1
|
Lu Y, Cui Y, Hou L, Jiang Y, Shang J, Wang L, Xu H, Ye W, Qiu Y, Guo B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front Pharmacol 2024; 15:1517127. [PMID: 39726781 PMCID: PMC11669691 DOI: 10.3389/fphar.2024.1517127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent 18F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats. Methods A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the 18F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC). The resulting 18F-JNJ64413739 was subjected to quality control tests. Small-animal PET/CT imaging studies were performed in sham and osteoporotic model rats. Results The optimized automated radiossynthesis of 18F-JNJ64413739 was successfully completed in approximately 100 min with non-decay-corrected radiochemical yield of 6.7% ± 3.8% (n = 3), >97% radiochemical purity and >14.3 ± 1.3 GBq/μmol molar activity. The product met all clinical quality requirements. 18F-JNJ64413739 PET/CT imaging showed revealed significantly higher radioactivity uptake in various brain regions of the osteoporotic model rats compared to sham control group. Conclusion We successfully optimized the automated radiosynthesis of 18F-JNJ64413739. The resulting tracer not only met clinical quality requirements but also demonstrated potential for clinical application in the diagnosis of osteoporosis, as evidenced by higher radioactivity uptake in various brain regions of osteoporotic model rats compared to normal controls.
Collapse
Affiliation(s)
- Yingtong Lu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan Cui
- Traditional Chinese Medicine Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjie Shang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yang Qiu
- Department of Gynecology, Jiangmen Wuyi Traditional Chinese Medicine Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Tu C, Chen YB, Lai SQ, Yu YP, Huang ZW, Li HZ, Ao RF, Han D, Gao JW, Zhu GZ, Wu DZ, Huang YS, Zhao K, Meng TT, Zhong ZM. Accumulation of β-aminoisobutyric acid mediates hyperalgesia in ovariectomized mice through Mas-related G protein-coupled receptor D signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167269. [PMID: 38810919 DOI: 10.1016/j.bbadis.2024.167269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Hyperalgesia is typified by reduced pain thresholds and heightened responses to painful stimuli, with a notable prevalence in menopausal women, but the underlying mechanisms are far from understood. β-Aminoisobutyric acid (BAIBA), a product of valine and thymine catabolism, has been reported to be a novel ligand of the Mas-related G protein coupled receptor D (MrgprD), which mediates pain and hyperalgesia. Here, we established a hyperalgesia model in 8-week-old female mice through ovariectomy (OVX). A significant increase in BAIBA plasma level was observed and was associated with decline of mechanical withdrawal threshold, thermal and cold withdrawal latency in mice after 6 weeks of OVX surgery. Increased expression of MrgprD in dorsal root ganglion (DRG) was shown in OVX mice compared to Sham mice. Interestingly, chronic loading with BAIBA not only exacerbated hyperalgesia in OVX mice, but also induced hyperalgesia in gonadally intact female mice. BAIBA supplementation also upregulated the MrgprD expression in DRG of both OVX and intact female mice, and enhanced the excitability of DRG neurons in vitro. Knockout of MrgprD markedly suppressed the effects of BAIBA on hyperalgesia and excitability of DRG neurons. Collectively, our data suggest the involvement of BAIBA in the development of hyperalgesia via MrgprD-dependent pathway, and illuminate the mechanisms underlying hyperalgesia in menopausal women.
Collapse
Affiliation(s)
- Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopeadics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Lai
- Department of Pathology, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Yong-Peng Yu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi-Wei Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-Feng Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ting-Ting Meng
- Unit of Anaesthesia and Pain Management, Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Balali-Dehkordi S, Habibian-Dehkordi S, Amini-Khoei H, Mohajerian R. Ferulic acid via attenuation of oxidative stress and neuro-immune response utilizes antinociceptive effect in mouse model of formalin test. IBRO Neurosci Rep 2024; 16:51-56. [PMID: 38145175 PMCID: PMC10733636 DOI: 10.1016/j.ibneur.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Plenty evidences suggests that neuroinflammation and oxidative stress augmented the neural sensitivity specifying that neuro-immune response is involved in the pathophysiology of pain. Ferulic acid (FA), a natural antioxidant found in various fruits, has various pharmacological properties. The purpose of the current study was to assess the antinociceptive effect of FA in a mouse model of formalin test with focus on its anti-neuroinflammatory and antioxidative stress effects. Methods The injection of FA (40 mg/kg), piroxicam (2 mg/kg), and saline (0.9% NaCl) (1 ml/kg) was done intraperitoneally and after one hour, formalin injected into the plantar surface of the hind paw of mice. Then pain behavior was documented during 60 min. Then mice were euthanized and prefrontal cortex (PFC) samples were taken. Malondialdehyde (MDA) level, antioxidant capacity and expression of inflammatory genes, counting tumor necrosis factor (TNF-) and interleukine 1 (IL-1) evaluated in the PFC. Results exhibited that FA declined the pain behavior following injection of formalin. Besides, FA significantly diminished the MDA level and increased the antioxidant capacity in the PFC. We revealed that FA diminished the expression of TNF-α and IL-1β genes in the PFC. Conclusion We conclude that FA exerted antinociceptive effects in the formalin test in mice, at least partially, by reducing oxidative stress and neuroimmune response in the PFC.
