236 DOI: 10.3389/fnins.2024.1490300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Non-invasive vagus nerve stimulation (VNS) represents a transformative approach for managing a broad spectrum of inflammatory and autoimmune conditions, including rheumatoid arthritis and inflammatory bowel disease. This comprehensive review delineates the mechanisms underlying VNS, emphasizing the cholinergic anti-inflammatory pathway, and explores interactions within the neuro-immune and vagus-gut axes based on both clinical outcomes and pre-clinical models. Clinical applications have confirmed the efficacy of VNS in managing specific autoimmune diseases, such as rheumatoid arthritis, and chronic inflammatory conditions like inflammatory bowel disease, showcasing the variability in stimulation parameters and patient responses. Concurrently, pre-clinical studies have provided insights into the potential of VNS in modulating cardiovascular and broader inflammatory responses, paving the way for its translational application in clinical settings. Innovations in non-invasive VNS technology and precision neuromodulation are enhancing its therapeutic potential, making it a viable option for patients who are unresponsive to conventional treatments. Nonetheless, the widespread adoption of this promising therapy is impeded by regulatory challenges, patient compliance issues, and the need for extensive studies on long-term efficacy and safety. Future research directions will focus on refining VNS technology, optimizing treatment parameters, and exploring synergistic effects with other therapeutic modalities, which could revolutionize the management of chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Neurology Medical Center II, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Jing Wu
- Department of Medical Imaging, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Li-Jun Gong
- Center of Surgical Anesthesia, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong-Shuai Yang
- Central Operating Room, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Huan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Shin JH, Lee CM, Song JJ. Transcutaneous auricular vagus nerve stimulation mitigates gouty inflammation by reducing neutrophil infiltration in BALB/c mice. Sci Rep 2024; 14:25630. [PMID: 39463429 PMCID: PMC11514149 DOI: 10.1038/s41598-024-77272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Gouty inflammation, caused by uric acid crystal deposition, primarily affects tissues around the toe joints and triggers potent inflammatory responses. Current treatments focus on alleviating inflammation and pain using pharmaceutical agents, which can lead to side effects and complications. This has generated interest in non-pharmacological interventions, such as non-invasive vagus nerve stimulation (VNS). In this study, we explored the anti-inflammatory mechanisms of transcutaneous auricular vagus nerve stimulation (taVNS) in a mouse model of acute gout. Gouty inflammation was induced by injecting monosodium urate (MSU) crystals into the ankle joints of BALB/c mice. The effects of taVNS on the expression of inflammatory cytokines and chemokines in the ankle joint tissue were assessed using real-time quantitative PCR (qPCR), western blotting, histological assessments (H&E staining), and immunohistochemistry (IHC). The role of α7 nicotinic acetylcholine receptors (α7nAChR) was also evaluated by signal blocking. Our findings revealed that MSU significantly elevated gout-associated inflammatory cascades and mediators in the ankle joint. Notably, taVNS at 200 µA and 25 Hz effectively reduced these inflammatory responses, decreasing neutrophil infiltration and chemoattraction within the tissue. taVNS showed significant anti-inflammatory properties by suppressing neutrophil activity, offering a novel therapeutic approach for gout beyond conventional pharmacological methods. Additionally, taVNS holds potential for managing various chronic joint diseases. These results highlight taVNS as a promising non-pharmacological therapy for chronic inflammation.
Collapse
Affiliation(s)
- Jae Hee Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Korea
| | - Chan Mi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Korea.
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Korea.
- Neurive Institute, Neurive Co., Ltd., Seoul, 08308, Korea.
| |
Collapse
|
23
|
Pérez-Alcalde AI, Galán-Del-Río F, Fernández-Rodríguez FJ, de la Plaza San Frutos M, García-Arrabé M, Giménez MJ, Ruiz-Ruiz B. The Effects of a Single Vagus Nerve's Neurodynamics on Heart Rate Variability in Chronic Stress: A Randomized Controlled Trial. SENSORS (BASEL, SWITZERLAND) 2024; 24:6874. [PMID: 39517768 PMCID: PMC11548125 DOI: 10.3390/s24216874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The modulation of the autonomic nervous system's activity, particularly increasing its parasympathetic tone, is of significant interest in clinical physiotherapy due to its potential benefits for stress-related conditions and recovery processes. This study evaluated the effectiveness of the addition of neurodynamics in enhancing parasympathetic activation in subjects with chronic stress. METHODS A clinical trial randomly assigned participants to a group with neurodynamics (6 bpm breathing protocol + manual therapy + neurodynamic technique) or a group without neurodynamics (6 bpm breathing protocol + manual therapy only). Metrics of heart rate variability (HRV), including the Mean Heart Rate (Mean HR), standard deviation of intervals between consecutive heartbeats (SDNN), Heart Rate Difference (Diff. HR), Root Mean Square of Successive Differences (RMSSD), number of intervals differing by more than 50 ms (NN50), percentage of consecutive NN intervals that differed by more than 50 ms (pNN50), and the high-frequency component measured in standardized units (HF), were assessed before, during, and after the intervention. RESULTS During the intervention, the group with neurodynamics showed significant changes in all variables except in the pNN50 and HF while the group without neurodynamics only showed improvements in the Mean HR, SDNN, and RMSSD. In the post-intervention phase, the group with neurodynamics maintained an increase in HRV while the group without neurodynamics experienced a decrease, suggesting an increase in sympathetic activity. CONCLUSIONS Vagal nerve neurodynamics appear to represent an effective method for enhancing parasympathetic activation in patients with chronic stress. The results highlight the importance of a more comprehensive analysis of HRV variables in order to obtain a correct picture of the impact of interventions on the complex and multifaceted functioning of the autonomic nervous system.
