1
|
McIntyre CW. Update on Hemodialysis-Induced Multiorgan Ischemia: Brains and Beyond. J Am Soc Nephrol 2024; 35:653-664. [PMID: 38273436 PMCID: PMC11149050 DOI: 10.1681/asn.0000000000000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
Hemodialysis is a life-saving treatment for patients with kidney failure. However, patients requiring hemodialysis have a 10-20 times higher risk of cardiovascular morbidity and mortality than that of the general population. Patients encounter complications such as episodic intradialytic hypotension, abnormal perfusion to critical organs (heart, brain, liver, and kidney), and damage to vulnerable vascular beds. Recurrent conventional hemodialysis exposes patients to multiple episodes of circulatory stress, exacerbating and being aggravated by microvascular endothelial dysfunction. This promulgates progressive injury that leads to irreversible multiorgan injury and the well-documented higher incidence of cardiovascular disease and premature death. This review aims to examine the underlying pathophysiology of hemodialysis-related vascular injury and consider a range of therapeutic approaches to improving outcomes set within this evolved rubric..
Collapse
Affiliation(s)
- Christopher W McIntyre
- Lilibeth Caberto Kidney Clinical Research Unit, Lawson Health Research Institute, London, Ontario, Canada, and Departments of Medicine, Medical Biophysics and Pediatrics, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Arteaga GM, Crow S. End organ perfusion and pediatric microcirculation assessment. Front Pediatr 2023; 11:1123405. [PMID: 37842022 PMCID: PMC10576530 DOI: 10.3389/fped.2023.1123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Cardiovascular instability and reduced oxygenation are regular perioperative critical events associated with anesthesia requiring intervention in neonates and young infants. This review article addresses the current modalities of assessing this population's adequate end-organ perfusion in the perioperative period. Assuring adequate tissue oxygenation in critically ill infants is based on parameters that measure acceptable macrocirculatory hemodynamic parameters such as vital signs (mean arterial blood pressure, heart rate, urinary output) and chemical parameters (lactic acidosis, mixed venous oxygen saturation, base deficit). Microcirculation assessment represents a promising candidate for assessing and improving hemodynamic management strategies in perioperative and critically ill populations. Evaluation of the functional state of the microcirculation can parallel improvement in tissue perfusion, a term coined as "hemodynamic coherence". Less information is available to assess microcirculatory disturbances related to higher mortality risk in critically ill adults and pediatric patients with septic shock. Techniques for measuring microcirculation have substantially improved in the past decade and have evolved from methods that are limited in scope, such as velocity-based laser Doppler and near-infrared spectroscopy, to handheld vital microscopy (HVM), also referred to as videomicroscopy. Available technologies to assess microcirculation include sublingual incident dark field (IDF) and sublingual sidestream dark field (SDF) devices. This chapter addresses (1) the physiological basis of microcirculation and its relevance to the neonatal and pediatric populations, (2) the pathophysiology associated with altered microcirculation and endothelium, and (3) the current literature reviewing modalities to detect and quantify the presence of microcirculatory alterations.
Collapse
Affiliation(s)
- Grace M. Arteaga
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| | - Sheri Crow
- Department of Pediatric and Adolescent Medicine, Pediatric Critical Care, Mayo Clinic, Rochester MN, United States
| |
Collapse
|
3
|
Iqbal S, Bacardit J, Griffiths B, Allen J. Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals. Front Physiol 2023; 14:1242807. [PMID: 37781233 PMCID: PMC10534001 DOI: 10.3389/fphys.2023.1242807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms ("DL-PPG"). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and 20 SSc patients. RGB scalogram images were obtained from the PPG, using the continuous wavelet transform (CWT). 2 different pre-trained convolutional neural networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify the SSc and Control groups, evaluating their performance using 10-fold stratified cross validation (CV). Their classification performance (i.e., accuracy, sensitivity, and specificity, with 95% confidence intervals) was also compared to traditional machine learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN). Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for GoogLeNet were 83.1 (72.3-90.9), 75.0 (50.9-91.3) and 86.3 (73.7-94.3)% respectively, and for EfficientNetB0 were 87.3 (77.2-94.0), 80.0 (56.3-94.3) and 90.1 (78.6-96.7)%. The corresponding results for ML classification using LDA were 66.2 (53.9-77.0), 65.0 (40.8-84.6) and 66.7 (52.1-79.2)% respectively, and for KNN were 76.1 (64.5-85.4), 40.0 (19.1-63.9), and 90.2 (78.6-96.7)% respectively. Discussion: This study shows the potential of DL-PPG classification using CNNs to detect SSc. EfficientNetB0 gave an overall improved performance compared to GoogLeNet, with both CNNs performing better than the traditional ML methods tested. Our automatic AI approach, using transfer learning, could offer significant benefits for SSc diagnostics in a variety of clinical settings where low-cost portable and easy-to-use diagnostics can be beneficial.
Collapse
Affiliation(s)
- Sadaf Iqbal
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Bridget Griffiths
- Department of Rheumatology, Freeman Hospital, Newcastle Upon Tyne, United Kingdom
| | - John Allen
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle Upon Tyne, United Kingdom
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| |
Collapse
|
4
|
Zhou Q, Nozdriukhin D, Chen Z, Glandorf L, Hofmann UAT, Reiss M, Tang L, Deán‐Ben XL, Razansky D. Depth-Resolved Localization Microangiography in the NIR-II Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204782. [PMID: 36403231 PMCID: PMC9811471 DOI: 10.1002/advs.202204782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Detailed characterization of microvascular alterations requires high-resolution 3D imaging methods capable of providing both morphological and functional information. Existing optical microscopy tools are routinely used for microangiography, yet offer suboptimal trade-offs between the achievable field of view and spatial resolution with the intense light scattering in biological tissues further limiting the achievable penetration depth. Herein, a new approach for volumetric deep-tissue microangiography based on stereovision combined with super-resolution localization imaging is introduced that overcomes the spatial resolution limits imposed by light diffusion and optical diffraction in wide-field imaging configurations. The method capitalizes on localization and tracking of flowing fluorescent particles in the second near-infrared window (NIR-II, ≈1000-1700 nm), with the third (depth) dimension added by triangulation and stereo-matching of images acquired with two short-wave infrared cameras operating in a dual-view mode. The 3D imaging capability enabled with the proposed method facilitates a detailed visualization of microvascular networks and an accurate blood flow quantification. Experiments performed in tissue-mimicking phantoms demonstrate that high resolution is preserved up to a depth of 4 mm in a turbid medium. Transcranial microangiography of the entire murine cortex and penetrating vessels is further demonstrated at capillary level resolution.
Collapse
Affiliation(s)
- Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Zhenyue Chen
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lukas Glandorf
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Urs A. T. Hofmann
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Lin Tang
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZurichZurich8057Switzerland
- Institute for Biomedical EngineeringDepartment of Information Technology and Electrical EngineeringETH ZurichZurich8093Switzerland
| |
Collapse
|
5
|
Combined Jones–Stokes Polarimetry and Its Decomposition into Associated Anisotropic Characteristics of Spatial Light Modulator. PHOTONICS 2022. [DOI: 10.3390/photonics9030195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Jones–Stokes polarimetry is a robust in vitro polarimetric technique that can be used to investigate the anisotropic properties of a birefringent medium. The study of spatially resolved Jones matrix components of an object is a heuristic approach to extract its phase and polarization information. However, direct interpretation of Jones matrix elements and their decomposition into associated anisotropic properties of a sample is still a challenging research problem that needs to be investigated. In this paper, we experimentally demonstrate combined Jones–Stokes polarimetry to investigate the amplitude, phase, and polarization modulation characteristics of a twisted nematic liquid crystal spatial light modulator (TNLC-SLM). The anisotropic response of the SLM is calibrated for its entire grayscale range. We determine the inevitable anisotropic properties viz., diattenuation, retardance, isotropic absorption, birefringence, and dichroism, which are retrieved from the measured Jones matrices of the SLM using Jones polar decomposition and a novel algebraic approach for Jones matrix decomposition. The results of this study provide a complete polarimetric calibration of the SLM within the framework of its anisotropic characteristics.
