1
|
Yang X, Li J, Xu C, Zhang G, Che X, Yang J. Potential mechanisms of rheumatoid arthritis therapy: Focus on macrophage polarization. Int Immunopharmacol 2024; 142:113058. [PMID: 39236455 DOI: 10.1016/j.intimp.2024.113058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengchao Xu
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinzhen Che
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Grubić Kezele T, Omrčen H, Batičić L, Šućurović S, Zoričić Cvek S. Joint Inflammation Correlates with Joint GPR30 Expression in Males and Hippocampal GPR30 Expression in Females in a Rat Model of Rheumatoid Arthritis. Int J Mol Sci 2024; 25:7864. [PMID: 39063107 PMCID: PMC11277240 DOI: 10.3390/ijms25147864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
It is not entirely clear how the interaction between joint inflammation and the central nervous system (CNS) response in rheumatoid arthritis (RA) works, and what pathophysiology underlies the sex differences in coexisting neuropsychiatric comorbidities. It is known that estrogen hormones reduce inflammation in RA and that this occurs mainly via the stimulation of G protein-coupled receptor-30 (GPR30), also known as G protein-coupled estrogen receptor (GPER) 1. However, changes in GPR30 expression and sex differences induced by local and systemic inflammation in RA are not yet known. Our aim was to reveal sex differences in the expression and association of joint GPR30 with local and systemic inflammation, clinical course and furthermore with hippocampal GPR30 expression during pristane-induced arthritis (PIA) in Dark Agouti (DA) rats, an animal model of RA. Furthermore, we demonstrated sex-specific differences in the association between joint and systemic inflammation and hippocampal microglia during PIA. Our results suggest sex-specific differences not only in the clinical course and serum levels of pro-inflammatory cytokines but also in the expression of GPR30. Female rats show greater synovial inflammation and greater damage to the articular cartilage compared to males during PIA attack. Male rats express higher levels of synovial and cartilaginous GPR30 than females during PIA, which correlates with a less severe clinical course. The correlation between synovial and cartilaginous GPR30 and joint inflammation scores (Krenn and Mankin) in male rats suggests that the more severe the joint inflammation, the higher the GPR30 expression. At the same time, there is no particular upregulation of hippocampal GPR30 in males. On the other hand, female rats express higher levels of neuroprotective GPR30 in the hippocampus than male rats at the basic level and during PIA attack. In addition, females have a higher number of Iba-1+ cells in the hippocampus during PIA attack that strongly correlates with the clinical score, serum levels of IL-17A, and Krenn and Mankin scores. These results suggest that male rats are better protected from inflammation in the joints and female rats are better protected from the inflammation in the hippocampus during a PIA attack, independently of microglia proliferation. However, in the remission phase, synovial GPR30 expression suddenly increases in female rats, as does hippocampal GPR30 expression in males. Further experiments with a longer remission period are needed to investigate the molecular background of these sex differences, as well as microglia phenotype profiling.
Collapse
MESH Headings
- Animals
- Female
- Male
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/genetics
- Hippocampus/metabolism
- Rats
- Disease Models, Animal
- Inflammation/metabolism
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Sex Characteristics
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Microglia/metabolism
- Sex Factors
- Terpenes
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Clinical Department for Clinical Microbiology, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia
| | - Hrvoje Omrčen
- Department of Microbiology, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Sandra Šućurović
- Specialized Hematology Laboratory, Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Sanja Zoričić Cvek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Coelingh Bennink HJT, Prowse A, Egberts JFM, Debruyne FMJ, Huhtaniemi IT, Tombal B. The Loss of Estradiol by Androgen Deprivation in Prostate Cancer Patients Shows the Importance of Estrogens in Males. J Endocr Soc 2024; 8:bvae107. [PMID: 38883397 PMCID: PMC11177789 DOI: 10.1210/jendso/bvae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 06/18/2024] Open
Abstract
The role of estradiol (E2; an estrogen) in men needs to be more appreciated. In this review, we address the clinical situations that allow the study of the clinical consequences of E2 deficiency in men and discuss the effects of restoration of levels of this reproductive steroid hormone. In men with advanced prostate cancer (PCa) undergoing androgen deprivation therapy (ADT), E2 is suppressed along with testosterone, leading to side effects affecting the quality of life. These include hot flashes, arthralgia, fatigue, mood changes, cognition problems, weight gain, bone loss, and increased risk of cardiovascular disease. Transdermal E2 alone for ADT has shown equivalent testosterone suppression compared to gonadotropin-releasing hormone (GnRH) agonists while also preventing estrogen-deficiency side effects, including hot flashes and bone loss. Co-treatment of ADT with fetal estrogen estetrol (E4) has shown significant improvements of estrogen-deficiency symptoms. These observations emphasize the need to raise awareness of the importance of estrogens in men among clinicians and the lay public.