Collapse
Affiliation(s)
- Ana Isabel Pérez-Alcalde
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
- International Doctoral School, Rey Juan Carlos University, 28008 Madrid, Spain
| | - Fernando Galán-Del-Río
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | | | | | - María García-Arrabé
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - María-José Giménez
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Beatriz Ruiz-Ruiz
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| |
Collapse
|
24
|
Goyal M, Goyal R, Sanguinetti JL. Ultrasound stimulation of the vagus nerve as a treatment modality for anxiety. Front Psychiatry 2024; 15:1376140. [PMID: 39415887 PMCID: PMC11480057 DOI: 10.3389/fpsyt.2024.1376140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Anxiety is an increasingly prevalent mental disorder, causing widespread hardship and interfering with society's economic progression. Standard treatments include various talk therapies with poor prognoses or drug interventions with complex side effects, both introducing unnecessary burdens to patients. To remedy this, non-invasive ultrasound stimulation to the vagus nerve is a novel, low-cost treatment that is showing promise. Although vagus nerve stimulation is already approved for epilepsy and other conditions, it requires regular maintenance. In contrast, studies using non-invasive ultrasound stimulation have shown preliminary positive results in affecting vagal activity with minimal drawbacks. This review covers a variety of studies investigating the effects of ultrasound stimulation on the vagus nerve. With rising levels of anxiety with each generation, there is a pressing need for more innovative and diverse treatments with fewer costs and more benefits.
Collapse
Affiliation(s)
- Michell Goyal
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Ravi Goyal
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
25
|
Habibollahi M, Jiang D, Lancashire HT, Demosthenous A. Active Neural Interface Circuits and Systems for Selective Control of Peripheral Nerves: A Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:954-975. [PMID: 39018210 DOI: 10.1109/tbcas.2024.3430038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Interfaces with peripheral nerves have been widely developed to enable bioelectronic control of neural activity. Peripheral nerve neuromodulation shows great potential in addressing motor dysfunctions, neurological disorders, and psychiatric conditions. The integration of high-density neural electrodes with stimulation and recording circuits poses a challenge in the design of neural interfaces. Recent advances in active electrode strategies have achieved improved reliability and performance by implementing in-situ control, stimulation, and recording of neural fibers. This paper presents an overview of state-of-the-art neural interface systems that comprise a range of neural electrodes, neurostimulators, and bio-amplifier circuits, with a special focus on interfaces for the peripheral nerves. A discussion on the efficacy of active electrode systems and recommendations for future directions conclude this paper.
Collapse
|
26
|
Agnesi F, Zinno C, Strauss I, Dushpanova A, Casieri V, Bernini F, Terlizzi D, Gabisonia K, Paggi V, Lacour SP, Lionetti V, Micera S. Cardiovascular Response to Intraneural Right Vagus Nerve Stimulation in Adult Minipig. Neuromodulation 2024; 27:1187-1195. [PMID: 36997453 DOI: 10.1016/j.neurom.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE This study explored intraneural stimulation of the right thoracic vagus nerve (VN) in sexually mature male minipigs to modulate safe heart rate and blood pressure response. MATERIAL AND METHODS We employed an intraneural electrode designed for the VN of pigs to perform VN stimulation (VNS). This was delivered using different numbers of contacts on the electrode and different stimulation parameters (amplitude, frequency, and pulse width), identifying the most suitable stimulation configuration. All the parameter ranges had been selected from a computational cardiovascular system model. RESULTS Clinically relevant responses were observed when stimulating with low current intensities and relatively low frequencies delivered with a single contact. Selecting a biphasic, charge-balanced square wave for VNS with a current amplitude of 500 μA, frequency of 10 Hz, and pulse width of 200 μs, we obtained heart rate reduction of 7.67 ± 5.19 beats per minute, systolic pressure reduction of 5.75 ± 2.59 mmHg, and diastolic pressure reduction of 3.39 ± 1.44 mmHg. CONCLUSION Heart rate modulation was obtained without inducing any observable adverse effects, underlining the high selectivity of the intraneural approach.
Collapse
Affiliation(s)
- Filippo Agnesi
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ciro Zinno
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- Institut für Mikrosystemtechnik, University of Frieberg, IMTEK, Freiburg, Germany
| | - Anar Dushpanova
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; Health Research Institute, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | - Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectric Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectric Interfaces, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Ahmed A, Rahman AH, Williams S, Toufiq M, Jamileh E, Chaudhry S, Ahmed K, Ahmed M. Seizures and Epilepsy: An Overview for UK Medical Students. Cureus 2024; 16:e70654. [PMID: 39493075 PMCID: PMC11527550 DOI: 10.7759/cureus.70654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
Epilepsy is a common neurological disorder impacting millions globally, marked by recurrent, unprovoked seizures. This review article, tailored for UK medical students, provides a broad clinical overview of epilepsy, focusing on its pathophysiology, classification, and management strategies. The article clarifies the distinction between epilepsy and seizures and delves into key areas, including risk factors, clinical features, and differential diagnosis. The discussion extends to diagnostic methods, underscoring the importance of conducting a thorough evaluation in diagnosing and managing epilepsy effectively. Data were drawn from the UK National Institute for Health and Care Excellence (NICE) guidelines, World Health Organization (WHO) reports, and key peer-reviewed studies. Particular attention was given to UK-specific data on epilepsy incidence, treatment gaps, and clinical outcomes. A review of relevant literature was conducted, covering epidemiology, pathophysiology, diagnostic protocols, and management strategies based on UK practices. Finally, the article addresses the acute management of seizures and the pharmacological and non-pharmacological management of epilepsy based on the NICE guidelines. The goal is to offer medical students a concise yet comprehensive understanding of epilepsy, preparing them for practical, evidence-based decision-making in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Mubeen Toufiq
- Respiratory Medicine, Princess Alexandra Hospital, London, GBR
| | - Eyad Jamileh
- Gastroenterology, Royal Blackburn Hospital, Blackburn, GBR
| | - Sheema Chaudhry
- Critical Care Medicine, Princess Alexandra Hospital, London, GBR
| | | | - Munir Ahmed
- Physics, Leyton Sixth Form College, London, GBR
| |
Collapse
|
28
|