Collapse
|
6
|
Untracht GR, Matos RS, Dikaios N, Bapir M, Durrani AK, Butsabong T, Campagnolo P, Sampson DD, Heiss C, Sampson DM. OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images. PLoS One 2021; 16:e0261052. [PMID: 34882760 PMCID: PMC8659314 DOI: 10.1371/journal.pone.0261052] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering and choice of segmentation algorithm, and definition of metrics. We perform quantitative analysis of OCTA images from different commercial and non-commercial instruments and samples and show OCTAVA can accurately and reproducibly determine metrics for characterization of microvasculature. Wide adoption could enable studies and aggregation of data on a scale sufficient to develop reliable microvascular biomarkers for early detection, and to guide treatment, of microvascular disease.
Collapse
Affiliation(s)
- Gavrielle R. Untracht
- Optical+Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, Western Australia, Australia
- Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| | - Rolando S. Matos
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Mariam Bapir
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Abdullah K. Durrani
- Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Teemapron Butsabong
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Paola Campagnolo
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - David D. Sampson
- Surrey Biophotonics, Advanced Technology Institute, School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Christian Heiss
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
- Surrey and Sussex Healthcare NHS Trust, East Surrey Hospital, Redhill, Surrey, United Kingdom
| | - Danuta M. Sampson
- Department of Biochemical Sciences and Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
- Surrey Biophotonics, Centre for Vision, Speech and Signal Processing and School of Biosciences and Medicine, The University of Surrey, Guildford, United Kingdom
| |
Collapse
|
7
|
Jeong H, Kim SR, Kang Y, Kim H, Kim SY, Cho SH, Kim KN. Real-Time Longitudinal Evaluation of Tumor Blood Vessels Using a Compact Preclinical Fluorescence Imaging System. BIOSENSORS 2021; 11:bios11120471. [PMID: 34940228 PMCID: PMC8699707 DOI: 10.3390/bios11120471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Tumor angiogenesis is enhanced in all types of tumors to supply oxygen and nutrients for their growth and metastasis. With the development of anti-angiogenic drugs, the importance of technology that closely monitors tumor angiogenesis has also been emerging. However, to date, the technology for observing blood vessels requires specialized skills with expensive equipment, thereby limiting its applicability only to the laboratory setting. Here, we used a preclinical optical imaging system for small animals and, for the first time, observed, in real time, the entire process of blood vessel development in tumor-bearing mice injected with indocyanine green. Time-lapse sequential imaging revealed blood vessel volume and blood flow dynamics on a microscopic scale. Upon analyzing fluorescence dynamics at each stage of tumor progression, vessel volume and blood flow were found to increase as the tumor developed. Conversely, these vascular parameters decreased when the mice were treated with angiogenesis inhibitors, which suggests that the effects of drugs targeting angiogenesis can be rapidly and easily screened. The results of this study may help evaluate the efficacy of angiogenesis-targeting drugs by facilitating the observation of tumor blood vessels easily in a laboratory unit without large and complex equipment.
Collapse
Affiliation(s)
- Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (H.J.); (S.-R.K.); (S.-Y.K.); (S.-H.C.)
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (H.J.); (S.-R.K.); (S.-Y.K.); (S.-H.C.)
| | - Yujung Kang
- Vieworks, Anyang 14055, Korea; (Y.K.); (H.K.)
| | - Huisu Kim
- Vieworks, Anyang 14055, Korea; (Y.K.); (H.K.)
| | - Seo-Young Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (H.J.); (S.-R.K.); (S.-Y.K.); (S.-H.C.)
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo 58762, Korea
| | - Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (H.J.); (S.-R.K.); (S.-Y.K.); (S.-H.C.)
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea; (H.J.); (S.-R.K.); (S.-Y.K.); (S.-H.C.)
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
8
|
Machikhin AS, Volkov MV, Khokhlov DD, Lovchikova ED, Potemkin AV, Danilycheva IV, Dorofeeva IV, Shulzhenko AE. Exoscope-based videocapillaroscopy system for in vivo skin microcirculation imaging of various body areas. BIOMEDICAL OPTICS EXPRESS 2021; 12:4627-4636. [PMID: 34513213 PMCID: PMC8407810 DOI: 10.1364/boe.420786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The capillary system immediately responds to many pathologies and environmental conditions. Accurate monitoring of its functioning often enables early detection of various diseases related to disorders in skin microcirculation. To expand the scope of capillaroscopy application, it is reasonable to visualize and assess blood microcirculation exactly in the areas of inflamed skin. Body vibrations, breathing, non-flat skin surface and other factors hamper the application of conventional capillaroscopes outside the nailfold area. In this paper, we propose an exoscope-based optical system for high-quality non-invasive computational imaging of capillary network in various areas of the body. Accurate image matching and tracking temporal intensity variations allow detecting the presence of blood pulsations, precise mapping of capillaries and photoplethysmogram acquisition. We have demonstrated the efficiency of the proposed approach experimentally by in vivo mapping and analysis of microvessels in wrist, forearm, upper-arm, breast and hip areas. We believe that the developed system will increase the diagnostic value of video capillaroscopy in clinical practice.
Collapse
Affiliation(s)
- Alexander S. Machikhin
- Laboratory of Acousto-optic Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 15 Butlerova, 117342, Moscow, Russia
| | - Mikhail V. Volkov
- Faculty of Applied Optics, ITMO University, 49 Kronverksky, 197101, St. Petersburg, Russia
| | - Demid D. Khokhlov
- Laboratory of Acousto-optic Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 15 Butlerova, 117342, Moscow, Russia
| | - Ekaterina D. Lovchikova
- Laboratory of Acousto-optic Spectroscopy, Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 15 Butlerova, 117342, Moscow, Russia
| | - Andrey V. Potemkin
- Faculty of Applied Optics, ITMO University, 49 Kronverksky, 197101, St. Petersburg, Russia
| | - Inna V. Danilycheva
- Department of Allergology and Immunotherapy, Institute of Immunology, Federal Medical Biological Agency, 24 Kashirskoe, 115522, Moscow, Russia
| | - Irina V. Dorofeeva
- Department of Allergology and Immunotherapy, Institute of Immunology, Federal Medical Biological Agency, 24 Kashirskoe, 115522, Moscow, Russia
| | - Andrey E. Shulzhenko
- Department of Allergology and Immunotherapy, Institute of Immunology, Federal Medical Biological Agency, 24 Kashirskoe, 115522, Moscow, Russia
| |
Collapse
|
9
|
He Q, Sun Z, Li Y, Wang W, Wang RK. Spatiotemporal monitoring of changes in oxy/deoxy-hemoglobin concentration and blood pulsation on human skin using smartphone-enabled remote multispectral photoplethysmography. BIOMEDICAL OPTICS EXPRESS 2021; 12:2919-2937. [PMID: 34168907 PMCID: PMC8194624 DOI: 10.1364/boe.423160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
We propose a smartphone-enabled remote multispectral photoplethysmography (SP-rmPPG) system and method to realize spatiotemporal monitoring of perfusion changes and pulsations of the oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) information of the effective blood volume within light interrogated skin tissue beds. The system is implemented on an unmodified smartphone utilizing its built-in camera and flashlight to acquire videos of the skin reflectance. The SP-rmPPG method converts the RGB video into multispectral cubes, upon which to decouple the dynamic changes in HbO2 and Hb information using a modified Beer-Lambert law and the selective wavelength bands of 500 nm and 650 nm. Blood pulsation amplitudes are then obtained by applying a window-based lock-in amplification on the derived spatiotemporal changes in HbO2 or Hb signals. To demonstrate the feasibility of proposed method, we conduct two experiments on the skin tissue beds that are conditioned by occlusive maneuver of supplying arteries: one using the popular blood cuff pressure maneuver on the upper arm, and another artificially inducing a transient ischemic condition on the facial skin tissue beds by finger pressing on the supplying external carotid artery. The cuff experiment shows that the measured dynamic information of HbO2 and Hb in the downstream agrees well with the parallel measurements of oxygenation saturation given by the standard pulse oximeter. We also observe the expected imbalance of spatiotemporal changes in the HbO2 and Hb between the right and left cheeks when the transient ischemic condition is induced in the one side of facial skin tissue beds. The results from the two experiments sufficiently demonstrate the feasibility of the proposed method to monitor the spatiotemporal changes in the skin hemodynamics, including blood oxygenation and pulsation amplitudes. Considering the ever-growing accessibility and affordability of the smartphone to the general public, the proposed strategy promises the early screening of vascular diseases and improving general public health particularly in rural areas with low resource settings.