Collapse
Affiliation(s)
| | - Amanda Prowse
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | - Jan F M Egberts
- Terminal 4 Communications, 1217 SK Hilversum, The Netherlands
| | | | - Ilpo T Huhtaniemi
- Institute of Reproductive and Developmental Biology, Imperial College London, London SW7 2AZ, UK
| | - Bertrand Tombal
- Division of Urology, University Clinic Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
4
|
Malik S, Chakraborty D, Agnihotri P, Sharma A, Biswas S. Mitochondrial functioning in Rheumatoid arthritis modulated by estrogen: Evidence-based insight into the sex-based influence on mitochondria and disease. Mitochondrion 2024; 76:101854. [PMID: 38403096 DOI: 10.1016/j.mito.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Alteration of immune response and synovium microvasculature in Rheumatoid arthritis (RA) progression has been suggested to be associated with mitochondrial functioning. Mitochondria, with maternally inherited DNA, exhibit differential response to the female hormone estrogen. Various epidemiological evidence has also shown the prominence of RA in the female population, depicting the role of estrogen in modulating the pathogenesis of RA. As estrogen regulates the expression of differential proteins and associated signaling pathways of RA, its influence on mitochondrial functioning seems evident. Thus, in this review, the studies related to mitochondria and their relation with estrogen and Rheumatoid arthritis were retrieved. We analyzed the different mitochondrial activities that are altered in RA and the possibility of their estrogenic control. The study expands to in silico analysis, revealing the differential mitochondrial proteins expressed in RA and examining these proteins as potential estrogenic targets. It was found that ALDH2, CASP3, and SOD2 are the major mitochondrial proteins involved in RA progression and are also potent estradiol targets. The analysis establishes the role of mitochondrial proteins in RA progression, which were found to be direct or indirect targets of estrogen, depicting its potential for regulating mitochondrial functions in RA.
Collapse
Affiliation(s)
- Swati Malik
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Prachi Agnihotri
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Alankrita Sharma
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
5
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
6
|
Pang H, Chen S, Klyne DM, Harrich D, Ding W, Yang S, Han FY. Low back pain and osteoarthritis pain: a perspective of estrogen. Bone Res 2023; 11:42. [PMID: 37542028 PMCID: PMC10403578 DOI: 10.1038/s41413-023-00280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
Low back pain (LBP) is the world's leading cause of disability and is increasing in prevalence more rapidly than any other pain condition. Intervertebral disc (IVD) degeneration and facet joint osteoarthritis (FJOA) are two common causes of LBP, and both occur more frequently in elderly women than in other populations. Moreover, osteoarthritis (OA) and OA pain, regardless of the joint, are experienced by up to twice as many women as men, and this difference is amplified during menopause. Changes in estrogen may be an important contributor to these pain states. Receptors for estrogen have been found within IVD tissue and nearby joints, highlighting the potential roles of estrogen within and surrounding the IVDs and joints. In addition, estrogen supplementation has been shown to be effective at ameliorating IVD degeneration and OA progression, indicating its potential use as a therapeutic agent for people with LBP and OA pain. This review comprehensively examines the relationship between estrogen and these pain conditions by summarizing recent preclinical and clinical findings. The potential molecular mechanisms by which estrogen may relieve LBP associated with IVD degeneration and FJOA and OA pain are discussed.
Collapse
Affiliation(s)
- Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Shihui Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China
| | - Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, China.
- Hebei Joint International Research Center for Spinal Diseases, 139 Ziqiang Road, Shijiazhuang, 050051, China.