Kamoga R, Rukundo GZ, Kalungi S, Adriko W, Nakidde G, Obua C, Obongoloch J, Ihunwo AO. Vagus nerve stimulation in dementia: A scoping review of clinical and pre-clinical studies. AIMS Neurosci 2024; 11:398-420. [PMID: 39431268 PMCID: PMC11486617 DOI: 10.3934/neuroscience.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Background Dementia is a prevalent, progressive, neurodegenerative condition with multifactorial causes. Due to the lack of effective pharmaceutical treatments for dementia, there are growing clinical and research interests in using vagus nerve stimulation (VNS) as a potential non-pharmacological therapy for dementia. However, the extent of the research volume and nature into the effects of VNS on dementia is not well understood. This study aimed to examine the extent and nature of research activities in relation to the use of VNS in dementia and disseminate research findings for the potential utility in dementia care. Methods We performed a scoping review of literature searches in PubMed, HINARI, Google Scholar, and the Cochrane databases from 1980 to November 30th, 2023, including the reference lists of the identified studies. The following search terms were utilized: brain stimulation, dementia, Alzheimer's disease, vagal stimulation, memory loss, Deme*, cognit*, VNS, and Cranial nerve stimulation. The included studies met the following conditions: primary research articles pertaining to both humans and animals for both longitudinal and cross-sectional study designs and published in English from January 1st, 1980, to November 30th, 2023; investigated VNS in either dementia or cognitive impairment; and were not case studies, conference proceedings/abstracts, commentaries, or ordinary review papers. Findings and conclusions We identified 8062 articles, and after screening for eligibility (sequentially by titles, abstracts and full text reading, and duplicate removal), 10 studies were included in the review. All the studies included in this literature review were conducted over the last three decades in high-income geographical regions (i.e., Europe, the United States, the United Kingdom, and China), with the majority of them (7/10) being performed in humans. The main reported outcomes of VNS in the dementia cases were enhanced cognitive functions, an increased functional connectivity of various brain regions involved in learning and memory, microglial structural modifications from neurodestructive to neuroprotective configurations, a reduction of cerebral spinal fluid tau-proteins, and significant evoked brain tissue potentials that could be utilized to diagnose neurodegenerative disorders. The study outcomes highlight the potential for VNS to be used as a non-pharmacological therapy for cognitive impairment in dementia-related diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald Kamoga
- Department of Anatomy, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Godfrey Zari Rukundo
- Department of Psychiatry, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Samuel Kalungi
- Makerere University, School of health sciences, Department of Pathology. Kampala, Uganda
| | - Wilson Adriko
- Library department, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara Uganda
| | - Gladys Nakidde
- Faculty of Nursing and Health Sciences, Bishop Stuart University, Mbarara, Uganda
| | - Celestino Obua
- Department of Pharmacology, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Johnes Obongoloch
- Department of Biomedical engineering, Mbarara University of Science and Technology, P.O.Box 1410, Mbarara, Uganda
| | - Amadi Ogonda Ihunwo
- University of the Witwatersrand, School of Anatomical Sciences, Faculty of Health Sciences, Johannesburg, South Africa
| |
Collapse
|
29
|
Chen M, Yang C, Chen Y, Nie K, Wang T, Qu Y. Research hotspots and trends of non-invasive vagus nerve stimulation: a bibliometric analysis from 2004 to 2023. Front Neurol 2024; 15:1429506. [PMID: 39381073 PMCID: PMC11460548 DOI: 10.3389/fneur.2024.1429506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives Non-invasive vagus nerve stimulation (nVNS) is an emerging neuromodulation technique in recent years, which plays a role in nervous system diseases, psychiatric diseases, and autoimmune diseases. However, there is currently no comprehensive analysis of all the literature published in this field. Therefore, in this article, a bibliometric analysis will be conducted on all the literature published in the field of nVNS in the past 20 years. Methods All articles and reviews published in this field from 2004 to 2023 were extracted from the WOS core database. VOSviewer 1.6.18.0, Scimago Graphica, CiteSpace 6.2.R2, and Excel 2021 were used to analyze the number of publications, participating countries, institutions, authors, references, and research hotspots in this field. Results A total of 843 articles were included in the bibliometric analysis of nVNS. Over the past 20 years, the number of publications in this field has gradually increased, reaching a peak in 2023. The United States and China ranked top two in terms of publication volume, and institutions from these two countries also ranked high in terms of publication volume, citation count, and collaboration intensity. Rong Peijing is the author with the most publications, while Bashar W Badran is the most cited author. Articles in the field of nVNS were most frequently published in Frontiers in Neuroscience, while Brain Stimulation had the most citations. Currently, research hotspots in nVNS mainly focus on its application in diseases and related mechanisms. Conclusion We conducted a comprehensive analysis of the field of nVNS, clarifying the previous research directions, which is helpful to expand its indications and promote clinical application.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kailu Nie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Rauhala OJ, Ma L, Wisniewski DJ, Shao S, Schumacher B, Lopez JF, Kaspers M, Zhao Z, Gelinas JN, Khodagholy D. E-Suture: Mixed-Conducting Suture for Medical Devices. Adv Healthc Mater 2024; 13:e2302613. [PMID: 38150402 PMCID: PMC11338356 DOI: 10.1002/adhm.202302613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Modern implantable bioelectronics demand soft, biocompatible components that make robust, low-impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed-conducting suture, the e-suture, is presented. Composed of silk, the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e-suture has mixed-conducting properties at the interface with biological tissue as well as effective insulation along its length. The e-suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e-sutures remains stable for months with robust brain activity patterns. Furthermore, e-sutures can establish electrophoretic-based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E-sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.
Collapse
Affiliation(s)
- Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Shan Shao
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Brandon Schumacher
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Jose Ferrero Lopez
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Mara Kaspers
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, 10027, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, 10027, USA
| |
Collapse
|
31
|
Burish MJ, Guirguis AB, Schindler EAD. Managing Cluster Headache in Patients with Medical, Psychiatric, and Surgical Comorbidities. Curr Neurol Neurosci Rep 2024; 24:439-452. [PMID: 39017830 DOI: 10.1007/s11910-024-01362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW What should a provider know about medications and other treatments in patients with cluster headache who have medical, psychiatric, and surgical comorbidities? What conversations should providers have with patients about living with and managing cluster headache? RECENT FINDINGS While the number of treatments used in cluster headache is relatively small, numerous considerations were identified related to managing patients with comorbidities. Many of these touch on cardiac, cardiovascular, and cerebrovascular health, but full histories are needed to guide safe and effective treatment. Both older and newer treatments may be contraindicated in certain patients with cluster headache or should be considered carefully. In addition to incorporating medical, psychiatric, and surgical histories in the management plan, collaboration with other providers may be beneficial. Providers should also inquire about patient practices and discuss participation in clinical trials that might be a good fit for the individual.