Collapse
Affiliation(s)
- Qinghua He
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Zhiyuan Sun
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Wendy Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Ophthalmology, University of Washington, Seattle, WA98105, USA
| |
Collapse
|
10
|
Miziołek B, Lis-Święty A, Skrzypek-Salamon A, Brzezińska-Wcisło L. Correlation between the infrared thermogram and microvascular abnormalities of the nailfold in patients with systemic sclerosis. Postepy Dermatol Alergol 2021; 38:115-122. [PMID: 34408577 PMCID: PMC8362778 DOI: 10.5114/ada.2021.104286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a multisystemic disease with an extensive microvasculopathy. The gold standard for its investigation is nailfold videocapillaroscopy (NVC). AIM To assess the value of thermography (IRT) for the assessment of microvasculopathy in patients with SSc. MATERIAL AND METHODS Nineteen patients with limited cutaneous SSc were enrolled in the study. They underwent IRT imaging and NVC. An average temperature (Tavg) at the nailfold and a gradient of temperatures (ΔTavg) between the central metacarpus of the hand and the nailfold was determined for all fingers. NVC pictures were classified to capillaroscopic patterns according to Cutolo et al. system and they were analysed quantitatively to measure the density of capillaries and to calculate capillaroscopic skin ulcers risk index (CSURI) for each finger separately. RESULTS There was only a moderate correlation (0.4 < r < 0.6) between thermographic parameters and density of capillaries in fingers II-V (r = 0.5; p < 0.001 for Tavg and r = -0.45; p < 0.001 for ΔTavg), but none in thumbs (r = 0.29; p = 0.089 for Tavg and r = -0.19; p = 0.275 for ΔTavg). Early pattern was associated with a significantly greater surface temperature (Tavg) of nailfolds and essentially milder ΔTavg in fingers II-V when compared to all other capillaroscopic patterns in fingers II-V. Surface temperature (Tavg) was significantly lower and ΔTavg was markedly more pronounced in fingers II-V with a greater risk of development of digital ulcers (DU) calculated by CSURI. CONCLUSIONS Although IRT measurements correlate only moderately with density of capillaries, this technique seems to be substantial to determine the capillaroscopic pattern and to identify patients at greater risk of DU development.
Collapse
Affiliation(s)
- Bartosz Miziołek
- Department of Dermatology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Anna Lis-Święty
- Department of Dermatology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Alina Skrzypek-Salamon
- Department of Dermatology, School of Medicine, Medical University of Silesia, Katowice, Poland
| | - Ligia Brzezińska-Wcisło
- Department of Dermatology, School of Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
11
|
Biochemical markers for clinical monitoring of tissue perfusion. Mol Cell Biochem 2021; 476:1313-1326. [PMID: 33387216 PMCID: PMC7921020 DOI: 10.1007/s11010-020-04019-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022]
Abstract
The assessment and monitoring of the tissue perfusion is extremely important in critical conditions involving circulatory shock. There is a wide range of established methods for the assessment of cardiac output as a surrogate of oxygen delivery to the peripheral tissues. However, the evaluation of whether particular oxygen delivery is sufficient to ensure cellular metabolic demands is more challenging. In recent years, specific biochemical parameters have been described to indicate the status between tissue oxygen demands and supply. In this review, the authors summarize the application of some of these biochemical markers, including mixed venous oxygen saturation (SvO2), lactate, central venous–arterial carbon dioxide difference (PCO2 gap), and PCO2 gap/central arterial-to-venous oxygen difference (Ca–vO2) for hemodynamic assessment of tissue perfusion. The thorough monitoring of the adequacy of tissue perfusion and oxygen supply in critical conditions is essential for the selection of the most appropriate therapeutic strategy and it is associated with improved clinical outcomes.
Collapse
|
12
|
Chiang S, Eschbach M, Knapp R, Holden B, Miesse A, Schwaitzberg S, Titus A. Electrical Impedance Characterization of in Vivo Porcine Tissue Using Machine Learning. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:26-33. [PMID: 34413920 PMCID: PMC8336307 DOI: 10.2478/joeb-2021-0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 05/24/2023]
Abstract
The incorporation of sensors onto the stapling platform has been investigated to overcome the disconnect in our understanding of tissue handling by surgical staplers. The goal of this study was to explore the feasibility of in vivo porcine tissue differentiation using bioimpedance data and machine learning methods. In vivo electrical impedance measurements were obtained in 7 young domestic pigs, using a logarithmic sweep of 50 points over a frequency range of 100 Hz to 1 MHz. Tissues studied included lung, liver, small bowel, colon, and stomach, which was further segmented into fundus, body, and antrum. The data was then parsed through MATLAB's classification learner to identify the best algorithm for tissue type differentiation. The most effective classification scheme was found to be cubic support vector machines with 86.96% accuracy. When fundus, body and antrum were aggregated together as stomach, the accuracy improved to 88.03%. The combination of stomach, small bowel, and colon together as GI tract improved accuracy to 99.79% using fine k nearest neighbors. The results suggest that bioimpedance data can be effectively used to differentiate tissue types in vivo. This study is one of the first that combines in vivo bioimpedance tissue data across multiple tissue types with machine learning methods.
Collapse
Affiliation(s)
- Stephen Chiang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
- Medtronic LLCBuffalo, USA
- Department of Surgery, University at Buffalo, The State University of New YorkBuffalo, NYUSA
| | | | | | | | | | - Steven Schwaitzberg
- Department of Surgery, University at Buffalo, The State University of New YorkBuffalo, NYUSA
| | - Albert Titus
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
13
|
Natalello G, De Luca G, Gigante L, Campochiaro C, De Lorenzis E, Verardi L, Paglionico A, Petricca L, Martone AM, Calvisi S, Ripa M, Cavalli G, Della-Torre E, Tresoldi M, Landi F, Bosello SL, Gremese E, Dagna L. Nailfold capillaroscopy findings in patients with coronavirus disease 2019: Broadening the spectrum of COVID-19 microvascular involvement. Microvasc Res 2021; 133:104071. [PMID: 32949574 PMCID: PMC7494493 DOI: 10.1016/j.mvr.2020.104071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Increasing evidence points to endothelial dysfunction as a key pathophysiological factor in coronavirus disease-2019 (COVID-19). No specific methods have been identified to predict, detect and quantify the microvascular alterations during COVID-19. Our aim was to assess microvasculature through nailfold videocapillaroscopy (NVC) in COVID-19 patients. METHODS We performed NVC in patients with a confirmed diagnosis of COVID-19 pneumonia. Elementary alterations were reported for each finger according to a semi-quantitative score. Capillary density, number of enlarged and giant capillaries, number of micro-hemorrhages and micro-thrombosis (NEMO score) were registered. RESULTS We enrolled 82 patients (mean age 58.8 ± 13.2 years, male 68.3%) of whom 28 during the hospitalization and 54 after recovery and hospital discharge. At NVC examination we found abnormalities classifiable as non-specific pattern in 53 patients (64.6%). Common abnormalities were pericapillary edema (80.5%), enlarged capillaries (61.0%), sludge flow (53.7%), meandering capillaries and reduced capillary density (50.0%). No pictures suggestive of scleroderma pattern have been observed. Acute COVID-19 patients, compared to recovered patients, showed a higher prevalence of hemosiderin deposits as a result of micro-hemorrhages (P = .027) and micro-thrombosis (P < .016), sludge flow (P = .001), and pericapillary edema (P < .001), while recovered patients showed a higher prevalence of enlarged capillaries (P < .001), loss of capillaries (P = .002), meandering capillaries (P < .001), and empty dermal papillae (P = .006). CONCLUSION COVID-19 patients present microvascular abnormalities at NVC. Currently ill and recovered subjects are characterized by a different distribution of elementary capillaroscopic alterations, resembling acute and post-acute microvascular damage. Further studies are needed to assess the clinical relevance of NVC in COVID-19.