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
8
|
Mathias K, Mathias L, Amarnani A, Samko T, Lahita RG, Panush RS. Challenges of caring for transgender and gender diverse patients with rheumatic disease: presentation of seven patients and review of the literature. Curr Opin Rheumatol 2023; 35:117-127. [PMID: 35797514 DOI: 10.1097/bor.0000000000000894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW As perspectives on sex and gender identity have evolved, there has been an increase in the practice of transgender medicine. Within rheumatology, however, there is a dearth of information about rheumatic disease in transgender and gender diverse (TGGD) individuals. This is important, as sex hormones affect the etiopathogenesis and expression of autoimmune diseases. We therefore sought to identify TGGD patients with rheumatic disease, review their clinical courses, and appraise existing literature about this population. RECENT FINDINGS Of 1053 patients seen at the Los Angeles County and University of Southern California Medical Center from 2019 through 2021, five transgender men and two transgender women with rheumatic disease were identified. Most patients' disease courses were not overtly impacted by gender affirming hormone therapy (GAHT). Six of seven patients had psychosocial barriers to care. Our systematic review found 11 studies with 11 transgender women and two transgender men. In 12 of 13 patients, GAHT possibly modulated the patients' rheumatic disease. SUMMARY Our observations suggest GAHT need not be a strict contraindication in TGGD patients with rheumatic disease. TGGD patients often face significant psychosocial barriers. Additional information about this population and empathy toward their health disparities are needed.
Collapse
Affiliation(s)
- Kristen Mathias
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Lauren Mathias
- Division of Rheumatology, Department of Medicine, PIH Health, Los Angeles County, Los Angeles, California
| | - Abhimanyu Amarnani
- Division of Rheumatology, Department of Medicine, New York University Langone Health, New York, New York
| | - Tracey Samko
- Department of Internal Medicine and Pediatrics, Keck School of Medicine, Los Angeles County + University of Southern California (LAC+USC) Medical Center, Los Angeles, California
| | - Robert G Lahita
- Institute for Autoimmune and Rheumatic Disease, St. Joseph's Health, Patterson, New Jersey
| | - Richard S Panush
- Division of Rheumatology, Department of Medicine, Keck School of Medicine, University of Southern California, and Los Angeles County + University of Southern California (LAC+USC) Medical Center, Los Angeles, California, USA
| |
Collapse
|
9
|
Zhou RP, Liang HY, Hu WR, Ding J, Li SF, Chen Y, Zhao YJ, Lu C, Chen FH, Hu W. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res Rev 2023; 83:101785. [PMID: 36371015 DOI: 10.1016/j.arr.2022.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Age-related diseases have become more common with the advancing age of the worldwide population. Such diseases involve multiple organs, with tissue degeneration and cellular apoptosis. To date, there is a general lack of effective drugs for treatment of most age-related diseases and there is therefore an urgent need to identify novel drug targets for improved treatment. Acid-sensing ion channel 1a (ASIC1a) is a degenerin/epithelial sodium channel family member, which is activated in an acidic environment to regulate pathophysiological processes such as acidosis, inflammation, hypoxia, and ischemia. A large body of evidence suggests that ASIC1a plays an important role in the development of age-related diseases (e.g., stroke, rheumatoid arthritis, Huntington's disease, and Parkinson's disease.). Herein we present: 1) a review of ASIC1a channel properties, distribution, and physiological function; 2) a summary of the pharmacological properties of ASIC1a; 3) and a consideration of ASIC1a as a potential therapeutic target for treatment of age-related disease.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
10
|
Zai Z, Xu Y, Qian X, Li Z, Ou Z, Zhang T, Wang L, Ling Y, Peng X, Zhang Y, Chen F. Estrogen antagonizes ASIC1a-induced chondrocyte mitochondrial stress in rheumatoid arthritis. J Transl Med 2022; 20:561. [PMID: 36463203 PMCID: PMC9719153 DOI: 10.1186/s12967-022-03781-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Destruction of articular cartilage and bone is the main cause of joint dysfunction in rheumatoid arthritis (RA). Acid-sensing ion channel 1a (ASIC1a) is a key molecule that mediates the destruction of RA articular cartilage. Estrogen has been proven to have a protective effect against articular cartilage damage, however, the underlying mechanisms remain unclear. METHODS We treated rat articular chondrocytes with an acidic environment, analyzed the expression levels of mitochondrial stress protein HSP10, ClpP, LONP1 by q-PCR and immunofluorescence staining. Transmission electron microscopy was used to analyze the mitochondrial morphological changes. Laser confocal microscopy was used to analyze the Ca2+, mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) level. Moreover, ASIC1a specific inhibitor Psalmotoxin 1 (Pctx-1) and Ethylene Glycol Tetraacetic Acid (EGTA) were used to observe whether acid stimulation damage mitochondrial function through Ca2+ influx mediated by ASIC1a and whether pretreatment with estrogen could counteract these phenomena. Furthermore, the ovariectomized (OVX) adjuvant arthritis (AA) rat model was treated with estrogen to explore the effect of estrogen on disease progression. RESULTS Our results indicated that HSP10, ClpP, LONP1 protein and mRNA expression and mitochondrial ROS level were elevated in acid-stimulated chondrocytes. Moreover, acid stimulation decreased mitochondrial membrane potential and damaged mitochondrial structure of chondrocytes. Furthermore, ASIC1a specific inhibitor PcTx-1 and EGTA inhibited acid-induced mitochondrial abnormalities. In addition, estrogen could protect acid-stimulated induced mitochondrial stress by regulating the activity of ASIC1a in rat chondrocytes and protects cartilage damage in OVX AA rat. CONCLUSIONS Extracellular acidification induces mitochondrial stress by activating ASIC1a, leading to the damage of rat articular chondrocytes. Estrogen antagonizes acidosis-induced joint damage by inhibiting ASIC1a activity. Our study provides new insights into the protective effect and mechanism of action of estrogen in RA.