Collapse
Affiliation(s)
- Mark J Burish
- Department of Neurosurgery, McGovern Medical School at UTHealth Houston, Houston, TX, USA
| | - Alexander B Guirguis
- Veteran Health Administration Headache Center of Excellence, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emmanuelle A D Schindler
- Veteran Health Administration Headache Center of Excellence, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- VA Connecticut Healthcare System, Neurology Service, MS 127, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| |
Collapse
|
32
|
Davani AJ, Richardson AJ, Vodovozov W, Sanghani SN. Neuromodulation in Psychiatry. ADVANCES IN PSYCHIATRY AND BEHAVIORAL HEALTH 2024; 4:177-198. [DOI: 10.1016/j.ypsc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
34
|
Wu PY, Caceres AI, Chen J, Sokoloff J, Huang M, Baht GS, Nackley AG, Jordt SE, Terrando N. Vagus nerve stimulation rescues persistent pain following orthopedic surgery in adult mice. Pain 2024; 165:e80-e92. [PMID: 38422485 PMCID: PMC11247455 DOI: 10.1097/j.pain.0000000000003181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024]
Abstract
ABSTRACT Postoperative pain is a major clinical problem imposing a significant burden on patients and society. In a survey 2 years after orthopedic surgery, 57% of patients reported persisting postoperative pain. However, only limited progress has been made in the development of safe and effective therapies to prevent the onset and chronification of pain after orthopedic surgery. We established a tibial fracture mouse model that recapitulates clinically relevant orthopedic trauma surgery, which causes changes in neuropeptide levels in dorsal root ganglia and sustained neuroinflammation in the spinal cord. Here, we monitored extended pain behavior in this model, observing chronic bilateral hindpaw mechanical allodynia in both male and female C57BL/6J mice that persisted for >3 months after surgery. We also tested the analgesic effects of a novel, minimally invasive, bioelectronic approach to percutaneously stimulate the vagus nerve (termed percutaneous vagus nerve stimulation [pVNS]). Weekly pVNS treatment for 30 minutes at 10 Hz for 3 weeks after the surgery strongly reduced pain behaviors compared with untreated controls. Percutaneous vagus nerve stimulation also improved locomotor coordination and accelerated bone healing. In the dorsal root ganglia, vagal stimulation inhibited the activation of glial fibrillary acidic protein-positive satellite cells but without affecting microglial activation. Overall, these data provide novel evidence supportive of the use of pVNS to prevent postoperative pain and inform translational studies to test antinociceptive effects of bioelectronic medicine in the clinic.
Collapse
Affiliation(s)
- Pau Yen Wu
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Ana Isabel Caceres
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jiegen Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Jamie Sokoloff
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Mingjian Huang
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Gurpreet Singh Baht
- Department of Orthopaedic Surgery, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - Andrea G. Nackley
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
35
|
Wang H, Kwok WH, Yao LQ, Liu XL, Bressington D, Chen ML, Huang HQ, Wang T, Tan JYB. An evidence-based breathing exercise intervention for chronic pain management in breast cancer survivors: A phase II randomized controlled trial. Eur J Oncol Nurs 2024; 71:102625. [PMID: 38897104 DOI: 10.1016/j.ejon.2024.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Explore the preliminary effects of a breathing exercise (BE) intervention on chronic pain among breast cancer survivors. METHODS This two-parallel-arm, open-label pilot randomized controlled trial recruited 72 breast cancer survivors who were randomly allocated to either the control or intervention group (n = 36 each). Both groups received usual care and a pain information booklet, while the intervention group received 4 weeks of additional BE. The primary clinical outcome was measured using the Brief Pain Inventory (BPI), with secondary clinical outcomes measured by the Hospital Anxiety and Depression Scale (HADS), Quality of Life Patient/Cancer Survivor Version in Chinese (QOLCSV-C), and Functional Assessment of Cancer Therapy- Breast (FACT-B) immediately post-intervention and at 4-week follow-up. Both adjusted and unadjusted Generalized Estimating Equation models were utilized to assess the BE's potential effects, with safety assessed through participant self-report. RESULTS Sixty-eight participants completed the study. Statistical significance was observed in BPI in both adjusted and unadjusted models at post-intervention and follow-up (p < 0.05). BE demonstrated positive effects on anxiety, depression and quality of life improvement across all measures and timepoints in both adjusted and unadjusted models (p < 0.05). The effect sizes were smaller in the adjusted model. Three mild transient discomforts were reported associated with BE practice including dizziness, tiredness and yawning, without requirement of medical treatment. No severe adverse events occurred. CONCLUSION This BE intervention appears effective in alleviating chronic pain, anxiety and depression, and improving quality of life for breast cancer survivors. Fully powered large-scale studies are required to confirm its effects.
