1
|
Stanojević M, Djuricic N, Parezanovic M, Biorac M, Pathak D, Spasic S, Lopicic S, Kovacevic S, Nesovic Ostojic J. The Impact of Chronic Magnesium Deficiency on Excitable Tissues-Translational Aspects. Biol Trace Elem Res 2025; 203:707-728. [PMID: 38709369 DOI: 10.1007/s12011-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Neuromuscular excitability is a vital body function, and Mg2+ is an essential regulatory cation for the function of excitable membranes. Loss of Mg2+ homeostasis disturbs fluxes of other cations across cell membranes, leading to pathophysiological electrogenesis, which can eventually cause vital threat to the patient. Chronic subclinical Mg2+ deficiency is an increasingly prevalent condition in the general population. It is associated with an elevated risk of cardiovascular, respiratory and neurological conditions and an increased mortality. Magnesium favours bronchodilation (by antagonizing Ca2+ channels on airway smooth muscle and inhibiting the release of endogenous bronchoconstrictors). Magnesium exerts antihypertensive effects by reducing peripheral vascular resistance (increasing endothelial NO and PgI2 release and inhibiting Ca2+ influx into vascular smooth muscle). Magnesium deficiency disturbs heart impulse generation and propagation by prolonging cell depolarization (due to Na+/K+ pump and Kir channel dysfunction) and dysregulating cardiac gap junctions, causing arrhythmias, while prolonged diastolic Ca2+ release (through leaky RyRs) disturbs cardiac excitation-contraction coupling, compromising diastolic relaxation and systolic contraction. In the brain, Mg2+ regulates the function of ion channels and neurotransmitters (blocks voltage-gated Ca2+ channel-mediated transmitter release, antagonizes NMDARs, activates GABAARs, suppresses nAChR ion current and modulates gap junction channels) and blocks ACh release at neuromuscular junctions. Magnesium exerts multiple therapeutic neuroactive effects (antiepileptic, antimigraine, analgesic, neuroprotective, antidepressant, anxiolytic, etc.). This review focuses on the effects of Mg2+ on excitable tissues in health and disease. As a natural membrane stabilizer, Mg2+ opposes the development of many conditions of hyperexcitability. Its beneficial recompensation and supplementation help treat hyperexcitability and should therefore be considered wherever needed.
Collapse
Affiliation(s)
- Marija Stanojević
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia.
| | - Nadezda Djuricic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Miro Parezanovic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
- Institute for Mother and Child Healthcare of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Marko Biorac
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Dhruba Pathak
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Svetolik Spasic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Srdjan Lopicic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Sanjin Kovacevic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- University of Belgrade, Faculty of Medicine, Institute for Pathological Physiology "Ljubodrag Buba Mihailović", 9, Dr Subotića Street, 11000, Belgrade, Serbia
| |
Collapse
|
2
|
Wang R, Yue C, Cong F, Lou Y, Liu Y, Xu C, Li X, Huang Y. A sustained-release gel alleviates neuropathic pain in SNI mice by reversing Glu/GABA imbalance and chloride efflux disorders. Int J Biol Macromol 2025; 286:138501. [PMID: 39647722 DOI: 10.1016/j.ijbiomac.2024.138501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Impaired spinal GABAergic inhibitory neuronal system is one popular target for developing new drugs or procedures for treatment of neuropathic pain, but effective and transferable methods are still lacking. We designed an assembled, temperature sensitive and sustained releasing hydrogel to repair the impaired GABAergic neural system by reversing imbalance of glutamic acid (Glu) and γ-aminobutyric acid (GABA) and healing impaired Cl- extrusion capacity of neurons. Hydrogel solution is a mixture of pluronic F-127, recombinant glutamate decarboxylase 67 (rGAD67) protein and CLP257, a K+-Cl- cotransporter isoform 2 (KCC2) enhancer. The temperature sensitive properties, gel properties and slow-releasing properties of the drug system were determined in vitro. After intrathecal injected in sural spared nerve injury mice model, the hydrogel solution turned into gel, capturing Glu and transforming it into GABA. CLP257 released from gel reversed the suppressed expression of KCC2 in spinal cord, maintaining a low intracellular Cl- concentration in neurons and allowing the normal work of GABA receptors. Combination of rGAD67 and CLP257 showed synergistic effects in alleviating hyperalgesia, altering glia activation, and inhibiting cell apoptosis and inflammatory response. In conclusion, the in situ assembled gel is a long-term effective tool for repairing damaged GABAergic inhibitory system and alleviating neuropathic pain.