Collapse
Affiliation(s)
- Zhuoyan Zai
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Yayun Xu
- grid.186775.a0000 0000 9490 772XSchool of Public Health, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Xuewen Qian
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Zihan Li
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Ziyao Ou
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Tao Zhang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Longfei Wang
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Yian Ling
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| | - Xiaoqing Peng
- grid.412679.f0000 0004 1771 3402Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 Anhui China
| | - Yihao Zhang
- grid.186775.a0000 0000 9490 772XDepartment of Toxicology, School of Public Health, Anhui Medical University, Hefei, China ,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Feihu Chen
- grid.186775.a0000 0000 9490 772XSchool of Pharmacy, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XInflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China ,grid.186775.a0000 0000 9490 772XAnhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, No. 81 Mei Shan Road, Shu Shan District, Hefei, 230032 Anhui China
| |
Collapse
|
11
|
Xu H, Tao L, Cao J, Zhang P, Zeng H, Zhao H. Yi Shen Juan Bi Pill alleviates bone destruction in inflammatory arthritis under postmenopausal conditions by regulating ephrinB2 signaling. Front Pharmacol 2022; 13:1010640. [PMID: 36249763 PMCID: PMC9561306 DOI: 10.3389/fphar.2022.1010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Yi Shen Juan Bi Pill (YSJB) is a traditional Chinese medicine (TCM) formulation that has a therapeutic effect upon rheumatoid arthritis (RA), but how YSJB affects bone destruction in arthritis under postmenopausal conditions is not known. We evaluated the therapeutic role of YSJB in bone destruction in postmenopausal arthritis, We used collagen-induced arthritis (CIA) rats who had been ovariectomized (OVX) as models and explored the possible mechanism from the synovium and bone marrow (BM). Arthritis was generated after ovariectomy or sham surgery for 12 weeks. After 14 days of primary immunization, rats were administered YSJB or estradiol valerate (EV) for 28 days. YSJB could prevent bone destruction in the inflamed joints of rats in the OVX + CIA group. CIA promoted osteoclast differentiation significantly in the synovial membrane according to tartrate resistant acid phosphatase (TRACP) staining, and OVX tended to aggravate the inflammatory reaction of CIA rats according to hematoxylin-and-eosin staining. Immunohistochemistry revealed that the synovium did not have significant changes in erythropoietin-producing hepatocellular interactor (ephrin)B2 or erythropoietin-producing hepatocellular (eph) B4 expression after YSJB treatment, but YSJB treatment reduced nuclear factor of activated T cells (NFATc)1 expression. The BM of rats in the OVX + CIA exhibited remarkable increases in the number of osteoclasts and NFATc1 expression, as well as significantly reduced expression of ephrinB2 and ephB4 compared with the CIA group and sham group. YSJB treatment reduced NFATc1 expression significantly but also increased ephrinB2 expression in the BM markedly. These data suggest that YSJB exhibit a bone-protective effect, it may be a promising therapeutic strategy for alleviating bone destruction in arthritis under postmenopausal conditions, and one of the mechanisms is associated with the modulation of ephrinB2 signaling.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Li Tao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Jinfeng Cao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hui Zeng
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| |
Collapse
|
12
|
