1
|
Cepeda Y, Elizondo-Vega R, Garrido C, Tobar C, Araneda M, Oliveros P, Ordenes P, Carril C, Vidal PM, Luz-Crawford P, García-Robles MA, Oyarce K. Regulatory T cells administration reduces anxiety-like behavior in mice submitted to chronic restraint stress. Front Cell Neurosci 2024; 18:1406832. [PMID: 39206016 PMCID: PMC11349540 DOI: 10.3389/fncel.2024.1406832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Background Major depression disorder (MDD) and anxiety are common mental disorders that significantly affect the quality of life of those who suffer from them, altering the person's normal functioning. From the biological perspective, the most classical hypothesis explaining their occurrence relies on neurotransmission and hippocampal excitability alterations. However, around 30% of MDD patients do not respond to medication targeting these processes. Over the last decade, the involvement of inflammatory responses in depression and anxiety pathogenesis has been strongly acknowledged, opening the possibility of tackling these disorders from an immunological point of view. In this context, regulatory T cells (Treg cells), which naturally maintain immune homeostasis by suppressing inflammation could be promising candidates for their therapeutic use in mental disorders. Methods To test this hypothesis, C57BL/6 adult male mice were submitted to classical stress protocols to induce depressive and anxiety-like behavior; chronic restriction stress (CRS), and chronic unpredictable stress (CUS). Some of the stressed mice received a single adoptive transfer of Treg cells during stress protocols. Mouse behavior was analyzed through the open field (OFT) and forced swim test (FST). Blood and spleen samples were collected for T cell analysis using cell cytometry, while brains were collected to study changes in microglia by immunohistochemistry. Results Mice submitted to CRS and CUS develop anxiety and depressive-like behavior, and only CRS mice exhibit lower frequencies of circulating Treg cells. Adoptive transfer of Treg cells decreased anxiety-like behavior in the OFT only in CRS model, but not depressive behavior in FST in neither of the two models. In CRS mice, Treg cells administration lowered the number of microglia in the hippocampus, which increased due this stress paradigm, and restored its arborization. However, in CUS mice, Treg cells administration increased microglia number with no significant effect on their arborization. Conclusion Our results for effector CD4+ T cells in the spleen and microglia number and morphology in the hippocampus add new evidence in favor of the participation of inflammatory responses in the development of depressive and anxiety-like behavior and suggest that the modulation of key immune cells such as Treg cells, could have beneficial effects on these disorders.
Collapse
Affiliation(s)
- Yamila Cepeda
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Camila Garrido
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Catalina Tobar
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Matías Araneda
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Patricia Oliveros
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Patricio Ordenes
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Claudio Carril
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| | - Pía M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Patricia Luz-Crawford
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María. A. García-Robles
- Laboratorio de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Concepción, Concepción, Chile
| |
Collapse
|
2
|
Jingya L, Song L, Lu L, Zhang Q, Zhang W. Effect of Shenqi Jieyu formula on inflammatory response pathway in hippocampus of postpartum depression rats. Heliyon 2024; 10:e29978. [PMID: 38726147 PMCID: PMC11078882 DOI: 10.1016/j.heliyon.2024.e29978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aim To investigate whether SJF functions in similar manner as the key substance in the inflammatory process, soluble epoxide hydrolase (sEH) inhibitor, to inhibit the arachidonic acid metabolic pathway and nuclear factor kappa-B(NF-κB) signal path in the hippocampi of postpartum depression rats. Methods The rats were subcutaneous injected estradiol benzoate and progesterone to build PPD rat model. SJF, paroxetine hydrochloride and sEH inhibitor (AUDA) were used to treat PPD rats for 3 weeks. Then the morphological changes of hippocampi and various proteins were observed after that behavioral test were conducted in all 36 SD rats in six group: SJF, paroxetine, AUDA, PPD, sham and normal group. Results Weight, results of sucrose preference, upright times, total and center squares crossing decreased significantly (P < 0.01), whereas immobility time increased (P < 0.01). Results above were reversed in animals that in the SJF, paroxetine and AUDA groups. Hippocampal neurons in PPD rats partially degenerated with narrowed nuclei, increased autophagy and mitochondria bound to lysosomes were visible while the autophagy of hippocampal neurons in the paroxetine and AUDA group decreased, with a small amount of lysosomes. sEH, COX-2, 5-LOX, TNF-α, IL-1, IL-6, NF-κB p65, and Cor increased in hippocampi of PPD rats while EETs and 5-HT decreased. Protein expressions of Ibal, GFAP, p-IκBα, p65, and p-p65(S536)increased in PPD animals. Those changes were reversed by SJF, paroxetine and AUDA. Gene expressions of TNF-α, IL-1β, IL-6, 5-LOX, COX-2 and p65 increased in PPD rats and the changes of expression in these genes were reversed by paroxetine and AUDA. SJF reversed the gene expression changes of COX-2, TNF-α, and IL-1β. Conclusion SJF may have an analogous effect as sEH inhibitor to relieve depressive symptoms by suppressing inflammatory signaling pathways in hippocampi of PPD rats, which involves AA metabolic pathway and NF-κB signal pathway.
