1
|
Wu R, Zhang B, He M, Kang Y, Zhang G. MicroRNA biomarkers and their use in evaluating the prognosis of lung cancer. J Cancer Res Clin Oncol 2023; 149:16753-16761. [PMID: 37728700 DOI: 10.1007/s00432-023-05404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVE We aim to use the microRNA (miRNA, micro-ribonucleic acid) data of lung cancer tissues to establish a miRNA biomarker database for lung cancer that can be used for marker screening and analysis of lung cancer prognosis. METHODS We obtained lung cancer-related data from The Cancer Genome Atlas (TCGA) and analyzed the miRNA expression profiles of lung cancer tissues and normal tissues using bioinformatics techniques to develop a new composite miRNA-based model for the prognostic assessment of lung cancer. The predictive power of this model was verified and evaluated based on grouping of data. We also performed RT-qPCR using lung cancer tissues from patients diagnosed with lung cancer. RESULTS There was a significant difference between the miRNA expression profiles of lung cancer tissues and normal tissues adjacent to the cancerous lesions. The prognostic survival of patients with lung cancer was closely related to onset age and staging (p = 0.012) but was not related to gender (p = 0.39) and race (p = 0.51). Using three methods of survival model construction, we identified three miRNA composites, namely hsa-mir-21, hsa-mir-141, and has-mir-490, as markers for the prognosis of lung cancer. As confirmed by RT-qPCR, the expressions of hsa-miR-21-5p and hsa-miR-141-5p were upregulated, whereas hsa-miR-490-3p expression was downregulated in lung cancer lesion tissues. CONCLUSION The three miRNA composites identified, namely hsa-mir-21, hsa-mir-141, and hsa-mir-490, have the potential to serve as novel prognostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Ruijie Wu
- Department of Radiotherapy, Fifth Clinical Medical College of ShanXi Medical University, No. 29 Shuangta East Street, Yingze District, Taiyuan, 030000, Shanxi, China
| | - Bohan Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengju He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yani Kang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gong Zhang
- Department of Radiotherapy, Fifth Clinical Medical College of ShanXi Medical University, No. 29 Shuangta East Street, Yingze District, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
2
|
Abu-Shahba N, Hegazy E, Khan FM, Elhefnawi M. In Silico Analysis of MicroRNA Expression Data in Liver Cancer. Cancer Inform 2023; 22:11769351231171743. [PMID: 37200943 PMCID: PMC10185868 DOI: 10.1177/11769351231171743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 05/20/2023] Open
Abstract
Abnormal miRNA expression has been evidenced to be directly linked to HCC initiation and progression. This study was designed to detect possible prognostic, diagnostic, and/or therapeutic miRNAs for HCC using computational analysis of miRNAs expression. Methods: miRNA expression datasets meta-analysis was performed using the YM500v2 server to compare miRNA expression in normal and cancerous liver tissues. The most significant differentially regulated miRNAs in our study undergone target gene analysis using the mirWalk tool to obtain their validated and predicted targets. The combinatorial target prediction tool; miRror Suite was used to obtain the commonly regulated target genes. Functional enrichment analysis was performed on the resulting targets using the DAVID tool. A network was constructed based on interactions among microRNAs, their targets, and transcription factors. Hub nodes and gatekeepers were identified using network topological analysis. Further, we performed patient data survival analysis based on low and high expression of identified hubs and gatekeeper nodes, patients were stratified into low and high survival probability groups. Results: Using the meta-analysis option in the YM500v2 server, 34 miRNAs were found to be significantly differentially regulated (P-value ⩽ .05); 5 miRNAs were down-regulated while 29 were up-regulated. The validated and predicted target genes for each miRNA, as well as the combinatorially predicted targets, were obtained. DAVID enrichment analysis resulted in several important cellular functions that are directly related to the main cancer hallmarks. Among these functions are focal adhesion, cell cycle, PI3K-Akt signaling, insulin signaling, Ras and MAPK signaling pathways. Several hub genes and gatekeepers were found that could serve as potential drug targets for hepatocellular carcinoma. POU2F1 and PPARA showed a significant difference between low and high survival probabilities (P-value ⩽ .05) in HCC patients. Our study sheds light on important biomarker miRNAs for hepatocellular carcinoma along with their target genes and their regulated functions.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Elsayed Hegazy
- School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
- Mahmoud Elhefnawi, Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, 33, elbohouth street, Cairo 11211, Egypt.