Ding J, Chen Y, Zhao YJ, Chen F, Dong L, Zhang HL, Hu WR, Li SF, Zhou RP, Hu W. Acid-sensitive ion channel 1a mediates osteoarthritis chondrocyte senescence by promoting Lamin B1 degradation. Biochem Pharmacol 2022; 202:115107. [PMID: 35643339 DOI: 10.1016/j.bcp.2022.115107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common and debilitating chronic joint disease, which is characterized by degeneration of articular cartilage and the aging of chondrocytes. Acid-sensitive ion channel 1a (ASIC1a) is a proton-activated cationic channel abundant in chondrocytes, which senses and regulates joint cavity pH. Our previous study demonstrated that ASIC1a was involved in acid-induced rat articular chondrocyte senescence, but the mechanistic basis remained unclear. In this study, we explored the mechanism of ASIC1a in chondrocyte senescence and OA. The results showed that senescence-related-β-galactosidase, senescence-related markers (p53 and p21) and the autophagy-related protein Beclin-1 were found to be increased, but Lamin B1 was found to be reduced with acid (pH 6.0) treatment. These effects were inhibited by ASIC1a-specific blocker psalmotoxin-1 or ASIC1a-short hairpin RNA respectively in chondrocytes. Moreover, Silencing of Lamin B1 enhanced ASIC1a-mediated chondrocyte senescence, this effect was reversed by overexpression of Lamin B1, indicating that Lamin B1 was involved in ASIC1a-mediated chondrocyte senescence. Further, blockade of ASIC1a inhibits acid-induced autophagosomes and Beclin-1 protein expression, suggesting that ASIC1a is involved in acid-induced chondrocyte autophagy. Blocking autophagy with chloroquine inhibited Beclin-1 and increased Lamin B1 in acid-induced chondrocyte senescence. We further demonstrated that ASIC1a-mediated reduction of Lamin B1 expression was caused by autophagy pathway-dependent protein degradation. Finally, blocking ASIC1a protected cartilage tissue, restored Lamin B1 levels and inhibited chondrocyte senescence in a rat OA model. In summary, these findings suggest that ASIC1a may promote Lamin B1 degradation to mediate osteoarthritis chondrocyte senescence through the autophagy pathway.
Collapse
Affiliation(s)
- Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying-Jie Zhao
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Lei Dong
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Hai-Lin Zhang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei-Rong Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Shu-Fang Li
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
13
|
Panevin TS, Bobkova AO, Karateev AE, Zotkin EG. Endogenous estrogen deficiency and the development of chronic musculoskeletal pain: A review. TERAPEVT ARKH 2022; 94:683-688. [DOI: 10.26442/00403660.2022.05.201490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
Sexual dimorphism of chronic diseases is a phenomenon determined by differences in the hormonal status of men and women. In this regard, estrogens, which have a complex effect on the body, are of great interest. In particular, estrogens play an important role in the natural control of pain and inflammation. A decrease in estrogen levels associated with menopause or iatrogenic effects (hysterectomy, use of aromotase inhibitors), as well as mutations of genes responsible for the synthesis of structural components of membrane estrogen receptors (ESR1 and ESR2), can significantly reduce the positive effects of these hormones. Deficiency of estrogen can become one of the reasons for the development of serious pathological changes in particular, the formation of chronic pain associated with the pathology of the musculoskeletal system.
Collapse
|
14
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
15
|
Zhao J, Wei K, Chang C, Xu L, Jiang P, Guo S, Schrodi SJ, He D. DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Front Immunol 2022; 13:863703. [PMID: 35309322 PMCID: PMC8927780 DOI: 10.3389/fimmu.2022.863703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that can cause joint damage and disability. Epigenetic variation, especially DNA methylation, has been shown to be involved in almost all the stages of the pathology of RA, from autoantibody production to various self-effector T cells and the defects of protective T cells that can lead to chronic inflammation and erosion of bones and joints. Given the critical role of T cells in the pathology of RA, the regulatory functions of DNA methylation in T cell biology remain unclear. In this review, we elaborate on the relationship between RA pathogenesis and DNA methylation in the context of different T cell populations. We summarize the relevant methylation events in T cell development, differentiation, and T cell-related genes in disease prediction and drug efficacy. Understanding the epigenetic regulation of T cells has the potential to profoundly translate preclinical results into clinical practice and provide a framework for the development of novel, individualized RA therapeutics.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|