Collapse
Affiliation(s)
- Haiying Wang
- School of Nursing (Brisbane Centre), Faculty of Health, Charles Darwin University, Brisbane, QLD, Australia; School of Nursing and Midwifery & Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| | - Wai Hang Kwok
- School of Nursing and Midwifery, Edith Cowan University, WA, Australia; School of Nursing, Faculty of Health, Charles Darwin University, Ellengowan Drive, Casuarina, NT, Australia
| | - Li-Qun Yao
- College of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou City, Fujian Province, China
| | - Xian-Liang Liu
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong SAR, China
| | - Daniel Bressington
- School of Nursing, Faculty of Health, Charles Darwin University, Ellengowan Drive, Casuarina, NT, Australia; Faculty of Nursing, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Meng-Ling Chen
- Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Hou-Qiang Huang
- Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Tao Wang
- School of Nursing (Brisbane Centre), Faculty of Health, Charles Darwin University, Brisbane, QLD, Australia.
| | - Jing-Yu Benjamin Tan
- School of Nursing and Midwifery & Centre for Health Research, University of Southern Queensland, Ipswich, QLD, Australia
| |
Collapse
|
36
|
Petersen JCG, Becker R, Petersen LG. Transcutaneous vagal nerve stimulation during lower body negative pressure. Auton Neurosci 2024; 254:103192. [PMID: 38896931 DOI: 10.1016/j.autneu.2024.103192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Para-sympathetic vagal activation has profound influence on heart rate and other cardiovascular parameters. We tested the hypothesis that transcutaneous Vagal Nerve Stimulation (tVNS) through the auricular branch of the vagus nerve would attenuate the normal sympathetic response to central blood volume reduction by lower body negative pressure (LBNP). METHOD 10 healthy volunteers (6 female; age 21 ± 2 years; weight 62 ± 13 kg; height 167 ± 12 cm) were included in this cross-over design trial. After 15 min rest in supine position, subjects underwent three 15-min periods of 30 mmHg LBNP intervention with and without cyclic tVNS stimulation. Continuous cardiovascular parameters (Nexfin) were recorded. RESULTS Overall tVNS did not convincingly attenuate sympathetic response to central hypovolemia. Deactivation of the tVNS during LBNP resulted in increased MAP at 2.3 ± 0.5 mmHg (P < 0.001). Comparing the cyclic actual active stimulation periods to periods with pause during tVNS intervention showed a decrease in HR by 72.9 ± 11.2 to 70.2 ± 11.6 bpm (mean ± SD; P < 0.05), and concomitant increases in SV (86.0 ± 12.1 to 87.2 ± 12.6 mL; P < 0.05), MAP (82.9 ± 6.3 to 84.0 ± 6.2 mmHg; P < 0.05) and TPR (1116.0 ± 111.1 to 1153 ± 104.8 dyn*s/cm5; P < 0.05). CONCLUSION tVNS in 30 s cycles during LBNP can selectively attenuate HR, prompting a compensatory augmented sympathetic response. It would appear the method used in this study at least, has an isolated cardiac inhibitory effect probably mediated by augmented vagal activity on the sinoatrial or atrio-ventricular node, possibly in combination with reduced activity in the sympathetic cardiac nerve.
Collapse
Affiliation(s)
| | | | - Lonnie G Petersen
- Harvard Medical School, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA; University of Copenhagen, Denmark
| |
Collapse
|
37
|
Demircioğlu G, Özden AV, Genç H. Comparison of the efficacy of auricular vagus nerve stimulation and conventional low back rehabilitation in patients with chronic low back pain. Complement Ther Clin Pract 2024; 56:101862. [PMID: 38815433 DOI: 10.1016/j.ctcp.2024.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND In recent years, human and animal studies have provided increasing evidence that vagus nerve stimulation (VNS) can produce analgesic effects as well as alleviating resistant epilepsy and depression. Our study was designed to compare the efficacy of transcutaneous auricular vagus nerve stimulation with conventional low back rehabilitation in patients with chronic low back pain (CLBP). METHODS Sixty patients with LBP were randomly divided into two groups. Group 1 received conventional rehabilitation and home exercise, and Group 2 received transcutaneous auricular VNS and home exercise. Both groups received treatment five days a week for three weeks. Trunk mobility (Modified Schober test, fingertip-to-floor test), muscle strength (CSMI-Cybex Humac-Norm isokinetic dynamometer and Lafayette manual muscle strength measuring device), trunk endurance, balance tests, Visual Analog Scale, Beck Depression Scale, Pittsburgh Sleep Quality Index, Oswestry Disability Index were evaluated. RESULTS At the end of three weeks, within-group assessment results showed positive effects on mobility, functional status, depression and sleep in all groups (p < 0.05). Pain level, endurance time and flexion trunk muscle strength results showed more improvement in Group 2 (p < 0.05). Some parameters of isokinetic lower extremity quadriceps muscle strength and fall risk scores showed a significant improvement in Group 1 (p < 0.05). DISCUSSION VNS has been observed to be more effective on pain, trunk muscle strength and endurance duration and sleep status. Auricular VNS may be included in the treatment of patients with CLBP in whom conventional physical therapy is inadequate or not applicable.
Collapse
Affiliation(s)
- Gamze Demircioğlu
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Atlas University, Turkey; Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahçeşehir University, Turkey.
| | - Ali Veysel Özden
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahçeşehir University, Turkey.
| | - Hazal Genç
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bahçeşehir University, Turkey.
| |
Collapse
|
38
|
Likar R, Perruchoud C, Kampusch S, Köstenberger M, Sator S, Stremnitzer C, Wolf A, Neuwersch-Sommeregger S. [Clinical efficacy of auricular vagus nerve stimulation in the treatment of chronic and acute pain : A systematic review]. Schmerz 2024; 38:267-278. [PMID: 36592212 PMCID: PMC11271441 DOI: 10.1007/s00482-022-00686-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Current guidelines recommend a personalized, multimodal, and interdisciplinary approach for the treatment of chronic pain. Already in the acute treatment of postoperative pain, it can be useful to minimize risk factors for chronification. Auricular vagus nerve stimulation (aVNS) could be an effective non-drug therapy for the treatment of chronic and acute pain. AIM OF THE WORK The aim of this systematic review is to evaluate the clinical efficacy of aVNS in chronic and acute pain as well as its effect on medication intake. MATERIALS AND METHODS A systematic literature search was carried out on the application of auricular electrical stimulation in chronic and acute pain. Studies were classified according to their level of evidence and evaluated via the Jadad scale as well as their scientific validity, and then analyzed in terms of indication, method, stimulation parameters, duration of treatment, efficacy, and safety. RESULTS Twenty studies on chronic pain indications, ten studies on acute postoperative pain, as well as seven studies on experimental acute pain were identified and analyzed. The search revealed a total of n = 1105 aVNS-treated patients. The best evidence on the efficacy of aVNS is available for the indications chronic low back pain, chronic cervical syndrome, chronic abdominal pain, and chronic migraine as well as acute postoperative pain in oocyte aspiration, laparoscopic nephrectomy, and open colorectal surgery. Additionally a significant reduction in analgesic or opiate intake was evident in most studies. In three randomized controlled trials in chronic pain patients, a sustainable pain reduction over a period of up to 12 months was shown. Overall, aVNS was very well tolerated. CONCLUSION This review indicates that aVNS can be a complementary and effective non-drug treatment for patients with chronic and acute postoperative pain. Future studies in these indications should focus on standardizing and optimizing treatment parameters, inclusion of quality-of-life outcome parameters, and longer follow-up periods to better understand the sustainable therapeutic effect of aVNS.