| |
Collapse
|
3
|
Cardinali B, Tasso R, Piccioli P, Ciferri MC, Quarto R, Del Mastro L. Circulating miRNAs in Breast Cancer Diagnosis and Prognosis. Cancers (Basel) 2022; 14:cancers14092317. [PMID: 35565446 PMCID: PMC9101355 DOI: 10.3390/cancers14092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Great improvement has been made in the diagnosis and therapy of breast cancer patients. However, the identification of biomarkers for early diagnosis, prognosis, therapy assessment and monitoring, including drug resistance and the early detection of micro-metastases, is still lacking. Recently, circulating microRNAs (miRNAs), circulating freely in the blood stream or entrapped in extracellular vesicles (EVs), have been shown to have a potential diagnostic, prognostic or predictive power. In this review, recent findings are summarized, both at a preclinical and clinical level, related to miRNA applicability in the context of breast cancer. Different aspects, including clinical and technical challenges, are discussed, describing the potentialities of miRNA use in breast cancer. Even though more methodological standardized studies conducted in larger and selected patient cohorts are needed to support the effective clinical utility of miRNA as biomarkers, they could represent novel and accessible tools to be transferred into clinical practice.
Collapse
Affiliation(s)
- Barbara Cardinali
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
- Correspondence: ; Tel.: +39-010-555-8101
| | - Roberta Tasso
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
| | - Patrizia Piccioli
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
| | - Maria Chiara Ciferri
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
| | - Rodolfo Quarto
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (R.T.); (M.C.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lucia Del Mastro
- Department of Medical Oncology, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.P.); (L.D.M.)
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, 16132 Genova, Italy
| |
Collapse
|
4
|
Hozaka Y, Kita Y, Yasudome R, Tanaka T, Wada M, Idichi T, Tanabe K, Asai S, Moriya S, Toda H, Mori S, Kurahara H, Ohtsuka T, Seki N. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p. Int J Mol Sci 2021; 22:ijms22189876. [PMID: 34576039 PMCID: PMC8469425 DOI: 10.3390/ijms22189876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
To elucidate novel aspects of the molecular pathogenesis of colorectal cancer (CRC), we have created a new microRNA (miRNA) expression signature based on RNA-sequencing. Analysis of the signature showed that 84 miRNAs were upregulated, and 70 were downregulated in CRC tissues. Interestingly, our signature indicated that both guide and passenger strands of some miRNAs were significantly dysregulated in CRC tissues. These findings support our earlier data demonstrating the involvement of miRNA passenger strands in cancer pathogenesis. Our study focused on downregulated miR-490-3p and investigated its tumor-suppressive function in CRC cells. We successfully identified a total of 38 putative oncogenic targets regulated by miR-490-3p in CRC cells. Among these targets, the expression of three genes (IRAK1: p = 0.0427, FUT1: p = 0.0468, and GPRIN2: p = 0.0080) significantly predicted 5-year overall survival of CRC patients. Moreover, we analyzed the direct regulation of IRAK1 by miR-490-3p, and its resultant oncogenic function in CRC cells. Thus, we have clarified a part of the molecular pathway of CRC based on the action of tumor-suppressive miR-490-3p. This new miRNA expression signature of CRC will be a useful tool for elucidating new molecular pathogenesis in this disease.
Collapse
Affiliation(s)
- Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
5
|
Li Y, Tian D, Chen H, Cai Y, Chen S, Duan S. MicroRNA-490-3p and -490-5p in carcinogenesis: Separate or the same goal? Oncol Lett 2021; 22:678. [PMID: 34345303 PMCID: PMC8323007 DOI: 10.3892/ol.2021.12939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miR)-490-3p and miR-490-5p, located on chromosome 7q33, are two independent mature products of miR-490 exerting distinct effects on tumor progression. miR-490-3p and miR-490-5p possess antitumor properties. miR-490-3p dysfunction has been associated with malignancies including colorectal cancer, while the abnormal function of miR-490-5p has been more considerably associated with bladder cancer (for example). At present, there are 30 and 11 target genes of miR-490-3p and miR-490-5p, respectively, that have been experimentally verified, of which the cyclin D1 (CCND1) gene is a common target. Through these target genes, miR-490-3p and miR-490-5p are involved in 7 and 3 signaling pathways, respectively, of which only 2 are shared regulatory signaling pathways. The present review introduces two competing endogenous RNA (ceRNA) regulatory networks centered on miR-490-3p and miR-490-5p. These networks may be important promoters of tumor cell proliferation, invasiveness, metastatic potential and apoptosis. Unlike miR-490-5p, miR-490-3p plays a unique role in promoting cancer. However, both are promising molecular markers for early cancer diagnosis and prognosis. In addition, miR-490-3p was also found to be associated with the chemical resistance of cisplatin and paclitaxel. The present review focuses on the abnormal expression of miR-490-3p and miR-490-5p in different tumor types, and their complex ceRNA regulatory networks. The clinical value of miR-490-3p and miR-490-5p in cancer diagnosis, prognosis and treatment is also clarified, and an explanation for the opposing effects of miR-490-3p in tumor research is provided.