Collapse
Affiliation(s)
- Ran Wang
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chunyan Yue
- Medical School and School of Life Science, Nanjing University, Nanjing 210008, China; Institute of Drug R&D, Medical School, Nanjing University, Nanjing 210008, China
| | - Feng Cong
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Anesthesiology, the People's Hospital of Rugao, Rugao, China
| | - Youpan Lou
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Yanan Liu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, China
| | - Chenjie Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Xihan Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| |
Collapse
|
3
|
Hausenblas HA, Lynch T, Hooper S, Shrestha A, Rosendale D, Gu J. Magnesium-L-threonate improves sleep quality and daytime functioning in adults with self-reported sleep problems: A randomized controlled trial. Sleep Med X 2024; 8:100121. [PMID: 39252819 PMCID: PMC11381753 DOI: 10.1016/j.sleepx.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Objective/Background Sleep problems challenge overall wellbeing. Magnesium has been implicated to benefit sleep, although the clinical evidences varied based on the magnesium source used. Magnesium L-threonate (MgT) is a promising intervention due to its brain bioavailability and effects on cognition, memory and mood. We investigated MgT supplementation on sleep quality and daily function. Patients/methods Eighty 35-55-year-olds with self-assessed sleep problems participated in a randomized, double-blind, placebo-controlled, parallel-arm study, taking 1 g/day of MgT or placebo for 21 days. Sleep and daily behaviors were measured subjectively using standardized questionnaires including the Insomnia Severity Index, Leeds Sleep Evaluation Questionnaire, and Restorative Sleep Questionnaire, and objectively using an Oura ring. The Profile of Mood States questionnaire and a daily diary were used to evaluate mood, energy and productivity, and record any safety concerns. Results The MgT group maintained good sleep quality and daytime functioning, while placebo declined. From objective Oura ring measurements, MgT significantly (p < 0.05) improved vs placebo deep sleep score, REM sleep score, light sleep time, and activity and readiness parameters activity score, activity daily movement score, readiness score, readiness activity balance, and readiness sleep balance. From subjective questionnaires, MgT significantly (p < 0.05) improved vs placebo behavior upon awakening, energy and daytime productivity, grouchiness, mood and mental alertness. MgT was safe and well tolerated. Conclusions This showed MgT improved sleep quality, especially deep/REM sleep stages, improved mood, energy, alertness, and daily activity and productivity. These are consistent with how MgT works in neuron cells and animal models, suggesting broader positive impacts on overall brain health.
Collapse
|
4
|
Liu Y, Ma J, Zhang Q, Wang Y, Sun Q. Mechanism of Metal Complexes in Alzheimer's Disease. Int J Mol Sci 2024; 25:11873. [PMID: 39595941 PMCID: PMC11593898 DOI: 10.3390/ijms252211873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a kind of neurodegenerative diseases characterized by beta-amyloid deposition and neurofibrillary tangles and is also the main cause of dementia. According to statistics, the incidence of AD is constantly increasing, bringing a great burden to individuals and society. Nonetheless, there is no cure for AD, and the available drugs are very limited apart from cholinesterase inhibitors and N-Methyl-D-aspartic acid (NMDA) antagonists, which merely alleviate symptoms without delaying the progression of the disease. Therefore, there is an urgent need to develop a medicine that can delay the progression of AD or cure it. In recent years, increasing evidence suggests that metal complexes have the enormous potential to treat AD through inhibiting the aggregation and cytotoxicity of Aβ, interfering with the congregation and hyperphosphorylation of tau, regulating dysfunctional synaptic and unbalanced neurotransmitters, etc. In this review, we summarize the current metal complexes and their mechanisms of action for treating AD, including ruthenium, platinum, zinc, vanadium, copper, magnesium, and other complexes.
Collapse
Affiliation(s)
- Yi Liu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Jiaying Ma
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (Y.L.); (J.M.)
| |
Collapse
|
5
|
Fernández M, Marín R, Ruette F. Antioxidant Activity of MgSO 4 Ion Pairs by Spin-Electron Stabilization of Hydroxyl Radicals through DFT Calculations: Biological Relevance. ACS OMEGA 2024; 9:36640-36647. [PMID: 39220510 PMCID: PMC11360028 DOI: 10.1021/acsomega.4c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Magnesium sulfate has been of great interest as an antioxidant for its ability to decrease the oxidizing capacity of the hydroxyl radical. Previously, it was shown that the contact ion pair of this salt could stabilize •OH by coordinating with Mg and delocalizing the unpaired electron over sulfate. The present study explores in detail the MgSO4 antioxidant properties, considering all its ion pairs with •OH in different conformations. The analyses were based on structural, spin, and energetic properties using the DFT approach. As a result, the high antioxidant potential of MgSO4 is related to the spin-electron transfer from SO4 -2 to •OH causing electron spin delocalization and electrostatic stabilization. This transfer occurs for all ion pairs when •OH approaches the Mg first solvation shell, without being coordinated to Mg. The direct Mg-•OH interaction further stabilizes the radical system. These results show that spin-electron transfers are feasible in all hydrated ion pairs MgSO4-•OH, even at a •OH-sulfate distance greater than 10 Å.