Collapse
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich.
- Paracelsus Medizinische Privatuniversität, Salzburg, Österreich.
| | | | | | - Markus Köstenberger
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich
| | - Sabine Sator
- Universitätsklinik für Anästhesie, allgemeine Intensivmedizin und Schmerztherapie, Medizinische Universität Wien, Wien, Österreich
| | | | - Andreas Wolf
- Abteilung für Anästhesie, Krankenhaus St. Vinzenz Zams, Zams, Österreich
| | - Stefan Neuwersch-Sommeregger
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich
- Medizinische Universität Graz, Graz, Österreich
| |
Collapse
|
39
|
E R, Wang Y. Vagus Nerve Stimulation for Improvement of Vascular Cognitive Impairment. Neuropsychiatr Dis Treat 2024; 20:1445-1451. [PMID: 39072312 PMCID: PMC11283790 DOI: 10.2147/ndt.s465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024] Open
Abstract
Vagus nerve stimulation (VNS) is acknowledged as a highly effective therapy for various neurological conditions, including refractory epilepsy, depression, Alzheimer's disease (AD), migraine, and stroke. Presently, there is an increasing focus on understanding the impact of VNS on cognitive aspects. Numerous studies suggest that VNS suppresses the body's inflammatory response, leading to enhanced cognitive function in patients. Vascular cognitive impairment (VCI) is a severe cognitive dysfunction syndrome resulting from prolonged chronic cerebral hypoperfusion (CCH), where the primary pathogenesis is CCH-induced neuroinflammation. In this paper, we present a comprehensive overview of the research advancements in using VNS for treating VCI and discuss that VNS improves cognitive function in VCI patients by suppressing neuroinflammation, offering insights into a potential novel approach for addressing this condition.
Collapse
Affiliation(s)
- Ridengnaxi E
- Department of Rehabilitation Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, People’s Republic of China
| | - Yan Wang
- Department of Rehabilitation Medicine, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, People’s Republic of China
| |
Collapse
|
40
|
Bustamante C, Pinilla Bonilla LB, Restrepo JC. Neurological symphony: post-acute COVID-19 syndrome, an innovative pathophysiological exploration from neuraltherapeutic medicine. Front Integr Neurosci 2024; 18:1417856. [PMID: 39070159 PMCID: PMC11275269 DOI: 10.3389/fnint.2024.1417856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
The SARS-CoV-2 pandemic has affected 771 million people and caused 6.9 million confirmed deaths as of November 2023. Beyond the adversity, a crucial and less-explored chapter unfolds: adaptive sequelae. These have altered social, mental, and emotional conditions, leaving an imprint on biological systems. While some cases fully resolve the pathological process post-acute infection, others persist with symptoms, posing a challenge that underscores the need to comprehend pathophysiology from innovative perspectives. The article delves into “Long COVID” or Post-Acute COVID-19 Syndrome (PACS), where symptoms persist for ≥4 weeks irrespective of initial severity. Risk factors include a history of severe illness, in-hospital management, and intensive care. This article also explores theories, derived from various experimental models, that have demonstrated the involvement of the nervous system in coordination with the psychoneuroimmunoendocrine axes in the expression of inflammation. It is posited that PACS involves processes of peripheral and central sensitization (corticalization), facilitating dishomeostasis and the chronicity of the inflammatory process. In this context, various therapeutic strategies grounded in modulating the inflammatory reflex are reviewed, primarily through the infiltration of local anesthetics via linear and non-linear approaches. Neural therapeutic use is considered to stimulate the regulatory inflammatory circuits coordinated by the neuroimmune-endocrine system.
Collapse
Affiliation(s)
- Carlos Bustamante
- Institute for Advanced Integrative Medicine, Medellin, Colombia
- Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Laura Bibiana Pinilla Bonilla
- Institute for Advanced Integrative Medicine, Medellin, Colombia
- Research and Innovation Center, Integrated Subnetwork of Health Services of South, Bogotá, Colombia
| | | |
Collapse
|
41
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
42
|
Liu F, Habibollahi M, Wu Y, Neshatvar N, Zhang J, Zinno C, Akouissi O, Bernini F, Alibrandi L, Gabisonia K, Lionetti V, Carpaneto J, Lancashire H, Jiang D, Micera S, Demosthenous A. A multi-channel stimulator with an active electrode array implant for vagal-cardiac neuromodulation studies. Bioelectron Med 2024; 10:16. [PMID: 38970083 PMCID: PMC11227238 DOI: 10.1186/s42234-024-00148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Implantable vagus nerve stimulation is a promising approach for restoring autonomic cardiovascular functions after heart transplantation. For successful treatment a system should have multiple electrodes to deliver precise stimulation and complex neuromodulation patterns. METHODS This paper presents an implantable multi-channel stimulation system for vagal-cardiac neuromodulation studies in swine species. The system comprises an active electrode array implant percutaneously connected to an external wearable controller. The active electrode array implant has an integrated stimulator ASIC mounted on a ceramic substrate connected to an intraneural electrode array via micro-rivet bonding. The implant is silicone encapsulated for biocompatibility and implanted lifetime. The stimulation parameters are remotely transmitted via a Bluetooth telemetry link. RESULTS The size of the encapsulated active electrode array implant is 8 mm × 10 mm × 3 mm. The stimulator ASIC has 10-bit current amplitude resolution and 16 independent output channels, each capable of delivering up to 550 µA stimulus current and a maximum voltage of 20 V. The active electrode array implant was subjected to in vitro accelerated lifetime testing at 70 °C for 7 days with no degradation in performance. After over 2 h continuous stimulation, the surface temperature change of the implant was less than 0.5 °C. In addition, in vivo testing on the sciatic nerve of a male Göttingen minipig demonstrated that the implant could effectively elicit an EMG response that grew progressively stronger on increasing the amplitude of the stimulation. CONCLUSIONS The multi-channel stimulator is suitable for long term implantation. It shows potential as a useful tool in vagal-cardiac neuromodulation studies in animal models for restoring autonomic cardiovascular functions after heart transplantation.