Collapse
Affiliation(s)
- Li Jingya
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Lu Lu
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong, PR China
| | - Qing Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| | - Weijun Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University(Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang, 310000, PR China
| |
Collapse
|
3
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
4
|
Duan L, Song L, Qiu C, Li J. Effect of the sEH inhibitor AUDA on arachidonic acid metabolism and NF-κB signaling of rats with postpartum depression-like behavior. J Neuroimmunol 2023; 385:578250. [PMID: 38029646 DOI: 10.1016/j.jneuroim.2023.578250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To investigate whether sEH inhibitor AUDA can mitigate postpartum depression (PPD)-like symptoms in the rat model and regulate the AA/NF-κB pathway to suppress the inflammatory response in the prefrontal lobes of PPD rats. METHODS Five groups of Sprague Dawley rats were used: normal, sham operated, PPD model, AUDA, and paroxetine hydrochloride. During the 21-day treatment period, animals in all groups underwent assessments (open field test, forced swimming test, and sucrose consumption) for depression-like behavior. At the conclusion of the treatment period, animals in all study groups were euthanized and various proteins in the prefrontal lobes were measured. RESULTS Depression-like behavior in rats was attenuated by AUDA. In the prefrontal lobes of PPD rats, levels of 5-LOX, COX-2, sEH, IL-1β, IL- 6, p65, p-p65, P-IκBα, NF-κB p65, and GFAP were increased while levels of epoxyeicosatrienoic acids and 5-HT were decreased. AUDA reversed these changes, thus having a similar effect as the classic antidepressant paroxetine hydrochloride. CONCLUSION AUDA may constrain AA/NF-κB in the prefrontal cortex of PPD rats, thus inhibiting the inflammatory response and ultimately attenuating postpartum depression-like behavior.
Collapse
Affiliation(s)
- Liqin Duan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Linhong Song
- Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, Shandong Province, PR China
| | - Chao Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
5
|
Gao X, Tang Y, Kong L, Fan Y, Wang C, Wang R. Treg cell: Critical role of regulatory T-cells in depression. Pharmacol Res 2023; 195:106893. [PMID: 37611836 DOI: 10.1016/j.phrs.2023.106893] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Depression is a highly prevalent disorder of the central nervous system. The neuropsychiatric symptoms of clinical depression are persistent and include fatigue, anorexia, weight loss, altered sleep patterns, hyperalgesia, melancholia, anxiety, and impaired social behaviours. Mounting evidences suggest that neuroinflammation triggers dysregulated cellular immunity and increases susceptibility to psychiatric diseases. Neuroimmune responses have transformed the clinical approach to depression because of their roles in its pathophysiology and their therapeutic potential. In particular, activated regulatory T (Treg) cells play an increasingly evident role in the inflammatory immune response. In this review, we summarized the available data and discussed in depth the fundamental roles of Tregs in the pathogenesis of depression, as well as the clinical therapeutic potential of Tregs. We aimed to provide recent information regarding the potential of Tregs as immune-modulating biologics for the treatment and prevention of long-term neuropsychiatric symptoms of depression.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yuru Tang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, 26600 Qingdao, Shandong Province, China
| | - Lingli Kong
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Yong Fan
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China
| | - Chunxia Wang
- Department of Geriatrics, Qingdao Mental Health Center, 26600 Qingdao, Shandong Province, China.