Collapse
Affiliation(s)
- Shima Balali-Dehkordi
- Department of Basic Sciences, Veterinary Faculty, Shahrekord University, Shahrekord, Iran
| | | | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahil Mohajerian
- Department of Basic Sciences, Veterinary Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
4
|
Wang R, Jiang C, Wu Z, Wang Z, Peng Y, Li Z, Zhang Z, Lin H, Chen Z. Fecal Microbiota Transplantation Revealed a Pain-related Gut Microbiota Community in Ovariectomized Mice. THE JOURNAL OF PAIN 2023; 24:1203-1212. [PMID: 36796501 DOI: 10.1016/j.jpain.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Higher sensitivity to pain is a common clinical symptom in postmenopausal females. The gut microbiota (GM) has recently been identified as participating in various pathophysiological processes and may change during menopause and contribute to multiple postmenopausal symptoms. Here, we investigated the possible correlation between GM alteration and allodynia in ovariectomized (OVX) mice. Results showed that OVX mice exhibited allodynia from 7 weeks after surgery compared with sham-operated (SHAM) mice by comparing pain-related behaviors. Fecal microbiota transplantation (FMT) from OVX mice induced allodynia in normal mice while FMT from SHAM mice alleviated allodynia in OVX mice. Microbiome 16S rRNA sequencing and linear discriminant analysis revealed alteration of the GM after OVX. Furthermore, Spearman's correlation analysis showed associations between pain-related behaviors and genera, and further verification identified the possible pain-related genera complex. Our findings provide new insights into the underlying mechanisms of postmenopausal allodynia, and suggest pain-related microbiota community as a promising therapeutic target. PERSPECTIVE: This article provided the evidence of gut microbiota playing essential roles in postmenopausal allodynia. This work intended to offer a guidance for further mechanism investigation into gut-brain axis and probiotics screening for postmenopausal chronic pain.
Collapse
Affiliation(s)
- Renyuan Wang
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyi Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Peng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoxuan Li
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyang Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
6
|
Tu C, Lai S, Huang Z, Cai G, Zhao K, Gao J, Wu Z, Zhong Z. Accumulation of advanced oxidation protein products contributes to age-related impairment of gap junction intercellular communication in osteocytes of male mice. Bone Joint Res 2022; 11:413-425. [PMID: 35775164 PMCID: PMC9350704 DOI: 10.1302/2046-3758.117.bjr-2021-0554.r2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS Gap junction intercellular communication (GJIC) in osteocytes is impaired by oxidative stress, which is associated with age-related bone loss. Ageing is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, it is still unknown whether AOPP accumulation is involved in the impairment of osteocytes' GJIC. This study aims to investigate the effect of AOPP accumulation on osteocytes' GJIC in aged male mice and its mechanism. METHODS Changes in AOPP levels, expression of connexin43 (Cx43), osteocyte network, and bone mass were detected in 18-month-old and three-month-old male mice. Cx43 expression, GJIC function, mitochondria membrane potential, reactive oxygen species (ROS) levels, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation were detected in murine osteocyte-like cells (MLOY4 cells) treated with AOPPs. The Cx43 expression, osteocyte network, bone mass, and mechanical properties were detected in three-month-old mice treated with AOPPs for 12 weeks. RESULTS The AOPP levels were increased in aged mice and correlated with degeneration of osteocyte network, loss of bone mass, and decreased Cx43 expression. AOPP intervention induced NADPH oxidase activation and mitochondrial dysfunction, triggered ROS generation, reduced Cx43 expression, and ultimately impaired osteocytes' GJIC, which were ameliorated by NADPH oxidase inhibitor apocynin, mitochondria-targeted superoxide dismutase mimetic (mito-TEMPO), and ROS scavenger N-acetyl cysteine. Chronic AOPP loading accelerated the degradation of osteocyte networks and decreased Cx43 expression, resulting in deterioration of bone mass and mechanical properties in vivo. CONCLUSION Our study suggests that AOPP accumulation contributes to age-related impairment of GJIC in osteocytes of male mice, which may be part of the pathogenic mechanism responsible for bone loss during ageing. Cite this article: Bone Joint Res 2022;11(7):413-425.