Collapse
Affiliation(s)
- Gerlando Natalello
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy.
| | - Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Corrado Campochiaro
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Enrico De Lorenzis
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy; PhD program in Biomolecular Medicine - cycle XXXV, University of Verona, Italy
| | - Lucrezia Verardi
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Annamaria Paglionico
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Maria Martone
- Department of Geriatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Calvisi
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Ripa
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Moreno Tresoldi
- General Medicine and Advanced Care Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Landi
- Department of Geriatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Silvia Laura Bosello
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
Courtie E, Veenith T, Logan A, Denniston AK, Blanch RJ. Retinal blood flow in critical illness and systemic disease: a review. Ann Intensive Care 2020; 10:152. [PMID: 33184724 PMCID: PMC7661622 DOI: 10.1186/s13613-020-00768-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Assessment and maintenance of end-organ perfusion are key to resuscitation in critical illness, although there are limited direct methods or proxy measures to assess cerebral perfusion. Novel non-invasive methods of monitoring microcirculation in critically ill patients offer the potential for real-time updates to improve patient outcomes. MAIN BODY Parallel mechanisms autoregulate retinal and cerebral microcirculation to maintain blood flow to meet metabolic demands across a range of perfusion pressures. Cerebral blood flow (CBF) is reduced and autoregulation impaired in sepsis, but current methods to image CBF do not reproducibly assess the microcirculation. Peripheral microcirculatory blood flow may be imaged in sublingual and conjunctival mucosa and is impaired in sepsis. Retinal microcirculation can be directly imaged by optical coherence tomography angiography (OCTA) during perfusion-deficit states such as sepsis, and other systemic haemodynamic disturbances such as acute coronary syndrome, and systemic inflammatory conditions such as inflammatory bowel disease. CONCLUSION Monitoring microcirculatory flow offers the potential to enhance monitoring in the care of critically ill patients, and imaging retinal blood flow during critical illness offers a potential biomarker for cerebral microcirculatory perfusion.
Collapse
Affiliation(s)
- E Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - T Veenith
- Critical Care Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - A Logan
- Axolotl Consulting Ltd, Droitwich, WR9 0JS, Worcestershire, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - A K Denniston
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- Centre for Rare Diseases, Institute of Translational Medicine, Birmingham Health Partners, Birmingham, UK
| | - R J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
| |
Collapse
|
15
|
Berhouma M, Picart T, Dumot C, Pelissou-Guyotat I, Meyronet D, Ducray F, Honnorat J, Eker O, Guyotat J, Lukaszewicz AC, Cotton F. Alterations of cerebral microcirculation in peritumoral edema: feasibility of in vivo sidestream dark-field imaging in intracranial meningiomas. Neurooncol Adv 2020; 2:vdaa108. [PMID: 33063011 PMCID: PMC7542984 DOI: 10.1093/noajnl/vdaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Intracranial meningiomas display a variable amount of peritumoral brain edema (PTBE), which can significantly impact perioperative morbidity. The role of microcirculatory disturbances in the pathogenesis of PTBE is still debated. The aim of this study was to microscopically demonstrate and intraoperatively quantify, for the first time, the alterations to microcirculation in PTBE using sidestream dark-field (SDF) imaging. Methods Adult patients with WHO grade I meningiomas were recruited over a 9-month period and divided into 2 groups depending on the absence (NE group) or the presence (E group) of PTBE. In vivo intraoperative microcirculation imaging was performed in the peritumoral area before and after microsurgical resection. Results Six patients were included in the NE group and 6 in the E group. At the baseline in the NE group, there was a minor decrease in microcirculatory parameters compared to normal reference values, which was probably due to the mass effect. In contrast, microcirculatory parameters in the E group were significantly altered, affecting both vessel density and blood flow values, with a drop of approximately 50% of normal values. Surgical resection resulted in a quasi-normalization of microcirculation parameters in the NE group, whereas in the E group, even if all parameters statistically significantly improved, post-resection values remained considerably inferior to those of the normal reference pattern. Conclusion Our study confirmed significant alterations of microcirculatory parameters in PTBE in meningiomas. Further in vivo SDF imaging studies may explore the possible correlation between the severity of these microcirculatory alterations and the postoperative neurological outcome.
Collapse
Affiliation(s)
- Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France.,Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
| | - Thiebaud Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Chloe Dumot
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Isabelle Pelissou-Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - David Meyronet
- Department of Pathology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France.,Centre de Recherche en Cancérologie de Lyon INSERM U1052 CNRS 5286, Lyon 1 University, Lyon, France
| | - François Ducray
- Department of Neurooncology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jerome Honnorat
- Department of Neurooncology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Omer Eker
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.,Department of Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jacques Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - Anne-Claire Lukaszewicz
- Department of Neuroanesthesia and Neurocritical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - François Cotton
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.,Department of Neuroimaging, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
16
|
Uz Z, Shen L, Milstein DMJ, van Lienden KP, Swijnenburg RJ, Ince C, van Gulik TM. Intraoperative Imaging Techniques to Visualize Hepatic (Micro)Perfusion: An Overview. Eur Surg Res 2020; 61:2-13. [PMID: 32659780 DOI: 10.1159/000508348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The microcirculation plays a crucial role in the distribution of perfusion to organs. Studies have shown that microcirculatory dysfunction is an independent predictor of morbidity and mortality. Hence, assessment of liver perfusion offers valuable information on the (patho)physiological state of the liver. The current review explores techniques in perfusion imaging that can be used intraoperatively. Available modalities include dynamic contrast-enhanced ultrasound, handheld vital microscopes, indocyanine green fluorescence angiography, and laser contrast speckle imaging. Dynamic contrast-enhanced ultrasound relays information on deep tissue perfusion and is a commonly used technique to assess tumor perfusion. Handheld vital microscopes provide direct visualization of the sinusoidal architectural structure of the liver, which is a unique feature of this technique. Intraoperative fluorescence imaging uses indocyanine green, a dye that is administered intravenously to visualize microvascular perfusion when excited using near-infrared light. Laser speckle contrast imaging produces non-contact large surface-based tissue perfusion imaging free from movement- or pressure-related artefacts. In this review, we discuss the intrinsic advantages and disadvantages of these techniques and their clinical and/or scientific applications.
Collapse
Affiliation(s)
- Zühre Uz
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, .,Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Lucinda Shen
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Adults, Erasmus MC, Rotterdam, The Netherlands
| | - Dan M J Milstein
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Krijn P van Lienden
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Intensive Care Adults, Erasmus MC, Rotterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Aziz A, Medina-Sánchez M, Claussen J, Schmidt OG. Real-Time Optoacoustic Tracking of Single Moving Micro-objects in Deep Phantom and Ex Vivo Tissues. NANO LETTERS 2019; 19:6612-6620. [PMID: 31411038 DOI: 10.1021/acs.nanolett.9b02869] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Medical imaging plays an important role in diagnosis and treatment of multiple diseases. It is a field which seeks for improved sensitivity and spatiotemporal resolution to allow the dynamic monitoring of diverse biological processes that occur at the micro- and nanoscale. Emerging technologies for targeted diagnosis and therapy such as nanotherapeutics, microimplants, catheters, and small medical tools also need to be precisely located and monitored while performing their function inside the human body. In this work, we show for the first time the real-time tracking of moving single micro-objects below centimeter thick phantom tissue and ex vivo chicken breast, using multispectral optoacoustic tomography (MSOT). This technique combines the advantages of ultrasound imaging regarding depth and resolution with the molecular specificity of optical methods, thereby facilitating the discrimination between the spectral signatures of the micro-objects from those of intrinsic tissue molecules. The resulting MSOT signal is further improved in terms of contrast and specificity by coating the micro-objects' surface with gold nanorods, possessing a unique absorption spectrum, which facilitate their discrimination from surrounding biological tissues when translated to future in vivo settings.