Collapse
Affiliation(s)
- Miguel Fernández
- Laboratorio
de Química Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas
(IVIC), Apartado Postal 21827, Caracas 1020A, Venezuela
| | - Reinaldo Marín
- Laboratorio
de Bioenergética Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas
(IVIC), Apartado Postal
21827, Caracas 1020A, Venezuela
| | - Fernando Ruette
- Laboratorio
de Química Computacional, Centro de Química, Instituto Venezolano de Investigaciones Científicas
(IVIC), Apartado Postal 21827, Caracas 1020A, Venezuela
| |
Collapse
|
6
|
Huang L, Lin R, Zhang C, Zheng S, Wang Y, Wu Z, Chen S, Shen Y, Zhang G, Qi Y, Lin L. The Neuroprotective and Anxiolytic Effects of Magnesium Sulfate on Retinal Dopaminergic Neurons in 6-OHDA-Induced Parkinsonian Rats: A Pilot Study. Brain Sci 2024; 14:861. [PMID: 39335357 PMCID: PMC11430011 DOI: 10.3390/brainsci14090861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the protective effects of magnesium sulfate on dopamine neurons in the retinas of rats with 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD). Rapidly progressing cognitive decline often precedes or coincides with the motor symptoms associated with PD. PD patients also frequently exhibit visual function abnormalities. However, the specific mechanisms underlying visual dysfunction in PD patients are not yet fully understood. Therefore, this study aims to investigate whether magnesium homeostasis affects dopaminergic neurons in the retina of PD rats. Thirty-six rats were divided into four groups: (1) control, (2) control with magnesium sulfate (control/MgSO4), (3) Parkinson's disease (PD), and (4) Parkinson's disease with magnesium sulfate (PD/MgSO4). The apomorphine-induced (APO) rotation test assessed the success of the PD models. The open-field experiment measured the rats' anxiety levels. Tyrosine hydroxylase (TH) and glutamate levels, indicators of dopamine neuron survival, were detected using immunofluorescence staining. Protein levels of solute carrier family 41 A1 (SCL41A1), magnesium transporter 1 (MagT1), and cyclin M2 (CNNM2) in the retina were analyzed using Western blot. Results showed that, compared to the PD group, rats in the PD/MgSO4 group had improved psychological states and motor performance at two and four weeks post-surgery. The PD/MgSO4 group also exhibited significantly higher TH fluorescence intensity in the left retinas and lower glutamate fluorescence intensity than the PD group. Additional experiments indicated that the protein levels of SLC41A1, MagT1, and CNNM2 were generally higher in the retinas of the PD/MgSO4 group, along with an increase in retinal magnesium ion content. This suggests that magnesium sulfate may reduce glutamate levels and protect dopamine neurons in the retina. Thus, magnesium sulfate might have therapeutic potential for visual functional impairments in PD patients.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| | - Renxi Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
- Experimental Teaching Center of Basic Medicine, Fujian Medical University, Fuzhou 350122, China
| | - Chunying Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Shaoqing Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Yiyang Wang
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Zeyu Wu
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Sihao Chen
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Yihan Shen
- School of Clinical Medicine, Fujian Medical University, Fuzhou 350122, China; (S.Z.); (Y.W.); (Z.W.); (S.C.); (Y.S.)
| | - Guoheng Zhang
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Yuanlin Qi
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
| | - Ling Lin
- Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350122, China; (L.H.); (R.L.); (C.Z.); (G.Z.); (Y.Q.)