Collapse
Affiliation(s)
- Yin Li
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Dongmei Tian
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Hao Chen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Yuanting Cai
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Sang Chen
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
6
|
Li J, Mo R, Zheng L. MicroRNA-490-3p inhibits migration and chemoresistance of colorectal cancer cells via targeting TNKS2. World J Surg Oncol 2021; 19:117. [PMID: 33849554 PMCID: PMC8045283 DOI: 10.1186/s12957-021-02226-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Colorectal cancer is one of the most common malignancy in the world. The oncogenesis of colorectal cancer is still not fully elucidated. It was reported that microRNA-490-3p (miR-490-3p) was closely related to the regulation of cancers. However, if miR-490-3p could also affect colorectal cancer and the specific mechanism remains unclear. METHODS qRT-PCR was conducted to examine the expression of miR-490-3p. DIANA, miRDB, and TargetScan databases were used to identify target genes. LOVO and SW480 cells were transfected by miR-490-3p mimics and inhibitors. Transwell assay was used to measure cell invasion and migration. Cisplatin and fluorouracil were administered to investigate chemotherapy resistance. Western blot was used to measure TNKS2 protein expression. Binding sites were verified using the double luciferase assay. RESULTS miR-490-3p expression was low in the colorectal cancer cells. The level of miR-490-3p was negatively correlated with cell migration and invasion of cancer cells. miR-490-3p could bind to TNKS2 mRNA 3'UTR directly. miR-490-3p can suppress cell viability and resistance to chemotherapy in colorectal cancer cells through targeting TNKS2. CONCLUSIONS miR-490-3p could affect colorectal cancer by targeting TNKS2. This study may provide a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Emergency Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Rubing Mo
- Department of Pneumology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
7
|
Lu N, Zhang M, Lu L, Liu YZ, Zhang HH, Liu XD. miRNA‑490‑3p promotes the metastatic progression of invasive ductal carcinoma. Oncol Rep 2021; 45:706-716. [PMID: 33416185 PMCID: PMC7757091 DOI: 10.3892/or.2020.7880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/mir)‑490‑3p has been defined as a tumor suppressor in different types of cancer, including breast cancer. However, miR‑490‑3p has been shown to function as a tumor suppressor and promoter in a context‑dependent manner in hepatocellular and lung cancer. Contrary to previous studies, the present study revealed that miR‑490‑3p expression was significantly higher in invasive ductal carcinoma (IDC) tissue specimens, the most common form of breast cancer, compared to tumor‑adjacent normal tissue specimens (n=20). Its expression was also higher in the more metastatic breast cancer cell line, MDA‑MB‑231, compared to the non‑metastatic breast cancer cell line, MCF7, and the moderately metastatic breast cancer cell line, MDA‑MB‑468. The expression of miR‑490‑3p was induced following transforming growth factor (TGF)‑β‑induced epithelial‑to‑mesenchymal transition (EMT) in MCF10A cells. Gain‑and loss‑of‑function assays revealed that the expression of miR‑490‑3p regulated the proliferation, colony formation, EMT, migration and invasion in vitro, but not the apoptosis of MDA‑MB‑468 and MDA‑MB‑231 cells. The knockdown of miR‑490‑3p expression in MDA‑MB‑231 cells inhibited experimental metastasis in a tumor xenograft assay. As in lung cancer, miR‑490‑3p was found to target and downregulate the expression of the tumor suppressor RNA binding protein poly r(C) binding protein 1 (PCBP1). PCBP1 protein and miR‑490‑3p expression inversely correlated in patients with ductal carcinoma in situ (DCIS; n=10; no nodal involvement) and IDC (n=10; different stages of metastatic progression) with a significantly higher miR‑490‑3p expression in patients with IDC compared to those with DCIS. The expression of miR‑490‑3p was negatively associated with both overall and disease‑free survival in the patients with breast cancer included in the present study. On the whole, the results confirm a pro‑metastatic role of miR‑490‑3p in IDC, establishing it as a biomarker for disease progression in these patients.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Disease Progression