Collapse
Affiliation(s)
- Azaam Aziz
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
| | - Jing Claussen
- iThera Medical GmbH , Zielstattstraße 13 , 81379 Munich , Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences , Leibniz IFW Dresden , Helmholtzstraße 20 , 01069 Dresden , Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN) , TU Chemnitz , Reichenhainer Straße 10 , 09107 Chemnitz , Germany
- School of Science , TU Dresden , 01062 Dresden , Germany
| |
Collapse
|
18
|
Margaryants NB, Sidorov IS, Volkov MV, Gurov IP, Mamontov OV, Kamshilin AA. Visualization of skin capillaries with moving red blood cells in arbitrary area of the body. BIOMEDICAL OPTICS EXPRESS 2019; 10:4896-4906. [PMID: 31565533 PMCID: PMC6757459 DOI: 10.1364/boe.10.004896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 05/27/2023]
Abstract
Evaluation of skin microcirculation allows for the assessment of functional states for neuroendocrine and endothelial regulation. We present a novel method to visualize skin microvessels in any area of the body, which is in contrast to classical capillaroscopy, in which the application areas are limited to the nailfold and retina capillaries. The technique is based on microscopic video-image analysis. It exploits a specific feature of irregularity of red-blood-cells motion. Feasibility of the method is demonstrated by mapping the skin capillaries in the forearm and face of 11 healthy volunteers. The proposed method is promising for the quantitative assessment of cutaneous microcirculation in a wide range of diseases and functional states.
Collapse
Affiliation(s)
- Nikita B. Margaryants
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
| | - Igor S. Sidorov
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
| | - Mikhail V. Volkov
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
| | - Igor P. Gurov
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
| | - Oleg V. Mamontov
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
- Department of Circulation Physiology, Almazov National Medical Research Center, 2 Akkuratova st., 197341, St. Petersburg, Russia
| | - Alexei A. Kamshilin
- Faculty of Applied Optics, ITMO University, 49 Kronverksky pr., 197101, St. Petersburg, Russia
| |
Collapse
|
19
|
Hessler M, Lehmann F, Arnemann PH, Eter N, Ertmer C, Alnawaiseh M. [Optical coherence tomography angiography in intensive care medicine : A new field of application?]. Ophthalmologe 2019; 116:728-734. [PMID: 31139886 DOI: 10.1007/s00347-019-0893-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many critically ill patients show a disturbance of the microcirculation, which is not yet regularly examined in the clinical routine; however, for treatment decisions and estimation of the prognosis it would be important to obtain detailed information about the microcirculation in critically ill patients. Optical coherence tomography angiography (OCTA) is a non-invasive, contact-free technique, which enables visualization of the blood flow in the retinal microcirculation within a few seconds. Therefore, it may have the potential to diagnose microcirculation disorders in critically ill patients. OBJECTIVE The aims of the study were to assess the importance of the microcirculation in intensive care medicine, a comparison of the methods of video microscopy and OCTA and analysis of preclinical and clinical data on the use of OCTA in intensive care medicine. MATERIAL AND METHODS A selective literature review and data analysis were carried out. RESULTS A direct visualization of the microcirculation has been possible for many years with the technique of video microscopy but this has not become established in the clinical routine due to the susceptibility to interferences and a time-consuming manual analysis. The OCTA is a non-invasive and contact-free method for the visualization of retinal blood flow. First preclinical data in septic and hemorrhagic shock show good results of OCTA for analysis of the microcirculation. CONCLUSION The non-invasive technique of OCTA is a promising measurement method to enable bedside analysis of the microcirculation in critically ill paients in the future; however, some technical limitations must still be overcome.
Collapse
Affiliation(s)
- Michael Hessler
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland.
| | - Florian Lehmann
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Philip-Helge Arnemann
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Nicole Eter
- Klinik für Augenheilkunde, Universitätsklinikum Münster, 48149, Münster, Deutschland
| | - Christian Ertmer
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Maged Alnawaiseh
- Klinik für Augenheilkunde, Universitätsklinikum Münster, 48149, Münster, Deutschland
| |
Collapse
|
20
|
Choi M, Zemp R. Towards microvascular pressure estimation using ultrasound and photoacoustic imaging. PHOTOACOUSTICS 2019; 14:99-104. [PMID: 31312599 PMCID: PMC6610233 DOI: 10.1016/j.pacs.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
Microvascular pressure drives perfusion in tissues but is difficult to measure. A method is proposed here to estimate relative pressures in microvessels using photoacoustic and ultrasound tracking of small vessels during calibrated tissue compression. A photoacoustic-ultrasound dual imaging transducer is used to directly compress on tissue in vivo. Photoacoustic signals from blood vessels diminish as an external load is applied and eventually reaches a minimum or vanishes when external pressure is sufficiently greater than the internal pressure. Two methods were proposed to estimate relative pressures. In the first approach, vessels were tracked during compression and when the vessel photoacoustic signals vanished below a set threshold, the internal pressures were assigned as the external loading pressure at the respective collapse point. In this approach pressures required to collapse vessel signatures completely were found to be much greater than physiological blood pressures. An alternative approach was to track the cross-sectional area of small vessels with changing external load and fitting the data to a known Shapiro model for thin-walled vessel compression. This approach produced estimates of internal pressures which were much more realistic. Both approaches produced the same rank-ordering of relative pressures of various vessels in vivo. Approaches thus far require future work to become fully quantitative but the present contributions represent steps towards this goal.
Collapse
Affiliation(s)
| | - Roger Zemp
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, 9107 – 116 Street, Edmonton, AB, T6G 2V4, Canada
| |
Collapse
|
21
|
Hohenauer E, Deliens T, Clarys P, Clijsen R. Perfusion of the skin's microcirculation after cold-water immersion (10°C) and partial-body cryotherapy (-135°C). Skin Res Technol 2019; 25:677-682. [PMID: 31038232 PMCID: PMC6849860 DOI: 10.1111/srt.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/14/2019] [Indexed: 12/21/2022]
Abstract
Background Investigations of the perfusion of the skin's microcirculation with laser speckle contrast imaging (LSCI) after cold treatments are rare. Therefore, the aim of this study was to compare the effects between cold‐water immersion (CWI) conduction and partial‐body cryotherapy (PBC) convection on perfusion of the microcirculation and skin temperature on the thigh. Materials and Methods Twenty healthy males were randomly allocated to CWI (10°C for 10 minutes) or PBC (−60°C for 30 seconds, −135°C for 2 minutes). Perfusion and skin temperature measurements were conducted on the anterior thigh region up to 60 minutes post‐treatment. Results Cold‐water immersion decreased perfusion of the microcirculation significantly compared to baseline values between 10 minutes (P = 0.003) and 30 minutes (P = 0.01) post‐treatment. PBC increased perfusion of the microcirculation and decreased skin temperature only at the first measurement interval (0 minute, both P = 0.01) post‐treatment. Additionally, local skin temperature was significantly decreased compared to baseline values only after CWI up to 30 minutes (P = 0.04) post‐treatment. Conclusion Cold‐water immersion reduced local skin microcirculation and skin temperature while PBC only slightly increased the perfusion of the microcirculation immediately after the treatment. For cooling purposes, the conduction method seems superior compared to the convection method, assessed with a LSCI device.