- Key Laboratory of Brain Aging and Neurodegenerative Disease, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
7
|
Cibulka M, Brodnanova M, Halasova E, Kurca E, Kolisek M, Grofik M. The Role of Magnesium in Parkinson's Disease: Status Quo and Implications for Future Research. Int J Mol Sci 2024; 25:8425. [PMID: 39125993 PMCID: PMC11312984 DOI: 10.3390/ijms25158425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases represent an increasing economic, social, and, above all, medical burden worldwide. The second most prevalent disease in this category is Parkinson's disease, surpassed only by Alzheimer's. It is a treatable but still incurable systemic disease with a pathogenesis that has not yet been elucidated. Several theories are currently being developed to explain the causes and progression of Parkinson's disease. Magnesium is one of the essential macronutrients and is absolutely necessary for life as we know it. The magnesium cation performs several important functions in the cell in the context of energetic metabolism, substrate metabolism, cell signalling, and the regulation of the homeostasis of other ions. Several of these cellular processes have been simultaneously described as being disrupted in the development and progression of Parkinson's disease. The relationship between magnesium homeostasis and the pathogenesis of Parkinson's disease has received little scientific attention to date. The aim of this review is to summarise and critically evaluate the current state of knowledge on the possible role of magnesium in the pathogenesis of Parkinson's disease and to outline possible future directions for research in this area.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.C.); (M.B.); (E.H.)
| | - Milan Grofik
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| |
Collapse
|
8
|
Kaufman MW, DeParis S, Oppezzo M, Mah C, Roche M, Frehlich L, Fredericson M. Nutritional Supplements for Healthy Aging: A Critical Analysis Review. Am J Lifestyle Med 2024:15598276241244725. [PMID: 39554957 PMCID: PMC11562224 DOI: 10.1177/15598276241244725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background: Healthy aging is defined as survival to advanced age while retaining autonomy in activities of daily living, high societal participation, and good quality of life. Sarcopenia, insomnia, cognitive impairment, and changes in sensation can be key hinderances to healthy aging, but nutritional supplements may abate their impact. As research advances, an updated review on their efficacy on age-related conditions is warranted. Results: Sarcopenia can be mitigated through proper protein intake, supplements like creatine, and in certain situations Branched-Chain Amino Acids and Vitamin D, in adults over 65. Melatonin supplementation has moderate evidence for improving sleep, while valerian root lacks evidence. Magnesium, tart cherry, and kiwifruits have shown promising impacts on sleep in limited articles. Magnesium, Vitamin D, and B vitamin supplementation have been shown to improve cognition in those with mild cognitive impairment and Alzheimer's disease but require further study prior to recommendation. The Age-Related Eye Disease Study supplement combination is routinely recommended to reduce risk of progression to advance stages of age-related macular degeneration. Alpha-Lipoic Acid and Folate have been investigated for their roles in mitigating age-related hearing losses. Conclusions: Nutritional supplements and lifestyle changes may mitigate disabilities across multiple domains of age-related illnesses and promote healthy aging.
Collapse
Affiliation(s)
- Matthew W. Kaufman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA (MK, MR, MF)
- Stanford Lifestyle Medicine, Redwood City, CA, USA (MK, MO, MR, LF, MF)
| | - Sarah DeParis
- Department of Ophthalmology, The Permanente Medical Group, San Rafael, CA, USA (SD)
| | - Marily Oppezzo
- Stanford Lifestyle Medicine, Redwood City, CA, USA (MK, MO, MR, LF, MF)
- Prevention Research Center, Stanford University, Redwood City, CA, USA (MO)
| | - Cheri Mah
- Department of Psychiatry and Behavioral Sciences, Stanford Sleep Medicine Center, Stanford University, Redwood City, CA, USA (CM)
| | - Megan Roche
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA (MK, MR, MF)
- Stanford Lifestyle Medicine, Redwood City, CA, USA (MK, MO, MR, LF, MF)
| | - Levi Frehlich
- Stanford Lifestyle Medicine, Redwood City, CA, USA (MK, MO, MR, LF, MF)
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada (LF)
| | - Michael Fredericson
- Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA (MK, MR, MF)
- Stanford Lifestyle Medicine, Redwood City, CA, USA (MK, MO, MR, LF, MF)
| |
Collapse
|
9
|
Song B, Jiang M, Zhang Y, Xu Y, Wu C, Wu D, Zhou C, Li M, Ji X. Research hotpots and frontier trends of neuroprotective effects of magnesium from 1999 to 2023: A bibliometric analysis. CNS Neurosci Ther 2024; 30:e14597. [PMID: 38332558 PMCID: PMC10853652 DOI: 10.1111/cns.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND The neuroprotective effect of magnesium has been widely discussed, and its effectiveness has been confirmed by animal and clinical trials. However, there are still difficulties in clinical translation in diseases such as cerebral ischemia and subarachnoid hemorrhage. Therefore, it is necessary to analyze the literatures about neuroprotection of magnesium to reveal a more comprehensive knowledge framework, research hotspots and trends in the future. METHODS Original articles and reviews related to neuroprotective effects of magnesium from 1999 to 2022 were retrieved from the Web of Science Core Collection (WoSCC). The bibliometrics CiteSpace 6.2.R4 software was used to conduct co-occurrence/co-citation network analysis and plot knowledge visualization maps. RESULTS A total of 762 articles from 216 institutions in 64 countries were included in this study. The United States had the largest number of publications, followed by China and Canada. The University of California, UDICE-French Research Universities, and the University of Adelaide were the top three institutions in publication volume. Crowther Caroline A was the most published and cited author. Among the top 10 cited articles, there were seven articles on neuroprotection in preterm infants and three on acute stroke. Keyword cluster analysis obtained 11 clusters, showing that current research hotspots focused on magnesium therapy in neurovascular diseases such as cerebral ischemia, spinal cord injury, subarachnoid hemorrhage, and emerging treatment strategies. CONCLUSION The neuroprotective effects of magnesium in preterm infants have been extensively studied and adequately confirmed. The therapeutic effects of magnesium on cerebral ischemia and subarachnoid hemorrhage have been demonstrated in animal models. However, the results of clinical studies were not satisfactory, and exploring new therapeutic strategies may be the solution. Recently, the combination of magnesium and hypothermia had great potential in neuroprotective therapy and may become a development trend and hotspot in the future.