Collapse
Affiliation(s)
- Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Lai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guixing Cai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyong Wu
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Santos LFG, Fernandes-Breitenbach F, Silva RAS, Santos DR, Peres-Ueno MJ, Ervolino E, Chaves-Neto AH, Dornelles RCM. The action of oxytocin on the bone of senescent female rats. Life Sci 2022; 297:120484. [PMID: 35301015 DOI: 10.1016/j.lfs.2022.120484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
AIMS This study verified the action of oxytocin (OT) as a preventive measure to control bone damage during aging in female rats. MAIN METHODS Wistar rats received saline (0.15 mol/L/IP; Vehicle Group), Atosiban/AT (300 μg/Kg/IP; At Group), OT (134 μg/Kg/IP; Ot Group), or AT+OT (OT injections 5 min after AT; At+Ot Group), at 19 and 20 months of age. A functional test was performed immediately before and 30 days after the injections to analyze the animals' gait. KEY FINDINGS Animals in the At group had higher alkaline phosphatase (ALP) activity, lower cortical and trabecular thickness, fewer trabeculae, higher expression of tartrate-resistant acid phosphatase (TRAP) and lower osteocalcin (OCN), higher cortical porosity, and lower moment of inertia and bone strength at the femoral neck. OT administration increased lipidic peroxidation and plasma superoxide dismutase (SOD), and provided, in the femoral neck, lower expression of TRAP and higher OCN, greater cortical and trabecular thickness, a greater number of trabeculae, bone mineral density (BMD), higher inertia bone strength, and lower cortical porosity. At + Ot group showed great similarity with the vehicle group, higher SOD, and BMD. An increase in stride length and no increase in base width of 21-month-old animals were observed after OT, unlike animal's vehicle or AT. SIGNIFICANCE Endogenous OT plays an important role in the regulation of bone remodeling during periestropause, and exogenous OT stands out as a potential preventive intervention in this period to improve bone quality with functional repercussions, possibly providing better gait activity.
Collapse
Affiliation(s)
| | | | | | - Damáris Raíssa Santos
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas/SBFis/UNESP, Brazil
| | | | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas/SBFis/UNESP, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas/SBFis/UNESP, Brazil; Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
8
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
9
|
Elesawy BH, F. Sakr H, M. Abbas A. Synergistic Protective Effects of Resveratrol and Estradiol on Estrogen Deficiency-Induced Osteoporosis Through Attenuating RANK Pathway. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.217.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zhang RH, Zhang XB, Lu YB, Hu YC, Chen XY, Yu DC, Shi JT, Yuan WH, Wang J, Zhou HY. Calcitonin gene-related peptide and brain-derived serotonin are related to bone loss in ovariectomized rats. Brain Res Bull 2021; 176:85-92. [PMID: 34418462 DOI: 10.1016/j.brainresbull.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Postmenopausal osteoporosis (PMO) and osteoporotic fracture seriously impair human health in developed countries. The present study aims to explore whether sensory nerves, calcitonin gene-related peptide (CGRP), and brain-derived serotonin are related to bone loss in ovariectomized (OVX) rats. METHODS Female rats were grouped into the ovariectomized (OVX) and sham surgery (SHAM) groups. Immunocytochemistry, western blotting, and qPCR were performed to detect CGRP expression in the femurs. The expression levels of serotonin and CGRP in the spinal cord and brainstem were estimated using western blotting, immunofluorescence, and qPCR. ELISA was used to evaluate the serum biomarkers of bone formation and resorption. Bone mineral density was measured using dual-energy X-ray (DXA) analysis. Femur microstructure was imaged by Micro CT. P values less than 0.05 were considered statistically significant. RESULTS ELISA showed that serum bone alkaline phosphatase (BALP), tartrate-resistant acid phosphatase (TRAP), β-crosslaps, and β-ctx were increased in the OVX group. In the OVX group, in vivo bone mineral density, trabecular bone mineral density, bone volume fraction (BV/TV), and trabecular number (Tb. N) were significantly decreased, while trabecular spacing (Tb. Sp) and trabecular bone pattern factor (Tb. Pf) were markedly increased. In the OVX group, the expression levels of CGRP of the femur were significantly downregulated. In contrast, CGRP and serotonin expression was increased in the spinal cord of the OVX group. Serotonin expression was increased in the brainstem, brainstem nucleus raphe magnus (RMG), and nucleus raphe dorsalis (DRN). CONCLUSION Our results indicated that the activation of osteoclast triggered the release of CGRP from nociceptive sensory nerve fibers and transmitted this painful stimulus to the dorsal horn of the spinal cord to release increased CGRP. The descending serotonergic inhibitory system was activated by increased CGRP levels of the spinal cord and promoted serotonin release in the brainstem RMG, DRN, and the spinal cord, contributing to the decreased CGRP level in bone tissue, which revealed a novel mechanism of bone loss in PMO.
Collapse
Affiliation(s)
- Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Yu-Bao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, 730000, PR China
| | - Wen-Huan Yuan
- Baotou First Affiliated Hospital of Inner Mongolia University of Science and Technology, Baotou, 014000, PR China
| | - Jing Wang
- The People's Hospital of Baoan District, Shenzhen, 518000, PR China.
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, PR China; Lanzhou Xigu District People's Hospital, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|