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Mastectomy
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Binding Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yan-Zhao Liu
- Department of Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hai-Hong Zhang
- Department of Human Resources, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiao-Dong Liu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
8
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
9
|
Cheng D, Xu Q, Liu Y, Li G, Sun W, Ma D, Ni C. Long noncoding RNA-SNHG20 promotes silica-induced pulmonary fibrosis by miR-490-3p/TGFBR1 axis. Toxicology 2021; 451:152683. [PMID: 33482250 DOI: 10.1016/j.tox.2021.152683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
Silicosis is a universal occupational disease, which is caused by long-term crystalline silica exposure. Recent studies have shown that noncoding RNAs participate in diverse pathological cellular pathways. However, the precise regulation mechanism remains limited in silicosis. Here, we established a silica-induced mouse fibrosis model (all mice received a one-time intratracheal instillation with 50 mg/kg of silica in 0.05 mL sterile saline). MiR-490-3p was significantly downregulated in silica-induced fibrotic mouse lung tissues and TGF-β1 treated fibroblasts. Moreover, overexpressed miR-490-3p could relieve silica-induced lung fibrosis in vivo, and prevent the process of fibroblast-to-myofibroblast transition(FMT)in vitro. Mechanistically, TGFBR1 was one of the major target genes of miR-490-3p, and tightly associated with the process of fibroblasts activation. SNHG20, as opposed to miR-490-3p expression, was elevated in TGF-β1-treated fibroblast cell lines and contributed to decreased levels of miR-490-3p. Taken together, these data indicated that miR-490-3p plays a key role in silica-induced pulmonary fibrosis. Our results suggested that SNHG20/miR-490-3p/TGFBR1 axis may provide a new treatment target of pulmonary fibrosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Vinchure OS, Kulshreshtha R. miR-490: A potential biomarker and therapeutic target in cancer and other diseases. J Cell Physiol 2020; 236:3178-3193. [PMID: 33094503 DOI: 10.1002/jcp.30119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as posttranscriptional gene regulators. Among a pool of >2600 known human mature miRNAs, only a small subset have been functionally interrogated and a further smaller pool shown to be associated with the pathogenesis of a variety of diseases suggesting their critical role in maintaining homeostasis. Here, we draw your attention to one such miRNA, miR-490, that has been reported to be deregulated in a myriad of diseases (23 diseases) ranging from cardiomyopathy, depression, and developmental disorders to many cancer types (28 cancer types), such as hepatocellular carcinoma, gastric cancer, cancers of the reproductive and central nervous system among others. The prognostic and diagnostic potential of miR-490 has been reported in many diseases including cancer underlining its clinical relevance. We also collate a complex plethora of epigenetic (histone and DNA methylation), transcriptional (TF), and posttranscriptional (lncRNA and circRNA) mechanisms that have been shown to tightly regulate miR-490 levels. The targets of miR-490 involve a range of cancer-related genes involved in the regulation of various cancer hallmarks like cell proliferation, migration, and invasion, apoptotic cell death, angiogenesis, and so forth. Overall, our in-depth review highlights for the first time the emerging role of miR-490 in disease pathology, diagnosis, and prognosis that assigns a unique therapeutic potential to miR-490 in the era of precision medicine.