Collapse
Affiliation(s)
- Baoying Song
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Miaowen Jiang
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Yang Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yi Xu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chuanjie Wu
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Di Wu
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Chen Zhou
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| | - Ming Li
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- China‐America Institute of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
11
|
Sachan N, Tiwari N, Patel DK, Katiyar D, Srikrishna S, Singh MP. Dyshomeostasis of Iron and Its Transporter Proteins in Cypermethrin-Induced Parkinson's Disease. Mol Neurobiol 2023; 60:5838-5852. [PMID: 37351784 DOI: 10.1007/s12035-023-03436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The etiology of Parkinson's disease (PD) is highly complex and is still indefinable. However, a number of studies have indicated the involvement of pesticides and transition metals. Copper, magnesium, iron, and zinc have emerged as important metal contributors. Exposure to pesticides causes an accumulation of transition metals in the substantia nigra (SN) region of the brain. The cypermethrin model of PD is characterized by mitochondrial dysfunction, autophagy impairment, oxidative stress, etc. However, the effect of cypermethrin on metal homeostasis is not yet explored. The study was designed to delineate the role of metals and their transporter proteins in cypermethrin-induced animal and cellular models of PD. The level of copper, magnesium, iron, and zinc was checked in the nigrostriatal tissue and serum by atomic absorption spectroscopy. Since cypermethrin consistently increased iron content in the nigrostriatal tissue and serum after 12 weeks of exposure, the level of iron transporter proteins, such as divalent metal transporter-1 (DMT-1), ceruloplasmin, transferrin, ferroportin, and hepcidin, and their in silico interaction with cypermethrin were checked. 3,3'-Diaminobenzidine-enhanced Perl's staining showed an elevated number of iron-positive cells in the SN of cypermethrin-treated rats. Molecular docking studies revealed a strong binding affinity between cypermethrin and iron transporter protein receptors of humans and rats. Furthermore, cypermethrin increased the expression of DMT-1 and hepcidin while reducing the expression of transferrin, ceruloplasmin, and ferroportin in the nigrostriatal tissue and human neuroblastoma cells. These observations suggest that cypermethrin alters the expression of iron transporter proteins leading to iron dyshomeostasis, which could contribute to dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Nidhi Sachan
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Neha Tiwari
- Department of Chemistry, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, 221 005, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Diksha Katiyar
- Department of Chemistry, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, 221 005, Uttar Pradesh, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, Uttar Pradesh, India.