| | - Rui Wang
- Department of Pain Management, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 26600 Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
7
|
Wang WK, Zhou Y, Fan L, Sun Y, Ge F, Xue M. The antidepressant-like effects of Danggui Buxue Decoction in GK rats by activating CREB/BDNF/TrkB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 89:153600. [PMID: 34130073 DOI: 10.1016/j.phymed.2021.153600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND High rates of co-morbidity have been reported in patients with diabetes mellitus with depression (DD). Danggui Buxue Decoction (DBD), a Traditional Chinese Medicine formula composed of Angelica and Astragalus, has been historically used for the treatment of diabetes. PURPOSE This study aimed to investigated whether DBD and its main active component, ferulic acid (FA) from Angelica, could ameliorate depression-like behavior in DD and the underlying mechanisms. METHODS Goto-Kakizaki (GK) rats were administered DBD (4 or 8 g/kg) by oral gavage during a 4-week period of chronic unpredictable mild stress. After 4 weeks, blood glucose, glycated serum protein, serum insulin, oral glucose tolerance and depression-like behavior were examined, along with brain-derived neurotrophic factor (BDNF)-related signaling pathway proteins and the ultrastructure of hippocampal tissues. UPLC-QTOF-MS was adopted to detect the absorption of FA in the serum and hippocampus. Rat primary hippocampal cells were cultured in a DD model. Protein and mRNA levels of genes involved in BDNF-related signaling and neuroplasticity were analyzed. RESULTS DBD effectively improved glucose tolerance in DD rats and relieved depression-like behavior. Upregulation of cAMP response element binding protein (CREB), BDNF, and tropomyosin receptor kinase B (TrkB) and improvement of the hippocampal neuron ultrastructure supported the antidepressant-Like effects of DBD on the hippocampal neurons. In addition, DBD enhanced the protein and mRNA levels of components of the CREB/BDNF/TrkB pathway in rat primary hippocampal cells induced by elevated glycemia and cortisol. Interestingly, FA, the main component of DBD absorbed in the blood and hippocampus, showed similar effects as DBD on primary hippocampal cells. CONCLUSION This study suggests that the TCM formula DBD effectively serves as a potential therapeutic agent for prevention of DD through regulatory effects on the CREB/BDNF/TrkB pathway to protect and remodel hippocampal neurons. Moreover, FA contributes significantly to the treatment effects of DBD.
Collapse
Affiliation(s)
- Wen-Kai Wang
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Yuan Zhou
- School of Medicine•Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 138 Xianlin Rd, Nanjing, China
| | - Lu Fan
- School of Medicine•Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 138 Xianlin Rd, Nanjing, China
| | - Yue Sun
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Fan Ge
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China
| | - Mei Xue
- College of Traditional Chinese Medicine•College of Intergrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, China.
| |
Collapse
|
8
|
Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network. Pharmaceuticals (Basel) 2021; 14:ph14010065. [PMID: 33466877 PMCID: PMC7830381 DOI: 10.3390/ph14010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, immunological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medications for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed. Furthermore, we discuss the crosstalk of these two biological systems and the systems pharmacology approach for understanding the system-wide mechanism of action of CHM on the neuroendocrine-immune network in depression treatment. The holistic, multidrug, and multitarget nature of CHM represents an excellent example of systems medicine in the effective treatment of depression.
Collapse
|
9
|
Sluiter F, Incollingo Rodriguez AC, Nephew BC, Cali R, Murgatroyd C, Santos HP. Pregnancy associated epigenetic markers of inflammation predict depression and anxiety symptoms in response to discrimination. Neurobiol Stress 2020; 13:100273. [PMID: 33344726 PMCID: PMC7739167 DOI: 10.1016/j.ynstr.2020.100273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Latina mothers, who have one of the highest fertility rates among ethnic groups in the United States (US), often experience discrimination. Psychosocial influences during pregnancy, such as discrimination stress, promotes inflammation. However, the role of epigenetic markers of inflammation as a mediator between, and predictor of, maternal discrimination stress and neuropsychiatric outcomes has not been extensively studied. The current study investigates the role of DNA methylation at FOXP3 Treg-cell-specific demethylated region (TSDR), as a marker of regulatory T (Treg) cells that are important negative regulators of inflammation, and the promoter of tumour necrosis factor-alpha (TNF-α) gene, an important pro-inflammatory cytokine, in relation to discrimination stress during pregnancy and depression and anxiety symptomatology. A sample of 148 Latina women residing in the US (mean age 27.6 years) were assessed prenatally at 24–32 weeks’ gestation and 4–6 weeks postnatally for perceived discrimination exposure (Everyday Discrimination Scale, EDS), emotional distress (depression, anxiety, perinatal-specific depression), acculturation, and acculturative stress. DNA methylation levels at the FOXP3 and TNFα promoter regions from blood samples collected at the prenatal stage were assessed by bisulphite pyrosequencing. Regression analyses showed that prenatal EDS associated with postnatal emotional distress, depression and anxiety symptoms only in those individuals with higher than mean levels of FOXP3 TSDR and TNFα promoter methylation; no such significant associations were found in those with lower than mean levels of methylation for either. We further found that these relationships were mediated by TNFα only in those with high FOXP3 TSDR methylation, implying that immunosuppression via TNFα promoter methylation buffers the impact of discrimination stress on postpartum symptomatology. These results indicate that epigenetic markers of immunosuppression and inflammation play an important role in resilience or sensitivity, respectively, to prenatal stress.