Collapse
Affiliation(s)
- Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
11
|
Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol 2020; 34:e22567. [DOI: 10.1002/jbt.22567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Fatma Abdalla
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| | - Bhupendra Singh
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
- Eurofins Lancaster Laboratories Lancaster PA 17605
| | - Hari K. Bhat
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
12
|
Wang Y, He R, Ma L. Characterization of lncRNA-Associated ceRNA Network to Reveal Potential Prognostic Biomarkers in Lung Adenocarcinoma. Front Bioeng Biotechnol 2020; 8:266. [PMID: 32426332 PMCID: PMC7212445 DOI: 10.3389/fbioe.2020.00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/13/2020] [Indexed: 12/22/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most fatal malignant tumors harmful to human health. The complexity and behavior characteristics of long-non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in LUAD patients are still unclear. The purpose of this study was to elucidate the regulatory networks of dysregulated RNAs, view, and identify potential prognosis signatures involved in LUAD. The expression profiles of mRNAs, lncRNAs, and miRNAs were obtained from the TCGA database. In total, 2078 DEmRNAs, 257 DElncRNAs, and 101 DEmiRNAs were sorted out. A PPI network including 45 DEmRNAs was constructed. Ten hub genes in the PPI network associated with cell cycle-related pathways were identified and they played key roles in regulating cell proliferation. A total of three DEmiRNAs, seven DElncRNAs, and six DEmRNAs were enrolled in the ceRNA network. Except for certain genes without any published study reports, all the genes in the ceRNA network played an essential role in controlling tumor cell proliferation and were associated with prognosis in LUAD. Finally, based on step regression and Cox regression survival analysis, we identified four candidate biomarkers, including miR490, miR1293, LINC01740, and IGF2BP1, and established a risk model based on the four genes. Our study provided a global view and systematic dissection of the lncRNA-associated ceRNA network, and the identified four genes might be novel important prognostic factors involved in LUAD pathogenesis.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, China
| | - Ruyi He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan, China
| |
Collapse
|
13
|
Najminejad H, Farhadihosseinabadi B, Dabaghian M, Dezhkam A, Rigi Yousofabadi E, Najminejad R, Abdollahpour-Alitappeh M, Karimi MH, Bagheri N, Mahi-Birjand M, Ghasemi N, Mazaheri M, Kalantar SM, Seifalian A, Sheikhha MH. Key Regulatory miRNAs and their Interplay with Mechanosensing and Mechanotransduction Signaling Pathways in Breast Cancer Progression. Mol Cancer Res 2020; 18:1113-1128. [PMID: 32430354 DOI: 10.1158/1541-7786.mcr-19-1229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022]
Abstract
According to the WHO, breast cancer is the most common cancer in women worldwide. Identification of underlying mechanisms in breast cancer progression is the main concerns of researches. The mechanical forces within the tumor microenvironment, in addition to biochemical stimuli such as different growth factors and cytokines, activate signaling cascades, resulting in various changes in cancer cell physiology. Cancer cell proliferation, invasiveness, migration, and, even, resistance to cancer therapeutic agents are changed due to activation of mechanotransduction signaling. The mechanotransduction signaling is frequently dysregulated in breast cancer, indicating its important role in cancer cell features. So far, a variety of experimental investigations have been conducted to determine the main regulators of the mechanotransduction signaling. Currently, the role of miRNAs has been well-defined in the cancer process through advances in molecular-based approaches. miRNAs are small groups of RNAs (∼22 nucleotides) that contribute to various biological events in cells. The central role of miRNAs in the regulation of various mediators involved in the mechanotransduction signaling has been well clarified over the last decade. Unbalanced expression of miRNAs is associated with different pathologic conditions. Overexpression and downregulation of certain miRNAs were found to be along with dysregulation of mechanotransduction signaling effectors. This study aimed to critically review the role of miRNAs in the regulation of mediators involved in the mechanosensing pathways and clarify how the cross-talk between miRNAs and their targets affect the cell behavior and physiology of breast cancer cells.
Collapse
Affiliation(s)
- Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Farhadihosseinabadi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Asiyeh Dezhkam
- Department of Midwifery, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Reza Najminejad
- Department of Internal Medicine, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd), The London BioScience Innovation Centre, London, United Kingdom.
| | - Mohammad Hasan Sheikhha
- Genetics and Biotechnology Lab, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
14
|
Xu J, Zheng J, Wang J, Shao J. miR-876-5p suppresses breast cancer progression through targeting TFAP2A. Exp Ther Med 2019; 18:1458-1464. [PMID: 31316633 DOI: 10.3892/etm.2019.7689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are widely expressed in human cells and closely associated with various types of cancer, including breast cancer. miR-876-5p has been indicated to participate in the tumorigenesis of certain types of cancer, such as hepatocellular carcinoma. Nevertheless, the roles of miR-876-5p in breast cancer remain unclear. In the present study, it was revealed that miR-876-5p expression levels were decreased in breast cancer cells compared with a normal cell line. miR-876-5p ectopic expression suppressed breast cancer cell proliferation and arrested progression of the cell cycle. In addition, miR-876-5p suppressed breast cancer cell migration and invasion. miR-876-5p was demonstrated to directly target transcription factor AP-2-α (TFAP2A) in breast cancer cells, and restoration of TFAP2A rescinded the suppressive role of miR-876-5p. In summary, the results from the present study provide evidence that miR-876-5p suppresses breast cancer progression by regulating cell proliferation, migration and invasion in a TFAP2A-dependent manner.