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
12
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
13
|
Mathew AA, Mohapatra S, Panonnummal R. Formulation and evaluation of magnesium sulphate nanoparticles for improved CNS penetrability. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:567-576. [PMID: 36474021 DOI: 10.1007/s00210-022-02356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Magnesium (Mg2+) is the fourth most abundant cation in the human body and is involved in maintaining varieties of cellular and neurological functions. Magnesium deficiency has been associated with numerous diseases, particularly neurological disorders, and its supplementation has proven beneficial. However, magnesium therapy in neurological diseases is limited because of the inability of magnesium to cross the blood-brain barrier (BBB). The present study focuses on developing magnesium sulphate nanoparticles (MGSN) to improve blood-brain barrier permeability. MGSN was prepared by precipitation technique with probe sonication. The developed formulation was characterized by DLS, EDAX, FT-IR and quantitative and qualitative estimation of magnesium. According to the DLS report, the average size of the prepared MGSN is found to be 247 nm. The haemocompatibility assay studies revealed that the prepared MGSN are biocompatible at different concentrations. The in vitro BBB permeability assay conducted by Parallel Artificial Membrane Permeability Assay (PAMPA) using rat brain tissue revealed that the prepared MGSN exhibited enhanced BBB permeability as compared to the marketed i.v. MgSO4 injection. The reversal effect of MGSN to digoxin-induced Na+/K+ ATPase enzyme inhibition using brain microslices confirmed that MGSN could attenuate the altered levels of Na+ and K+ and is useful in treating neurological diseases with altered expression of Na+/K+ ATPase activity.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sudeshna Mohapatra
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
14
|
Intramolecular interactions (O-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π) in isomers of neutral, cation, and anion dopamine molecules: A DFT study on the influence of solvents (water and ethanol). J Mol Model 2023; 29:67. [PMID: 36773132 DOI: 10.1007/s00894-023-05466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
CONTEXT Dopamine (DA) is one of the most important neurotransmitters associated with numerous neural disorders. This investigation reports the intramolecular interactions present in the isomers of neutral (DA0), anionic (DA-), and cationic (DA+) dopamine isomers in gas, water, and ethanol mediums. Neutral and anion isomers have O-H∙∙∙O, C-H∙∙∙N intramolecular hydrogen bonds and N-H∙∙∙π interactions. All the interactions are electrostatic in nature. Isomers of cation dopamine show no intramolecular interactions in the solvent. Natural charges from natural bond orbital (NBO) analysis show that O-H∙∙∙O bonds and the N-H∙∙∙π interactions are the most and least polar, respectively. 1H NMR study reveals the inverse linear correlation between shielding constant and electron density in a solvent medium. HOMO-LUMO energy gap indicates higher stability for neutral and cationic forms of dopamine isomers in water and ethanol medium. METHODS We have optimized all the structural forms of dopamine molecule using the Becke three hybrid exchange and Lee-Yang-Parr correlation functional with Grimme's dispersion correction, B3LYP-D3(BJ), and aug-cc-pVTZ basis set using the Gaussian16 software. Vibrational frequency analysis with no imaginary frequencies confirms the nature of global minima. The solvent studies (water and ethanol) were carried out using the SCRF keyword and the polarisable continuum model (PCM) of Miertus and Tomasi. NBO analysis and NMR studies were also performed for all conformers. Topology analysis was explored using the software Multiwfn.
Collapse
|
15
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
16
|
Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 24:ijms24010223. [PMID: 36613667 PMCID: PMC9820677 DOI: 10.3390/ijms24010223] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.
Collapse
|
17
|
Mathew AA, Panonnummal R. A Mini Review on the Various Facets Effecting Brain Delivery of Magnesium and Its Role in Neurological Disorders. Biol Trace Elem Res 2022:10.1007/s12011-022-03517-8. [PMID: 36534337 DOI: 10.1007/s12011-022-03517-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Magnesium is an essential cation present in the body that participates in the regulation of various vital body functions. Maintaining normal level of magnesium is essential for proper brain functions by regulating the activities of numerous neurotransmitters and their receptors. Various studies have been reported that magnesium level is found to be declined in both neurological and psychiatric diseases. Declined magnesium level in the brain initiates various cumbersome effects like excitotoxicity, altered blood-brain permeability, oxidative stress, and inflammation, which may further worsen the disease condition. Shreds of evidence from the experimental and clinical studies proved that exogenous administration of magnesium is useful for correcting disease-induced alterations in the brain. But one of the major limiting factors in the use of magnesium for treatment purposes is its poor blood-brain barrier permeability. Various approaches like the administration of its organic salts as pidolate and threonate forms, and the combination with polyethylene glycol or mannitol have been tried to improve its permeability to make magnesium as a suitable drug for different neurological disorders. These results have shown their experimental efficacy in diseased animal models, but studies regarding the safety and efficacy in human subjects are currently underway. We present a comprehensive review on the role of magnesium in the maintenance of normal functioning of the brain and various approaches for improving its BBB permeability.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