Collapse
Affiliation(s)
- Fangqi Liu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Maryam Habibollahi
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Yu Wu
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Nazanin Neshatvar
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jiaxing Zhang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ciro Zinno
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | | | - Fabio Bernini
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | - Lisa Alibrandi
- BioMedLab, Scuola Superiore Sant'Anna (SSSA), Pisa, Italy
| | | | | | - Jacopo Carpaneto
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Henry Lancashire
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Silvestro Micera
- BioRobotics Institute, Scuola Superiore Sant'Anna (SSSA), 56025, Pisa, Italy
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
43
|
Zafeiropoulos S, Ahmed U, Bikou A, Mughrabi IT, Stavrakis S, Zanos S. Vagus nerve stimulation for cardiovascular diseases: Is there light at the end of the tunnel? Trends Cardiovasc Med 2024; 34:327-337. [PMID: 37506989 DOI: 10.1016/j.tcm.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Autonomic dysfunction and chronic inflammation contribute to the pathogenesis and progression of several cardiovascular diseases (CVD), such as heart failure with preserved ejection fraction, atherosclerotic CVD, pulmonary arterial hypertension, and atrial fibrillation. The vagus nerve provides parasympathetic innervation to the heart, vessels, and lungs, and is also implicated in the neural control of inflammation through a neuroimmune pathway involving the spleen. Stimulation of the vagus nerve (VNS) can in principle restore autonomic balance and suppress inflammation, with potential therapeutic benefits in these diseases. Although VNS ameliorated CVD in several animal models, early human studies have demonstrated variable efficacy. The purpose of this review is to discuss the rationale behind the use of VNS in the treatment of CVD, to critically review animal and human studies of VNS in CVD, and to propose possible means to overcome the challenges in the clinical translation of VNS in CVD.
Collapse
Affiliation(s)
- Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Alexia Bikou
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Zanos
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA; Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
44
|
Hacker JT, Slegaitis AR, Stephenson SW. Development of a Wearable Ultrasonic Auricular Vagus Nerve Stimulator. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:757-762. [PMID: 38109242 DOI: 10.1109/tuffc.2023.3343915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
This article discusses the design and development of a wearable and portable ultrasound auricular nerve stimulator. The device is in the form of a headset that presses against the cymba concha depression in the ear and stimulates the auricular vagus nerve with ultrasound energy. This article reviews the development, design, and material structures for such a system, including the characterization of the working prototypes. The devices are being supplied to various organizations and universities for clinical trials, in which effectiveness will be assessed. The device is light, compact, and an effective neurostimulator to induce calm. To the best of our knowledge, the device is the first fully built ultrasonic auricular nerve stimulator in the world.
Collapse
|
45
|
Trevizan-Baú P, McAllen RM. What is the Vagal-Adrenal Axis? J Comp Neurol 2024; 532:e25656. [PMID: 38980012 DOI: 10.1002/cne.25656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.
Collapse
Affiliation(s)
- Pedro Trevizan-Baú
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Robin M McAllen
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Sévoz-Couche C, Liao W, Foo HYC, Bonne I, Lu TB, Tan Qi Hui C, Azhar SH, Peh WYX, Yen SC, Wong WSF. Direct vagus nerve stimulation: A new tool to control allergic airway inflammation through α7 nicotinic acetylcholine receptor. Br J Pharmacol 2024; 181:1916-1934. [PMID: 38430056 DOI: 10.1111/bph.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Asthma is characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. The use of nicotinic agents to mimic the cholinergic anti-inflammatory pathway (CAP) controls experimental asthma. Yet, the effects of vagus nerve stimulation (VNS)-induced CAP on allergic inflammation remain unknown. EXPERIMENTAL APPROACH BALB/c mice were sensitized and challenged with house dust mite (HDM) extract and treated with active VNS (5 Hz, 0.5 ms, 0.05-1 mA). Bronchoalveolar lavage (BAL) fluid was assessed for total and differential cell counts and cytokine levels. Lungs were examined by histopathology and electron microscopy. KEY RESULTS In the HDM mouse asthma model, VNS at intensities equal to or above 0.1 mA (VNS 0.1) but not sham VNS reduced BAL fluid differential cell counts and alveolar macrophages expressing α7 nicotinic receptors (α7nAChR), goblet cell hyperplasia, and collagen deposition. Besides, VNS 0.1 also abated HDM-induced elevation of type 2 cytokines IL-4 and IL-5 and was found to block the phosphorylation of transcription factor STAT6 and expression level of IRF4 in total lung lysates. Finally, VNS 0.1 abrogated methacholine-induced hyperresponsiveness in asthma mice. Prior administration of α-bungarotoxin, a specific inhibitor of α7nAChR, but not propranolol, a specific inhibitor of β2-adrenoceptors, abolished the therapeutic effects of VNS 0.1. CONCLUSION AND IMPLICATIONS Our data revealed the protective effects of VNS on various clinical features in allergic airway inflammation model. VNS, a clinically approved therapy for depression and epilepsy, appears to be a promising new strategy for controlling allergic asthma.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- INSERM, UMRS1158 Neurophysiologie Respiratoire et Clinique, Sorbonne Université, Paris, France
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
| | - Hazel Y C Foo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
| | - Isabelle Bonne
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thong Beng Lu
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Caris Tan Qi Hui
- Advanced imaging and Histology Core, Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Syaza Hazwany Azhar
- Advanced imaging and Histology Core, Immunology Program, Life Science Institute, National University of Singapore, Singapore
| | - Wendy Yen Xian Peh
- The N.1 Institute for Health, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Shih-Cheng Yen
- The N.1 Institute for Health, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
47
|
Santi S, Fuggetta F, Colicchio G, D’Ercole M, Izzo A, D’Alessandris QG, Burattini B, Martinelli R, Montano N. Long-Term Outcome in Adult Patients with Drug-Resistant Epilepsy Submitted to Vagus Nerve Stimulation. Brain Sci 2024; 14:639. [PMID: 39061382 PMCID: PMC11274406 DOI: 10.3390/brainsci14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Epilepsy treatment primarily involves antiseizure medications (ASMs) to eliminate seizures and improve the quality of life, but many patients develop drug-resistant epilepsy (DRE), necessitating alternative interventions. This study aimed to evaluate the long-term efficacy and safety of vagus nerve stimulation (VNS) in managing DRE. We retrospectively analyzed data from 105 adult patients treated at Agostino Gemelli Hospital from 1994 to 2022. Among the 73 patients with follow-up data, 80.8% were responders, experiencing significant reductions in seizure frequency over an average follow-up period of 9.4 years. Although 19.2% were non-responders, many of these patients still opted for generator replacements due to improvements in quality of life, such as fewer falls and shorter post-ictal periods. The overall complication rate was 12.3%, with most complications being mild and manageable. These findings suggest that VNS offers substantial long-term benefits for patients with DRE, improving seizure control and quality of life. This study underscores the importance of VNS as a viable long-term treatment option for DRE, highlighting its potential to significantly enhance patient outcomes and quality of life.