Collapse
Affiliation(s)
- Jie Xu
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jie Zheng
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jian Wang
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Jianping Shao
- Department of Breast Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
15
|
Vinchure OS, Sharma V, Tabasum S, Ghosh S, Singh RP, Sarkar C, Kulshreshtha R. Polycomb complex mediated epigenetic reprogramming alters TGF-β signaling via a novel EZH2/miR-490/TGIF2 axis thereby inducing migration and EMT potential in glioblastomas. Int J Cancer 2019; 145:1254-1269. [PMID: 31008529 DOI: 10.1002/ijc.32360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/02/2023]
Abstract
Recent advancement in understanding cancer etiology has highlighted epigenetic deregulation as an important phenomenon leading to poor prognosis in glioblastoma (GBM). Polycomb repressive complex 2 (PRC2) is one such important epigenetic modifier reportedly altered in GBM. However, its defined mechanism in tumorigenesis still remains elusive. In present study, we analyzed our in-house ChIPseq data for H3k27me3 modified miRNAs and identified miR-490-3p to be the most common target in GBM with significantly downregulated expression in glioma patients in both TCGA and GBM patient cohort. Our functional analysis delineates for the first time, a central role of PRC2 catalytic unit EZH2 in directly regulating expression of this miRNA and its host gene CHRM2 in GBM. In accordance, cell line treatment with EZH2 siRNA and 5-azacytidine also confirmed its coregulation by CpG and histone methylation based epigenetic mechanisms. Furthermore, induced overexpression of miR-490-3p in GBM cell lines significantly inhibited key hallmarks including cellular proliferation, colony formation and spheroid formation, as well as epithelial-to-mesenchymal transition (EMT), with downregulation of multiple EMT transcription factors and promigratory genes (MMP9, CCL5, PIK3R1, ICAM1, ADAM17 and NOTCH1). We also for the first time report TGFBR1 and TGIF2 as two direct downstream effector targets of miR-490-3p that are also deregulated in GBM. TGIF2, a novel target, was shown to promote migration and EMT that could partially be rescued by miR-490-3p overexpression. Overall, this stands as a first study that provides a direct link between epigenetic modulator EZH2 and oncogenic TGF-β signaling involving novel miR-490-3p/TGIF2/TGFBR1 axis, that being targetable might be promising in developing new therapeutic intervention strategies for GBM.
Collapse
Affiliation(s)
- Omkar S Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikas Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Saba Tabasum
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Zhang Z, Qin H, Jiang B, Chen W, Cao W, Zhao X, Yuan H, Qi W, Zhuo D, Guo H. miR-30e-5p suppresses cell proliferation and migration in bladder cancer through regulating metadherin. J Cell Biochem 2019; 120:15924-15932. [PMID: 31069875 DOI: 10.1002/jcb.28866] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that miR-30e-5p is dysregulated in several human carcinomas; however, the mechanism of miR-30e-5p in bladder cancer (BCa) remains unknown. Here, we confirmed that the expression of miR-30e-5p was decreased in human BCa specimens and cell lines by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Upregulation of miR-30e-5p decreased the proliferation and migration in T24 and UM-UC-3 cells. Metadherin (MTDH) was a potential target for miR-30e-5p through bioinformatics analysis. Dual-luciferase assays were conducted to validate the interaction between miR-30e-5p and MTDH, which demonstrates that the relative luciferase activity was significantly downregulated after transfected miR-30e-5p mimic compared with control mimic in 293T cells. We also detected that whether silencing of MTDH by using small interfering(si)-MTDH matched effects caused by miR-30e-5p overexpression in BCa cells lines by Cell Counting Kit-8 (CCK-8), colony formation, and transwell assay, and we found the effects of silencing of MTDH same as miR-30e-5p overexpression. Furthermore, we verified that the restoration of MTDH in miR-30e-5p-overexpressed BCa cells rescued the inhibitory effects of miR-30e-5p. In conclusion, these results demonstrated that miR-30e-5p may inhibit BCa cells growth and invasiveness by targeting MTDH and may be a promising therapeutic agent for treating clinical BCa patients.