18
|
Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, Ye XY, Xie T, Bai R. Discovery of small-molecule compounds and natural products against Parkinson's disease: Pathological mechanism and structural modification. Eur J Med Chem 2022; 237:114378. [DOI: 10.1016/j.ejmech.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
|
19
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
20
|
Du K, Zheng X, Ma ZT, Lv JY, Jiang WJ, Liu MY. Association of Circulating Magnesium Levels in Patients With Alzheimer's Disease From 1991 to 2021: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 13:799824. [PMID: 35082658 PMCID: PMC8784804 DOI: 10.3389/fnagi.2021.799824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) remains a medical and social challenge worldwide. Magnesium (Mg) is one of the most frequently evaluated essential minerals with diverse biological functions in human body. However, the association between circulating Mg levels and AD remains controversial. We conducted a meta-analysis of 21 studies published between 1991 and 2021 to determine whether the Mg levels in the blood and cerebrospinal fluid (CSF) are abnormal in AD. Literatures were searched in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang Data without language limitations. A pooled subject sample including 1,112 AD patients and 1,001 healthy controls (HCs) was available to assess Mg levels in serum and plasma; 284 AD patients and 117 HCs were included for Mg levels in CSF. It was found that serum and plasma levels of Mg were significantly reduced in AD patients compared with HCs (standardized mean difference [SMD] = -0.89; 95% confidence interval [CI] [-1.36, -0.43]; P = 0.000). There was statistically non-significant for Mg level in CSF between AD and HCs, whereas a decreased tendency were detected (SMD = -0.16; 95% CI [-0.50, 0.18]; P = 0.364). .In addition, when we analyzed the Mg levels of serum, plasma and CSF together, the circulating Mg levels in AD patients was significantly lower (SMD = -0.74, 95% CI [-1.13; -0.35]; P = 0.000). These results indicate that Mg deficiency may be a risk factor of AD and Mg supplementation may be a potentially valuable adjunctive treatment for AD. Systematic Review Registration: www.crd.york.ac.uk/PROSPERO/, registration number CRD42021254557.
Collapse
Affiliation(s)
- Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xi Zheng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zi-Tai Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jun-Ya Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wen-Juan Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Treatment Options for Motor and Non-Motor Symptoms of Parkinson's Disease. Biomolecules 2021; 11:biom11040612. [PMID: 33924103 PMCID: PMC8074325 DOI: 10.3390/biom11040612] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) usually presents in older adults and typically has both motor and non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopaminergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is an integrative medicine and health strategy that highlights five treatment options for people with Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins following the diagnosis and throughout any additional treatment processes, especially vis-à-vis consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine agonist, compounds that preserve residual dopamine, and other specific motor/non-motor-related compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective. Maintenance uses complementary and alternative medicine substances that potentially support and protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to achieve stability with neuroprotection. The ultimate goal of any management program is to improve the quality-of-life for a person with Parkinson’s disease.
Collapse
|
22
|
Neuroprotective effect of magnesium supplementation on cerebral ischemic diseases. Life Sci 2021; 272:119257. [PMID: 33631176 DOI: 10.1016/j.lfs.2021.119257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Ischemic encephalopathy is associated with a high mortality and rate of disability. The most common type of ischemic encephalopathy, ischemic stroke, is the second leading cause of death in the world. At present, the main treatment for ischemic stroke is to reopen blocked blood vessels. However, despite revascularization, many patients are not able to achieve good functional results. At the same time, the strict time window (<4.5 h) of thrombolytic therapy limits clinical application. Therefore, it is important to explore effective neuroprotective drugs for the treatment of ischemic stroke. Magnesium is a natural calcium antagonist, which exerts neuroprotective effects through various mechanisms. However, while most basic studies have shown that magnesium supplementation can help treat cerebral ischemia, intravenous magnesium supplementation in large clinical trials has failed to improve prognosis of ischemic patients. Therefore, we review the basic and clinical studies of magnesium supplementation for cerebral ischemia. According to the route of administration, treatment can be divided into intraperitoneal magnesium supplementation, intravenous magnesium supplementation, arterial magnesium supplementation and intracranial magnesium supplementation. We also summarized the potential influencing factors of magnesium ion intervention in cerebral ischemia injury. Finally, in combination with influencing factors derived from basic research, this article proposes three future research directions, including magnesium supplementation into the circulatory system combined with magnesium supplementation in the lateral ventricle, magnesium supplementation in the lateral ventricle combined with hypothermia therapy, and lateral ventricle magnesium supplementation combined with intracarotid magnesium supplementation combined with selective hypothermia.
