1
|
Kucińska A, Hawuła W, Rutkowska L, Wysocka U, Kępczyński Ł, Piotrowicz M, Chilarska T, Wieczorek-Cichecka N, Połatyńska K, Przysło Ł, Gach A. The Use of CGH Arrays for Identifying Copy Number Variations in Children with Autism Spectrum Disorder. Brain Sci 2024; 14:273. [PMID: 38539661 PMCID: PMC10968557 DOI: 10.3390/brainsci14030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Autism spectrum disorders (ASDs) encompass a broad group of neurodevelopmental disorders with varied clinical symptoms, all being characterized by deficits in social communication and repetitive behavior. Although the etiology of ASD is heterogeneous, with many genes involved, a crucial role is believed to be played by copy number variants (CNVs). The present study examines the role of copy number variation in the development of isolated ASD, or ASD with additional clinical features, among a group of 180 patients ranging in age from two years and four months to 17 years and nine months. Samples were taken and subjected to array-based comparative genomic hybridization (aCGH), the gold standard in detecting gains or losses in the genome, using a 4 × 180 CytoSure Autism Research Array, with a resolution of around 75 kb. The results indicated the presence of nine pathogenic and six likely pathogenic imbalances, and 20 variants of uncertain significance (VUSs) among the group. Relevant variants were more prevalent in patients with ASD and additional clinical features. Twelve of the detected variants, four of which were probably pathogenic, would not have been identified using the routine 8 × 60 k microarray. These results confirm the value of microarrays in ASD diagnostics and highlight the need for dedicated tools.
Collapse
Affiliation(s)
- Agata Kucińska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Wanda Hawuła
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Lena Rutkowska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Urszula Wysocka
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Łukasz Kępczyński
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Małgorzata Piotrowicz
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Tatiana Chilarska
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Nina Wieczorek-Cichecka
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| | - Katarzyna Połatyńska
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (K.P.); (Ł.P.)
| | - Łukasz Przysło
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (K.P.); (Ł.P.)
| | - Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland; (W.H.); (L.R.); (U.W.); (Ł.K.); (M.P.); (T.C.); (N.W.-C.); (A.G.)
| |
Collapse
|
2
|
Namekata K, Tsuji N, Guo X, Nishijima E, Honda S, Kitamura Y, Yamasaki A, Kishida M, Takeyama J, Ishikawa H, Shinozaki Y, Kimura A, Harada C, Harada T. Neuroprotection and axon regeneration by novel low-molecular-weight compounds through the modification of DOCK3 conformation. Cell Death Discov 2023; 9:166. [PMID: 37188749 PMCID: PMC10184973 DOI: 10.1038/s41420-023-01460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Dedicator of cytokinesis 3 (DOCK3) is an atypical member of the guanine nucleotide exchange factors (GEFs) and plays important roles in neurite outgrowth. DOCK3 forms a complex with Engulfment and cell motility protein 1 (Elmo1) and effectively activates Rac1 and actin dynamics. In this study, we screened 462,169 low-molecular-weight compounds and identified the hit compounds that stimulate the interaction between DOCK3 and Elmo1, and neurite outgrowth in vitro. Some of the derivatives from the hit compound stimulated neuroprotection and axon regeneration in a mouse model of optic nerve injury. Our findings suggest that the low-molecular-weight DOCK3 activators could be a potential therapeutic candidate for treating axonal injury and neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Tsuji
- R&D Division, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Euido Nishijima
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sari Honda
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuta Kitamura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Jun Takeyama
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Hirokazu Ishikawa