Collapse
Affiliation(s)
- Femke Sluiter
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Benjamin C Nephew
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Ryan Cali
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina at Chapel Hill, North Carolina, United States
| |
Collapse
|
10
|
Circulating T helper 17 and IFN-γ positive Th17 cells in Major Depressive Disorder. Behav Brain Res 2020; 394:112811. [DOI: 10.1016/j.bbr.2020.112811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/20/2023]
|
11
|
Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, Record MJ, Urban JH, Rosenkranz JA. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun 2020; 84:180-199. [PMID: 31785394 PMCID: PMC7010555 DOI: 10.1016/j.bbi.2019.11.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
A link exists between immune function and psychiatric conditions, particularly depressive and anxiety disorders. Psychological stress is a powerful trigger for these disorders and stress influences immune state. However, the nature of peripheral immune changes after stress conflicts across studies, perhaps due to the focus on few measures of pro-inflammatory or anti-inflammatory processes. The basolateral amygdala (BLA) is critical for emotion, and plays an important role in the effects of stress on anxiety. As such, it may be a primary central nervous system (CNS) mediator for the effects of peripheral immune changes on anxiety after stress. Therefore, this study aimed to delineate the influence of stress on peripheral pro-inflammatory and anti-inflammatory aspects, BLA immune activation, and its impact on BLA neuronal activity. To produce a more encompassing view of peripheral immune changes, this study used a less restrictive approach to categorize and group peripheral immune changes. We found that repeated social defeat stress in adult male Sprague-Dawley rats increased the frequencies of mature T-cells positive for intracellular type 2-like cytokine and serum pro-inflammatory cytokines. Principal component analysis and hierarchical clustering was used to guide grouping of T-cells and cytokines, producing unique profiles. Stress shifted the balance towards a specific set that included mostly type 2-like T-cells and pro-inflammatory cytokines. Within the CNS component, repeated stress caused an increase of activated microglia in the BLA, increased anxiety-like behaviors across several assays, and increased BLA neuronal firing in vivo that was prevented by blockade of microglia activation. Because repeated stress can trigger anxiety states by actions in the BLA, and altered immune function can trigger anxiety, these results suggest that repeated stress may trigger anxiety-like behaviors by inducing a pro-inflammatory state in the periphery and the BLA. These results begin to uncover how stress may recruit the immune system to alter the function of brain regions critical to emotion.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Maxine K. Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Nicole Ferrara
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - M. Regina DeJoseph
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alexandra Ritger
- Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Matthew J. Record
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Janice H. Urban
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Corresponding Author: J. Amiel Rosenkranz, Ph.D., Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA., Telephone: 847-578-8680; Fax: 847-578-3268,
| |
Collapse
|
12
|
Lambert M, Gressier F. [Inflammatory Biomarkers and Postpartum Depression: A Systematic Review of Literature]. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:471-481. [PMID: 30808206 PMCID: PMC6610561 DOI: 10.1177/0706743719828970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Postpartum Depression (PPD) affects over 15% new mothers. Its etiology is multifactorial and still partly unknown. Some hypotheses suggest a link with inflammation. This review aims to explore the existence of inflammatory biomarkers associated with PPD. The possibility of potential adjunct treatments, linked with these biomarkers, will be discussed. METHOD The systematic review of literature was performed using in PubMed, PsycInfo and Embase, and 25 articles were included. Various biomarkers were identified. The most often studied are C-reactive protein (CRP), interleukins 6 and 10, tumor necrosis factor-alpha and interferon-gamma. RESULTS Although few results appear as significant during the various testing times, the dosage of some inflammation biomarkers, including CRP, at the very end of pregnancy or immediately after delivery could predict PPD. Interactions between inflammation and the corticotropic axis could explain PPD onset. Epigenetic mechanisms could lead to pro-inflammatory state. Several therapeutics provide interest due to their anti-inflammatory property. CONCLUSIONS Further studies are needed to assess these biomarkers value as predictive factors of PPD and to consider adjunct treatments to antidepressants. If this value is confirmed, the inflammatory marker dosage, in particular CRP, could help to provide early screening of women at risk of PPD, parallel of the clinical evaluation. A zinc supplementation could then be offered.