Collapse
|
23
|
Mathew AA, Panonnummal R. 'Magnesium'-the master cation-as a drug-possibilities and evidences. Biometals 2021; 34:955-986. [PMID: 34213669 PMCID: PMC8249833 DOI: 10.1007/s10534-021-00328-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
Magnesium (Mg2+) is the 2nd most abundant intracellular cation, which participates in various enzymatic reactions; there by regulating vital biological functions. Magnesium (Mg2+) can regulate several cations, including sodium, potassium, and calcium; it consequently maintains physiological functions like impulse conduction, blood pressure, heart rhythm, and muscle contraction. But, it doesn't get much attention in account with its functions, making it a "Forgotten cation". Like other cations, maintenance of the normal physiological level of Mg2+ is important. Its deficiency is associated with various diseases, which point out to the importance of Mg2+ as a drug. The roles of Mg2+ such as natural calcium antagonist, glutamate NMDA receptor blocker, vasodilator, antioxidant and anti-inflammatory agent are responsible for its therapeutic benefits. Various salts of Mg2+ are currently in clinical use, but their application is limited. This review collates all the possible mechanisms behind the behavior of magnesium as a drug at different disease conditions with clinical shreds of evidence.
Collapse
Affiliation(s)
- Aparna Ann Mathew
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita VishwaVidyapeetham, Kochi, 682041, India.
| |
Collapse
|
24
|
Inhibition of Mg 2+ Extrusion Attenuates Glutamate Excitotoxicity in Cultured Rat Hippocampal Neurons. Nutrients 2020; 12:nu12092768. [PMID: 32927908 PMCID: PMC7551965 DOI: 10.3390/nu12092768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Magnesium plays important roles in the nervous system. An increase in the Mg2+ concentration in cerebrospinal fluid enhances neural functions, while Mg2+ deficiency is implicated in neuronal diseases in the central nervous system. We have previously demonstrated that high concentrations of glutamate induce excitotoxicity and elicit a transient increase in the intracellular concentration of Mg2+ due to the release of Mg2+ from mitochondria, followed by a decrease to below steady-state levels. Since Mg2+ deficiency is involved in neuronal diseases, this decrease presumably affects neuronal survival under excitotoxic conditions. However, the mechanism of the Mg2+ decrease and its effect on the excitotoxicity process have not been elucidated. In this study, we demonstrated that inhibitors of Mg2+ extrusion, quinidine and amiloride, attenuated glutamate excitotoxicity in cultured rat hippocampal neurons. A toxic concentration of glutamate induced both Mg2+ release from mitochondria and Mg2+ extrusion from cytosol, and both quinidine and amiloride suppressed only the extrusion. This resulted in the maintenance of a higher Mg2+ concentration in the cytosol than under steady-state conditions during the ten-minute exposure to glutamate. These inhibitors also attenuated the glutamate-induced depression of cellular energy metabolism. Our data indicate the importance of Mg2+ regulation in neuronal survival under excitotoxicity.
Collapse
|
25
|
|
26
|
Shen Y, Lu H, Xu R, Tian H, Xia X, Zhou FH, Wang L, Dong J, Sun L. The Expression of GLAST and GLT1 in a Transient Cerebral Ischemia Mongolian Gerbil Model. Neuropsychiatr Dis Treat 2020; 16:789-800. [PMID: 32280223 PMCID: PMC7125407 DOI: 10.2147/ndt.s238455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Excitatory amino acid transporters (EAATs) have an indispensable function in the reuptake of extracellular glutamate. To investigate the relationship and the expression of neuronal and astrocytic markers after brain ischemia, the temporal profile of glial EAATs in both peripheral and core regions of the cortex was examined. METHODS Transient common carotid artery occlusion was used to induce unilateral transient forebrain ischemia of Mongolian gerbils, and post-ischemic brains (6 h to 2 w) were collected and prepared for immunohistochemical and Western blotting analysis of glutamine synthetase (GS), GLT-1, GLAST, S100β, and NeuN, and for Alizarin red staining of calcium deposits. RESULTS The expression of GLAST and GLT-1 were significantly escalated at 6 h both in the core and periphery regions, while reduced from 12 h to 2 w in the core region post-ischemia. GS-positive cells increased at 6 h both in the core and periphery regions, while the density of Alizarin red-positive cells increased and peaked at 12 h in the ischemic cortex. The density of S100β-positive cells decreased in the ischemic core and increased in the periphery region. Immunofluorescence staining showed that S100β and TUNEL double-positive cells increased at 12 h in the core region. CONCLUSION The results of GLT-1 and GLAST expression in the cortex indicate that their up-regulation was time-dependent and occurred in the acute post-ischemia period, whereas their down-regulation was region-dependent and it is involved in the pathological progress of nerve cell and glial cell death, and has a series of cascade reactions.
Collapse
Affiliation(s)
- Yanling Shen
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China.,Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, Fujian 361000, People's Republic of China
| | - Huiling Lu
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Runnan Xu
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Haibo Tian
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Xuewei Xia
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| | - Fiona H Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Liping Wang
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, People's Republic of China
| | - Liyuan Sun
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|