Collapse
Affiliation(s)
- Erich Hohenauer
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland.,International University of Applied Sciences THIM, Landquart, Switzerland.,Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Deliens
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter Clarys
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Clijsen
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland.,International University of Applied Sciences THIM, Landquart, Switzerland.,Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
22
|
Ganse B, Böhle F, Pastor T, Gueorguiev B, Altgassen S, Gradl G, Kim BS, Modabber A, Nebelung S, Hildebrand F, Knobe M. Microcirculation After Trochanteric Femur Fractures: A Prospective Cohort Study Using Non-invasive Laser-Doppler Spectrophotometry. Front Physiol 2019; 10:236. [PMID: 30967785 PMCID: PMC6442516 DOI: 10.3389/fphys.2019.00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/23/2022] Open
Abstract
Proximal femur fractures represent a major healthcare problem in the aging society. High rates of post-operative infections are linked to risk factors that seem to affect local microcirculation. Patterns and time courses of alterations in microcirculation have, however, not been previously investigated. The aim of this prospective cohort study was to evaluate perioperative changes in microcirculation after trochanteric femur fractures using non-invasive laser-Doppler spectrophotometry to analyze how oxygen saturation (SO2), hemoglobin content (Hb) and blood flow changed before and after surgery, and how these parameters were altered by implant type, gender, smoking, diabetes and age. Measurements were separately recorded for nine locations around the greater trochanter in 2, 8, and 15 mm depths, before surgery and 8, 24, 48 h, 4, 7, and 12 days after surgery in 48 patients. Three implants were compared: Dynamic Hip Screw, Gamma3 Nail, and Percutaneous Compression Plate. Surgery resulted in significant differences between the healthy and injured leg in SO2, Hb and flow. Each parameter showed comparable values for both legs prior to surgery. Significantly higher values in SO2 and flow were registered in women compared to men before and after surgery. Smoking caused significant increases in SO2, Hb, and flow only in the superficial layer of the skin after surgery. Diabetes decreased blood flow at 2 and 8 mm depth and increased SO2 at 8 and 15 mm depth after surgery. Age revealed a significant negative correlation with flow. The ability to increase the flow rate after surgery decreased with age. Comparison of implants indicated the minimally invasive implant PCCP altered microcirculation less than the DHS or the Gamma3 nail. Overall, the proximal femur fracture alone did not alter local skin microcirculation significantly in a way comparable to the effect caused by surgery. In conclusion, microcirculation after proximal femur fractures is highly affected by surgery, gender, smoking, diabetes, age and implant in ways specified in this study.
Collapse
Affiliation(s)
- Bergita Ganse
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Franziska Böhle
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Tatjana Pastor
- Department of Orthopaedics, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| | | | - Simon Altgassen
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Gertraud Gradl
- LVR Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bong-Sung Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Sven Nebelung
- Department of Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Matthias Knobe
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
23
|
Motabbakani N, Lehmann C. Laser Doppler-based measurements of periarticular blood flux can be utilized for assessment of arthritis pain: A hypothesis. Clin Hemorheol Microcirc 2019; 71:171-174. [DOI: 10.3233/ch-189408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University Halifax, Canada
- Department of Anesthesia, Dalhousie University Halifax, Canada
| |
Collapse
|
24
|
Wong R, Lénárt N, Hill L, Toms L, Coutts G, Martinecz B, Császár E, Nyiri G, Papaemmanouil A, Waisman A, Müller W, Schwaninger M, Rothwell N, Francis S, Pinteaux E, Denés A, Allan SM. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav Immun 2019; 76:126-138. [PMID: 30453020 PMCID: PMC6363965 DOI: 10.1016/j.bbi.2018.11.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
The cytokine interleukin-1 (IL-1) is a key contributor to neuroinflammation and brain injury, yet mechanisms by which IL-1 triggers neuronal injury remain unknown. Here we induced conditional deletion of IL-1R1 in brain endothelial cells, neurons and blood cells to assess site-specific IL-1 actions in a model of cerebral ischaemia in mice. Tamoxifen treatment of IL-1R1 floxed (fl/fl) mice crossed with mice expressing tamoxifen-inducible Cre-recombinase under the Slco1c1 promoter resulted in brain endothelium-specific deletion of IL-1R1 and a significant decrease in infarct size (29%), blood-brain barrier (BBB) breakdown (53%) and neurological deficit (40%) compared to vehicle-treated or control (IL-1R1fl/fl) mice. Absence of brain endothelial IL-1 signalling improved cerebral blood flow, followed by reduced neutrophil infiltration and vascular activation 24 h after brain injury. Conditional IL-1R1 deletion in neurons using tamoxifen inducible nestin-Cre mice resulted in reduced neuronal injury (25%) and altered microglia-neuron interactions, without affecting cerebral perfusion or vascular activation. Deletion of IL-1R1 specifically in cholinergic neurons reduced infarct size, brain oedema and improved functional outcome. Ubiquitous deletion of IL-1R1 had no effect on brain injury, suggesting beneficial compensatory mechanisms on other cells against the detrimental effects of IL-1 on endothelial cells and neurons. We also show that IL-1R1 signalling deletion in platelets or myeloid cells does not contribute to brain injury after experimental stroke. Thus, brain endothelial and neuronal (cholinergic) IL-1R1 mediate detrimental actions of IL-1 in the brain in ischaemic stroke. Cell-specific targeting of IL-1R1 in the brain could therefore have therapeutic benefits in stroke and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Nikolett Lénárt
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Laura Hill
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Lauren Toms
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Graham Coutts
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Bernadett Martinecz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Eszter Császár
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Athina Papaemmanouil
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | - Nancy Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Sheila Francis
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, S10 2RX Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK
| | - Adam Denés
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT Manchester, UK.
| |
Collapse
|
25
|
Marchesi S, Ortiz Nieto F, Ahlgren KM, Roneus A, Feinstein R, Lipcsey M, Larsson A, Ahlström H, Hedenstierna G. Abdominal organ perfusion and inflammation in experimental sepsis: a magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol 2019; 316:G187-G196. [PMID: 30335473 DOI: 10.1152/ajpgi.00151.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) uses water as contrast and enables the study of perfusion in many organs simultaneously in situ. We used DW-MRI in a hypodynamic sepsis model, comparing abdominal organ perfusion with global hemodynamic measurements and inflammation. Sixteen anesthetized piglets were randomized into 3 groups: 2 intervention (sepsis) groups: HighMAP (mean arterial pressure, MAP > 65 mmHg) and LowMAP (MAP between 50 and 60 mmHg), and a Healthy Control group (HC). Sepsis was obtained with endotoxin and the desired MAP maintained with norepinephrine. After 6 h, DW-MRI was performed. Acute inflammation was assessed with IL-6 and TNFα in abdominal organs, ascites, and blood and by histology of intestine (duodenum). Perfusion of abdominal organs was reduced in the LowMAP group compared with the HighMAP group and HC. Liver perfusion was still reduced by 25% in the HighMAP group compared with HC. Intestinal perfusion did not differ significantly between the intervention groups. Cytokine concentrations were generally higher in the LowMAP group but did not correlate with global hemodynamics. However, cytokines correlated with regional perfusion and, for liver and intestine, also with intra-abdominal pressure. Histopathology of intestine worsened with decreasing perfusion. In conclusion, although a low MAP (≤60 mmHg) indicated impeded abdominal perfusion in experimental sepsis, it did not predict inflammation, nor did other global measures of circulation. Decreased abdominal perfusion partially predicted inflammation but intestine, occupying most of the abdomen, and liver were also affected by intra-abdominal pressure. NEW & NOTEWORTHY The study increases the knowledge of abdominal perfusion during sepsis. We used diffusion weighted imaging to assess perfusion simultaneously and noninvasively in different abdominal organs. The technique has not been used in a sepsis model before. Cytokine concentrations were measured in different abdominal organs and vascular beds and related to regional perfusion. Decreased abdominal perfusion, but not global measures of circulation, predicted inflammation. Intestine, occupying most of the abdomen, and liver were also affected by intra-abdominal pressure.