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
3
|
Xu X, He B, Zeng J, Yin J, Wang X, Luo X, Liang C, Luo S, Yan H, Xiong S, Tan Z, Lv D, Dai Z, Lin Z, Lin J, Ye X, Chen R, Li Y, Wang Y, Chen W, Luo Z, Li K, Ma G. Genetic variations in DOCK4 contribute to schizophrenia susceptibility in a Chinese cohort: A genetic neuroimaging study. Behav Brain Res 2023; 443:114353. [PMID: 36822513 DOI: 10.1016/j.bbr.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Emerging evidence suggests that the DOCK4 gene increases susceptibility to schizophrenia. However, no study has hitherto repeated this association in Chinese, and further investigated the relationship between DOCK4 and clinical symptoms in schizophrenic patients using clinical scales and functional magnetic resonance imaging (fMRI). METHODS In this study, we genotyped three single nucleotide polymorphisms (SNPs) (rs2074127, rs2217262, and rs2074130) within the DOCK4 gene using a case-control design (including 1289 healthy controls and 1351 patients with schizophrenia). 55 first-episode schizophrenia (FES) patients and 59 healthy participants were divided by the genotypes of rs2074130 into CC and CT+TT groups. We further investigated the association with clinical symptoms and neural characteristics (brain activation/connectivity and nodal network metrics). RESULTS Our results showed significant associations between all selected SNPs and schizophrenia (all P < 0.05). In patients, letter fluency and motor speed scores of T allele carriers were significantly higher than the CC group (all P < 0.05). Interestingly, greater brain activity, functional connectivity, and betweenness centrality (BC) in language processing and motor coordination were also observed in the corresponding brain zones in patients with the T allele based on a two-way ANCOVA model. Moreover, a potential positive correlation was found between brain activity/connectivity of these brain regions and verbal fluency and motor speed. CONCLUSION Our findings suggest that the DOCK4 gene may contribute to the onset of schizophrenia and lead to language processing and motor coordination dysfunction in this patient population from China.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jieqing Zeng
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoxia Wang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Institute of Neurology, Longjiang Hospital, the Third Affiliated Hospital of Guangdong Medical University, Shunde 528300, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Haifeng Yan
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Riling Chen
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Keshen Li
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510623, China.
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China.
| |
Collapse
|
4
|
Zhu S, Hou S, Lu Y, Sheng W, Cui Z, Dong T, Feng H, Wan Q. USP36-Mediated Deubiquitination of DOCK4 Contributes to the Diabetic Renal Tubular Epithelial Cell Injury via Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:638477. [PMID: 33968925 PMCID: PMC8102983 DOI: 10.3389/fcell.2021.638477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease but the efficacy of current treatment remains unsatisfactory. The pathogenesis of DKD needs a more in-depth research. Ubiquitin specific proteases 36 (USP36), a member of deubiquitinating enzymes family, has aroused wide concerns for its role in deubiquitinating and stabilizing target proteins. Nevertheless, the role of USP36 in diabetes has never been reported yet. Herein, we identified an increased expression of USP36 both in vitro and in vivo in diabetic renal tubular epithelial cells (TECs), and its overexpression is related to the enhanced epithelial-to-mesenchymal transition (EMT). Further investigation into the mechanisms proved that USP36 could directly bind to and mediate the deubiquitination of dedicator of cytokinesis 4 (DOCK4), a guanine nucleotide exchange factor (GEF) that could activate Wnt/β-catenin signaling pathway and induce EMT. Our study revealed a new mechanism that USP36 participates in the pathogenesis of DKD, and provided potential intervening targets accordingly.