Collapse
Affiliation(s)
- Mathilde Lambert
- 1 Interne DES psychiatrie Ile de France, Service de Psychiatrie, Hôpital de Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Florence Gressier
- 2 Responsable de l'Unité de Psychiatrie Périnatale du CHU de Bicêtre, CESP, Inserm UMR1178, Univ Paris Sud, Service de Psychiatrie, Hôpital de Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| |
Collapse
|
13
|
Tang M, Dang R, Liu S, Zhang M, Zheng Y, Yang R, Yin T. Ω-3 fatty acids-supplementary in gestation alleviates neuroinflammation and modulates neurochemistry in rats. Lipids Health Dis 2018; 17:247. [PMID: 30390665 PMCID: PMC6215348 DOI: 10.1186/s12944-018-0894-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background The mechanisms underlying the association between immune activation and postpartum depression remained elusive. Although Ω-3 fatty acids possess anti-inflammatory properties, there is limited evidence directly linking the modulating effects of Ω-3 fatty acids on neuroimmune and neurochemistry to the antidepressant actions. Methods A between-groups design was used to assess the effects of reproductive status (virgin or parous) and Ω-3 fatty acids content (control and supplementary). Serum inflammatory cytokine levels (IL-1a, IL-1β, IL-2, IL-6, IL-12, TNF-a, IFN-γ) were evaluated using the Bio-Plex Luminex System. Moreover, we also measured the protein levels of Purinergic type 2X7 receptor (P2X7R), NOD-like receptor pyrin domain containing 3 (NLRP3) and Nuclear factor-kappaB (NF-κB). Lastly, we assessed the function of various neurotransmitter systems to link the inflammatory response and neurotransmitter metabolism. Results Pro-inflammatory cyrokines, including IL-1a, IL-6, TNF-a and IFN-γ were markedly induced in the serum of parous rats, although no significantly depressive-like behavior was found. Meanwhile, NLRP3 and NF-κB were decreased in certain brain areas. Moreover, gestational stress significantly induced neurochemical disturbance, which is partly restored by Ω-3 fatty acids supplementation. Conclusions These findings strengthen the link between inflammation, neurochemistry and postpartum depression, and further provide novel insights into the antidepressant effect of Ω-3 fatty acids.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi Zheng
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics and Gynecology Research, Hunan Provincial Maternal and Child Health Care Hospital, No. 53 XiangChun Road, Changsha, 410008, People's Republic of China
| | - Rui Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Yin
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
14
|
A systematic review of acupuncture and Chinese herbal medicine for postpartum depression. Complement Ther Clin Pract 2018; 33:85-92. [DOI: 10.1016/j.ctcp.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/09/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
15
|
Ellul P, Mariotti-Ferrandiz E, Leboyer M, Klatzmann D. Regulatory T Cells As Supporters of Psychoimmune Resilience: Toward Immunotherapy of Major Depressive Disorder. Front Neurol 2018; 9:167. [PMID: 29615964 PMCID: PMC5869201 DOI: 10.3389/fneur.2018.00167] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
There is growing evidence that inflammation plays a role in major depressive disorder (MDD). As the main role of regulatory T cells (Tregs) is to control inflammation, this might denote a Treg insufficiency in MDD. However, neither a qualitative nor a quantitative defect of Tregs has been ascertained and no causality direction between inflammation and depression has been established. Here, after reviewing the evidence supporting a relation between Treg insufficiency and MDD, we conclude that a novel therapeutic approach based on Treg stimulation could be valuable in at least the subset of patients with inflammatory MDD. Low-dose interleukin-2 appears to be a good candidate as it is not only a safe stimulator of Tregs in humans but also an inhibitor of pro-inflammatory Th17 lymphocytes. Here, we discuss that a thorough immune investigation as well as immunotherapy will be heuristic for deciphering the pathophysiology of MDD.
Collapse
Affiliation(s)
- Pierre Ellul
- Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Robert Debré Hospital, Department of Child and Adolescent Psychiatry, Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Marion Leboyer
- Team 15, INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France.,Faculté de Médecine, Université Paris-Est Créteil Val de Marne (UPEC), DHU PePSY, Pôle de Psychiatrie et d'addictologie, Hôpitaux Universitaires Mondor, Assistance Publique - Hôpitaux de Paris (AP-HP), Créteil, France.,Fondation FondaMental, Créteil, France
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|