Collapse
Affiliation(s)
- Silvia Marchesi
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | | | - Kerstin M Ahlgren
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Agneta Roneus
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | | | - Miklos Lipcsey
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Anders Larsson
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| | - Håkan Ahlström
- Section of Radiology, Department of Surgical Science, Uppsala University , Sweden
| | - Göran Hedenstierna
- Hedenstierna Laboratoriet, Department of Surgical Science, Uppsala University , Uppsala , Sweden
| |
Collapse
|
26
|
Davoodzadeh N, Cano-Velázquez MS, Halaney DL, Jonak CR, Binder DK, Aguilar G. Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:4879-4892. [PMID: 30319909 PMCID: PMC6179387 DOI: 10.1364/boe.9.004879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 05/11/2023]
Abstract
Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse). The average sharpness of imaged vessels was found to remain stable, with relative change in sharpness under 7.69% ± 1.2% over 28 days. Through-implant images of vessels at day 60 appeared sharper and smaller on average, with microvessels clearly visible, compared to through-skull images where vessels appeared blurred and distorted. These results suggest that long-term imaging through this implant is feasible.
Collapse
Affiliation(s)
- Nami Davoodzadeh
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | | | - David L Halaney
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
27
|
Laser Speckle Imaging of Sensitized Acupoints. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7308767. [PMID: 30105061 PMCID: PMC6076938 DOI: 10.1155/2018/7308767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Acupoints microcirculatory dynamics vary depending on the body's health status. However, the functional changes observed during acupoint sensitization, that is, the disease-induced change from a "silenced" to an "activated" status, remain elusive. In this study, the microcirculatory changes at acupoints during sensitization were characterized. Thirty SD rats were randomly divided into five groups: normal control group (N), sham osteoarthritis group (S), light osteoarthritis group (A), mild osteoarthritis group (B), and heavy osteoarthritis group (C). The obtained results showed that the blood perfusion levels at the acupoints Yanglingquan (GB34), Zusanli (ST36), and Heding (EX-LE2) in groups A, B, and C were higher than those in groups N and S on days 14, 21, and 28 (p < 0.01 or p < 0.05). A significant difference in the blood perfusion was also observed at the acupoint Weizhong (BL40) in groups B and C on days 21 and 28 (p < 0.01). In addition, remarkable differences in the level of blood perfusion at the GB34, ST36, and EX-LE2 acupoints were observed on day 28 (p < 0.01 or p < 0.05) among groups A, B, and C. No marked differences in blood perfusion levels were observed at the nonacupoint site among all groups. In conclusion, acupoint sensitization is associated with an increase in the level of local blood perfusion at specific acupoints, and this increase is positively correlated with the severity of the disease. The functional changes in microcirculation at acupoints during sensitization reflect the different physiological and pathological conditions imposed by the disease.
Collapse
|
28
|
Ansson CD, Sheikh R, Dahlstrand U, Hult J, Lindstedt S, Malmsjö M. Blood perfusion in Hewes tarsoconjunctival flaps in pigs measured by laser speckle contrast imaging. JPRAS Open 2018; 18:98-103. [PMID: 32158843 PMCID: PMC7061646 DOI: 10.1016/j.jpra.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/05/2018] [Accepted: 07/18/2018] [Indexed: 10/31/2022] Open
Abstract
Background Hewes flap is a tarsoconjunctival eyelid flap, based at the lateral canthal tendon, and rotated and stretched to repair lateral defects in the lower eyelid commonly following tumor surgery. The aim of the present study was to monitor perfusion in a Hewes flap during reconstruction, which to the best of our knowledge, has not previously been done. Methods A Hewes tarsoconjunctival eyelid flap was raised and the effects on blood perfusion of rotating the flaps by 90° and 180°, stretching the flaps with a force of 5 or 10 N, and repeated diathermic coagulation was monitored with laser speckle contrast imaging. Results Rotating the flaps by 90° did not significantly affect perfusion, while further rotation to 180° reduced blood perfusion to 75% of the baseline value. When the tarsoconjunctival flaps were both rotated 90° and stretched with 5 N, the perfusion was reduced even further, to 63%. A further reduction in perfusion, to 36%, was seen when the higher force of 10 N was applied. Diathermy decreased blood perfusion to 56% after being applied once. Successive applications led to further decreases: 43%, 31%, and 15%, after the second, third and fourth applications. Conclusions Perfusion in Hewes tarsoconjunctival flaps is affected by both rotation and stretching, but some perfusion is maintained despite these manipulations. Diathermy, however, has detrimental effects and should be avoided.
Collapse
Affiliation(s)
- Cu Dinh Ansson
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Ögonklinik A, Kioskgatan 1B, SE-221 85 Lund, Sweden
| | - Rafi Sheikh
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Ögonklinik A, Kioskgatan 1B, SE-221 85 Lund, Sweden
| | - Ulf Dahlstrand
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Ögonklinik A, Kioskgatan 1B, SE-221 85 Lund, Sweden
| | - Jenny Hult
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Ögonklinik A, Kioskgatan 1B, SE-221 85 Lund, Sweden
| | - Sandra Lindstedt
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Cardiothoracic Surgery, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Ögonklinik A, Kioskgatan 1B, SE-221 85 Lund, Sweden
| |
Collapse
|
29
|
Kumar V, Hsueh WA, Raman SV. Multiorgan, Multimodality Imaging in Cardiometabolic Disease. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.117.005447. [PMID: 29122843 DOI: 10.1161/circimaging.117.005447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cardiometabolic disease, spanning conditions such as obesity to type 2 diabetes mellitus with excess cardiovascular risk, represents a major public health burden. Advances in preclinical translational science point to potential targets across multiple organ systems for early intervention to improve cardiometabolic health. Validation in clinical trials and translation to care would benefit from in vivo diagnostic techniques that facilitate therapeutic advancements. This review provides a state-of-the-art, multimodality perspective spanning the multiple organ systems that contribute to cardiometabolic disease.
Collapse
Affiliation(s)
- Vidhya Kumar
- From the Ohio State University Davis Heart and Lung Research Institute, Columbus (V.K., W.A.H., S.V.R.); and Division of Endocrinology, Diabetes & Metabolism, Ohio State University, Columbus (W.A.H.)
| | - Willa A Hsueh
- From the Ohio State University Davis Heart and Lung Research Institute, Columbus (V.K., W.A.H., S.V.R.); and Division of Endocrinology, Diabetes & Metabolism, Ohio State University, Columbus (W.A.H.)
| | - Subha V Raman
- From the Ohio State University Davis Heart and Lung Research Institute, Columbus (V.K., W.A.H., S.V.R.); and Division of Endocrinology, Diabetes & Metabolism, Ohio State University, Columbus (W.A.H.).
| |
Collapse
|
30
|
Sorelli M, Stoyneva Z, Mizeva I, Bocchi L. Spatial heterogeneity in the time and frequency properties of skin perfusion. Physiol Meas 2017; 38:860-876. [DOI: 10.1088/1361-6579/aa5909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Khalil A, Humeau-Heurtier A, Gascoin L, Abraham P, Mahé G. Aging effect on microcirculation: A multiscale entropy approach on laser speckle contrast images. Med Phys 2017; 43:4008. [PMID: 27370119 DOI: 10.1118/1.4953189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE It has long been known that age plays a crucial role in the deterioration of microvessels. The assessment of such deteriorations can be achieved by monitoring microvascular blood flow. Laser speckle contrast imaging (LSCI) is a powerful optical imaging tool that provides two-dimensional information on microvascular blood flow. The technique has recently been commercialized, and hence, few works discuss the postacquisition processing of laser speckle contrast images recorded in vivo. By applying entropy-based complexity measures to LSCI time series, we present herein the first attempt to study the effect of aging on microcirculation by measuring the complexity of microvascular signals over multiple time scales. METHODS Forearm skin microvascular blood flow was studied with LSCI in 18 healthy subjects. The subjects were subdivided into two age groups: younger (20-30 years old, n = 9) and older (50-68 years old, n = 9). To estimate age-dependent changes in microvascular blood flow, we applied three entropy-based complexity algorithms to LSCI time series. RESULTS The application of entropy-based complexity algorithms to LSCI time series can differentiate younger from older groups: the data fluctuations in the younger group have a significantly higher complexity than those obtained from the older group. CONCLUSIONS The effect of aging on microcirculation can be estimated by using entropy-based complexity algorithms to LSCI time series.