Collapse
Affiliation(s)
- Suwei Zhu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoshuai Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Lu
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Sheng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tianyi Dong
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Feng
- Department of Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Nagy O, Kárteszi J, Elmont B, Ujfalusi A. Case Report: Expressive Speech Disorder in a Family as a Hallmark of 7q31 Deletion Involving the FOXP2 Gene. Front Pediatr 2021; 9:664548. [PMID: 34490154 PMCID: PMC8417935 DOI: 10.3389/fped.2021.664548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic variants of FOXP2 gene were identified first as a monogenic cause of childhood apraxia of speech (CAS), a complex disease that is associated with an impairment of the precision and consistency of movements underlying speech, due to deficits in speech motor planning and programming. FOXP2 variants are heterogenous; single nucleotide variants and small insertions/deletions, intragenic and large-scale deletions, as well as disruptions by structural chromosomal aberrations and uniparental disomy of chromosome 7 are the most common types of mutations. FOXP2-related speech and language disorders can be classified as "FOXP2-only," wherein intragenic mutations result in haploinsufficiency of the FOXP2 gene, or "FOXP2-plus" generated by structural genomic variants (i.e., translocation, microdeletion, etc.) and having more likely developmental and behavioral disturbances adjacent to speech and language impairment. The additional phenotypes are usually related to the disruption/deletion of multiple genes neighboring FOXP2 in the affected chromosomal region. We report the clinical and genetic findings in a family with four affected individuals having expressive speech impairment as the dominant symptom and additional mild dysmorphic features in three. A 7.87 Mb interstitial deletion of the 7q31.1q31.31 region was revealed by whole genome diagnostic microarray analysis in the proband. The FOXP2 gene deletion was confirmed by multiplex ligation-dependent probe amplification (MLPA), and all family members were screened by this targeted method. The FOXP2 deletion was detected in the mother and two siblings of the proband using MLPA. Higher resolution microarray was performed in all the affected individuals to refine the extent and breakpoints of the 7q31 deletion and to exclude other pathogenic copy number variants. To the best of our knowledge, there are only two family-studies reported to date with interstitial 7q31 deletion and showing the core phenotype of FOXP2 haploinsufficiency. Our study may contribute to a better understanding of the behavioral phenotype of FOXP2 disruptions and aid in the identification of such patients. We illustrate the importance of a targeted MLPA analysis suitable for the detection of FOXP2 deletion in selected cases with a specific phenotype of expressive speech disorder. The "phenotype first" and targeted diagnostic strategy can improve the diagnostic yield of speech disorders in the routine clinical practice.
Collapse
Affiliation(s)
- Orsolya Nagy
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Beatrix Elmont
- Department of Pediatrics, Hospital of Zala County, Zalaegerszeg, Hungary
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Huang M, Liang C, Li S, Zhang J, Guo D, Zhao B, Liu Y, Peng Y, Xu J, Liu W, Guo G, Shi L. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front Cell Neurosci 2020; 13:577. [PMID: 32009906 PMCID: PMC6974517 DOI: 10.3389/fncel.2019.00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and dyslexia are both neurodevelopmental disorders with high prevalence in children. Both disorders have strong genetic basis, and share similar social communication deficits co-occurring with impairments of reading or language. However, whether these two disorders share common genetic risks remain elusive. DOCK4 (dedicator for cytokinesis 4), a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1, is one of few genes that are associated with both ASD and dyslexia. Dock4 is important for neuronal development and social behaviors. Two DOCK4 variations, Exon27-52 deletion (protein product: Dock4-945VS) and a missense mutation at rs2074130 (protein product: Dock4-R853H), are associated with dyslexia and/or ASD with reading difficulties. The present study explores the molecular and cellular functions of these two DOCK4 variants on neuronal development, by comparing them with the wild-type Dock4 protein. Notably, it is revealed that both mutants of Dock4 showed decreased ability to activate not only Rac1, but also another small GTPase Rap1. Consistently, both mutants were dysfunctional for regulation of cell morphology and cytoskeleton. Using Neuro-2a cells and hippocampus neurons as models, we found that both mutants had compromised function in promoting neurite outgrowth and dendritic spine formation. Electrophysiological recordings further showed that R853H partially lost the ability to promote excitatory synaptic transmission, whereas 945VS totally lost the ability. Together, we identified R853 as a previously uncharacterized site for the regulation of the integrity of Dock4 function, and provides insights in understanding the common molecular pathophysiology of ASD and dyslexia.
Collapse
Affiliation(s)
- Miaoqi Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunmei Liang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shengnan Li
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Bo Zhao
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yuyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|