Collapse
Affiliation(s)
- Samuele Santi
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| | - Filomena Fuggetta
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (M.D.); (A.I.)
| | - Gabriella Colicchio
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| | - Manuela D’Ercole
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (M.D.); (A.I.)
| | - Alessandro Izzo
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (M.D.); (A.I.)
| | - Quintino Giorgio D’Alessandris
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| | - Benedetta Burattini
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| | - Renata Martinelli
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| | - Nicola Montano
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (S.S.); (G.C.); (Q.G.D.); (B.B.); (R.M.)
| |
Collapse
|
48
|
Berthon A, Wernisch L, Stoukidi M, Thornton M, Tessier-Lariviere O, Fortier-Poisson P, Mamen J, Pinkney M, Lee S, Sarkans E, Annecchino L, Appleton B, Garsed P, Patterson B, Gonshaw S, Jakopec M, Shunmugam S, Edwards T, Tukiainen A, Jennings J, Lajoie G, Hewage E, Armitage O. Using neural biomarkers to personalize dosing of vagus nerve stimulation. Bioelectron Med 2024; 10:15. [PMID: 38880906 PMCID: PMC11181600 DOI: 10.1186/s42234-024-00147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is an established therapy for treating a variety of chronic diseases, such as epilepsy, depression, obesity, and for stroke rehabilitation. However, lack of precision and side-effects have hindered its efficacy and extension to new conditions. Achieving a better understanding of the relationship between VNS parameters and neural and physiological responses is therefore necessary to enable the design of personalized dosing procedures and improve precision and efficacy of VNS therapies. METHODS We used biomarkers from recorded evoked fiber activity and short-term physiological responses (throat muscle, cardiac and respiratory activity) to understand the response to a wide range of VNS parameters in anaesthetised pigs. Using signal processing, Gaussian processes (GP) and parametric regression models we analyse the relationship between VNS parameters and neural and physiological responses. RESULTS Firstly, we illustrate how considering multiple stimulation parameters in VNS dosing can improve the efficacy and precision of VNS therapies. Secondly, we describe the relationship between different VNS parameters and the evoked fiber activity and show how spatially selective electrodes can be used to improve fiber recruitment. Thirdly, we provide a detailed exploration of the relationship between the activations of neural fiber types and different physiological effects. Finally, based on these results, we discuss how recordings of evoked fiber activity can help design VNS dosing procedures that optimize short-term physiological effects safely and efficiently. CONCLUSION Understanding of evoked fiber activity during VNS provide powerful biomarkers that could improve the precision, safety and efficacy of VNS therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guillaume Lajoie
- Université de Montréal and Mila-Quebec AI Institute, Montréal, Canada
| | | | | |
Collapse
|
49
|
Lei J, Tang LL, You HJ. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment. Neurosci Biobehav Rev 2024; 161:105646. [PMID: 38569983 DOI: 10.1016/j.neubiorev.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
In addition to motor symptoms, non-motor manifestations of Parkinson's disease (PD), i.e. pain, depression, sleep disturbance, and autonomic disorders, have received increasing attention. As one of the non-motor symptoms, pain has a high prevalence and is considered an early pre-motor symptom in the development of PD. In relation to pathological pain and its management in PD, particularly in the early stages, it is hypothesized that the loss of dopaminergic neurons causes a functional deficit in supraspinal structures, leading to an imbalance in endogenous descending modulation. Deficits in dopaminergic-dependent pathways also affect non-dopaminergic neurotransmitter systems that contribute to the pathological processing of nociceptive input, the integration, and modulation of pain in PD. This review examines the onset and progression of pain in PD, with a particular focus on alterations in the central modulation of nociception. The discussion highlights the importance of abnormal endogenous descending facilitation and inhibition in PD pain, which may provide potential clues to a better understanding of the nature of pathological pain and its effective clinical management.
Collapse
Affiliation(s)
- Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China
| | - Lin-Lin Tang
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China
| | - Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, China.
| |
Collapse
|
50
|
Kang C, Zhang J, Li X, Liu T. Optimal stimulating site and the minimum current intensity of subdiaphragmatic vagal stimulation to promote gastric peristalsis in swine. Asian J Surg 2024; 47:2219-2221. [PMID: 38331615 DOI: 10.1016/j.asjsur.2024.01.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, 100144, China
| | - Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, 100144, China
| | - Xiaowei Li
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, 100144, China
| | - Tiejun Liu
- Department of General Surgery, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, 100144, China.
| |
Collapse
|