Collapse
Affiliation(s)
- A Khalil
- LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 62 Avenue Notre-Dame du Lac, Angers 49000, France
| | - A Humeau-Heurtier
- LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 62 Avenue Notre-Dame du Lac, Angers 49000, France
| | - L Gascoin
- Laboratoire de Physiologie et d'Explorations Vasculaires, Hospital of Angers, University of Angers, Angers Cedex 01 49033, France
| | - P Abraham
- Laboratoire de Physiologie et d'Explorations Vasculaires, Hospital of Angers, University of Angers, UMR CNRS 6214-INSERM 1083, Angers Cedex 01 49033, France
| | - G Mahé
- Pôle Imagerie Médicale et Explorations Fonctionnelles, Hospital Pontchaillou of Rennes, University of Rennes 1, INSERM CIC 1414, Rennes Cedex 9 35033, France
| |
Collapse
|
32
|
Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation. Sci Rep 2017; 7:41048. [PMID: 28106129 PMCID: PMC5247692 DOI: 10.1038/srep41048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022] Open
Abstract
Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.
Collapse
|
33
|
Obonyo NG, Fanning JP, Ng ASY, Pimenta LP, Shekar K, Platts DG, Maitland K, Fraser JF. Effects of volume resuscitation on the microcirculation in animal models of lipopolysaccharide sepsis: a systematic review. Intensive Care Med Exp 2016; 4:38. [PMID: 27873263 PMCID: PMC5118377 DOI: 10.1186/s40635-016-0112-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/15/2016] [Indexed: 12/29/2022] Open
Abstract
Background Recent research has identified an increased rate of mortality associated with fluid bolus therapy for severe sepsis and septic shock, but the mechanisms are still not well understood. Fluid resuscitation therapy administered for sepsis and septic shock targets restoration of the macro-circulation, but the pathogenesis of sepsis is complex and includes microcirculatory dysfunction. Objective The objective of the study is to systematically review data comparing the effects of different types of fluid resuscitation on the microcirculation in clinically relevant animal models of lipopolysaccharide-induced sepsis. Methods A structured search of PubMed/MEDLINE and EMBASE for relevant publications from 1 January 1990 to 31 December 2015 was performed, in accordance with PRISMA guidelines. Results The number of published papers on sepsis and the microcirculation has increased steadily over the last 25 years. We identified 11 experimental animal studies comparing the effects of different fluid resuscitation regimens on the microcirculation. Heterogeneity precluded any meta-analysis. Conclusions Few animal model studies have been published comparing the microcirculatory effects of different types of fluid resuscitation for sepsis and septic shock. Biologically relevant animal model studies remain necessary to enhance understanding regarding the mechanisms by which fluid resuscitation affects the microcirculation and to facilitate the transfer of basic science discoveries to clinical applications.
Collapse
Affiliation(s)
- Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathon P Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Angela S Y Ng
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Leticia P Pimenta
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Kiran Shekar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David G Platts
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Department of Paediatrics, Faculty of Medicine, Imperial College London, London, UK
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia. .,School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
34
|
Evaluation of a novel 2D perfusion angiography technique independent of pump injections for assessment of interventional treatment of peripheral vascular disease. Int J Cardiovasc Imaging 2016; 33:295-301. [DOI: 10.1007/s10554-016-1008-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 01/18/2023]
|
35
|
Liu M, Chen Z, Zabihian B, Sinz C, Zhang E, Beard PC, Ginner L, Hoover E, Minneman MP, Leitgeb RA, Kittler H, Drexler W. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. BIOMEDICAL OPTICS EXPRESS 2016; 7:3390-3402. [PMID: 27699106 PMCID: PMC5030018 DOI: 10.1364/boe.7.003390] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 05/05/2023]
Abstract
Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo.
Collapse
Affiliation(s)
- Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Zhe Chen
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Behrooz Zabihian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Christoph Sinz
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, Vienna, 1090, Austria
| | - Edward Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Laurin Ginner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Erich Hoover
- INSIGHT Photonic Solutions, Inc., 300 S. Public Road, Lafayette, CO, 80026, USA
| | - Micheal P. Minneman
- INSIGHT Photonic Solutions, Inc., 300 S. Public Road, Lafayette, CO, 80026, USA
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| | - Harald Kittler
- Department of Dermatology, Medical University of Vienna, Währinger Gürtel 18-20, AKH 7J, Vienna, 1090, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, AKH 4L, Vienna, 1090, Austria
| |
Collapse
|
36
|
Morimoto N, Kakudo N, Ogura T, Hara T, Matsui M, Yamamoto M, Tabata Y, Kusumoto K. Easy-to-Use Preservation and Application of Platelet-Rich Plasma in Combination Wound Therapy With a Gelatin Sheet and Freeze-Dried Platelet-Rich Plasma: A Case Report. EPLASTY 2016; 16:e22. [PMID: 27555889 PMCID: PMC4979162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Platelet-rich plasma is blood plasma enriched with platelets and contains various growth factors. Two major issues remain to be resolved in the use of platelet-rich plasma: the short biological activity after application, and the need to prepare platelet-rich plasma at each application instance. To overcome these problems, we developed a drug delivery system using gelatin hydrogel and preserved the excess platelet-rich plasma as freeze-dried platelet-rich plasma. We then applied combination treatment with a gelatin sheet and platelet-rich plasma at the first instance and freeze-dried platelet-rich plasma at the second instance in the treatment of a nonhealing wound. METHODS A 68-year-old woman had suffered open fracture of her right tibia 2 years prior, and a split-thickness skin graft had been applied to repair the skin defect on the right tibia. She had multiple relapse of ulcers, and the present ulcer had not healed for 2 months. After debridement, 2 mL of activated platelet-rich plasma was applied to the ulcer, and the gelatin sheet was laid to impregnate with the platelet-rich plasma, after which the sheet was covered with a polyurethane film. Thirty-three days after the first platelet-rich plasma application, the freeze-dried platelet-rich plasma was reconstituted and 2 mL of the reconstituted platelet-rich plasma was applied with a gelatin sheet. RESULTS At 14 days after the freeze-dried platelet-rich plasma application, the wound was mostly epithelized, with the rest of the wound covered with granulation tissue. CONCLUSIONS These findings suggest that combination wound therapy with a gelatin sheet and freeze-dried platelet-rich plasma is a promising method for resolving issues with conventional platelet-rich plasma treatment.
Collapse
Affiliation(s)
- Naoki Morimoto
- aDepartment of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan,Correspondence:
| | - Natsuko Kakudo
- aDepartment of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Tsunekata Ogura
- aDepartment of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Tomoya Hara
- aDepartment of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| | - Makoto Matsui
- cDepartment of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaya Yamamoto
- bPolymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuhiko Tabata
- cDepartment of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Kusumoto
- aDepartment of Plastic and Reconstructive Surgery, Kansai Medical University, Osaka, Japan
| |
Collapse
|
37
|
Safonova TN, Lutsevich EE, Kintukhina NP. [Icrocirculatory changes I bulbar conjunctiva in various diseases]. Vestn Oftalmol 2016; 132:90-95. [PMID: 27347572 DOI: 10.17116/oftalma2016132290-95] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The article presents a literature review of the latest achievements in visualizing microcirculation and studying anatomical and physiological characteristics of microcirculation in the bulbar conjunctiva in various diseases.
Collapse
Affiliation(s)
- T N Safonova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - E E Lutsevich
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - N P Kintukhina
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
38
|
A guide to human in vivo microcirculatory flow image analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:35. [PMID: 26861691 PMCID: PMC4748457 DOI: 10.1186/s13054-016-1213-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development.
Collapse
|