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Haixiang Qin
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Yuan
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Qi
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Zhuo
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Yu XH, He LH, Gao JH, Zhang DW, Zheng XL, Tang CK. Pregnancy-associated plasma protein-A in atherosclerosis: Molecular marker, mechanistic insight, and therapeutic target. Atherosclerosis 2018; 278:250-258. [DOI: 10.1016/j.atherosclerosis.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
|
18
|
Knockdown of long non-coding RNA TP73-AS1 suppresses triple negative breast cancer cell vasculogenic mimicry by targeting miR-490-3p/TWIST1 axis. Biochem Biophys Res Commun 2018; 504:629-634. [DOI: 10.1016/j.bbrc.2018.08.122] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 02/08/2023]
|
19
|
Mu Y, Li N, Cui YL. The lncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int 2018; 18:145. [PMID: 30250403 PMCID: PMC6148998 DOI: 10.1186/s12935-018-0604-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/25/2018] [Indexed: 02/08/2023] Open
Abstract
Background Ovarian cancer is the fifth leading cause of cancer deaths in women worldwide. LncRNACCAT1 was reported to play a critical role in cell metastasis of ovarian cancer. However, little is known about the detailed mechanism of how CCAT1 enhances TGFβ1-induced EMT of ovarian cancer cells. Methods We used RT-qPCR to examine the level of miR-490-3p and CCAT1 and western blot to detect the protein level of TGFβR1 and EMT-associated markers. We utilized luciferase reporter assay to confirm the direct interaction of CCAT1 or TGFβ1 with miR-490-3p. Wound healing and invasion assay were employed to investigate the role of CCAT1 and miR-490-3p in the TGFβ1-induced migration and cell invasion of ovarian cancer cells, respectively. Results TGFβ1 stimulated the expression of CCAT1. And CCAT1 knockdown decreased cell migration, invasion and EMT-associated markers expression of ovarian cancer cells treated with TGFβ1. CCAT1 directly targeted and downregulated miR-490-3p, then increasing TGFβR1 level. miR-490-3p was shown to regulate cell invasion, migration and EMT markers expression via TGFβR1. In addition, we also observed that miR-490-3p was essential for TGFβ1-induced tumor cell invasion and migration influenced by CCAT1. CCAT1 level was significantly higher in tumors than adjacent normal tissue, in contrast, miR-490-3p level was lower in ovarian tumors. Conclusion Here, we reveal that CCAT1 contributes to TGFβ1-induced EMT of ovarian tumor cells through miR-490-3p/TGFR1 axis. These findings will provide deep insights into the mechanism by which CCAT1 exerts its oncogenic role in ovarian cancer progression and facilitate developing novel therapeutical therapies for treating ovarian cancer.
Collapse
Affiliation(s)
- Yang Mu
- Department of Gynaecology, The Second Affiliated Hospital of Harbin Medical University, No. 146, Baojian Road, Harbin, 150086 Heilongjiang People's Republic of China
| | - Na Li
- Department of Gynaecology, The Second Affiliated Hospital of Harbin Medical University, No. 146, Baojian Road, Harbin, 150086 Heilongjiang People's Republic of China
| | - Yu-Lan Cui
- Department of Gynaecology, The Second Affiliated Hospital of Harbin Medical University, No. 146, Baojian Road, Harbin, 150086 Heilongjiang People's Republic of China
| |
Collapse
|
20
|
Characterization of hepatocellular adenoma and carcinoma using microRNA profiling and targeted gene sequencing. PLoS One 2018; 13:e0200776. [PMID: 30052636 PMCID: PMC6063411 DOI: 10.1371/journal.pone.0200776] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular adenomas (HCA) are benign liver tumors that may transform into hepatocellular carcinoma (HCC), but the molecular drivers of this transformation remain ill-defined. This study evaluates the molecular changes in HCA and HCC and in comparison to their adjacent non-neoplastic liver. Methods 11 patients with HCA and 10 patients with HCC without underlying hepatitis or cirrhosis were included in this pilot study. Tumor and non-tumor liver tissues were selected for immunohistochemical staining, small RNA sequencing, and targeted gene sequencing. We compared microRNA expressions and mutations between HCA and HCC and non-neoplastic liver. Results HCA were classified as inflammatory (n = 6), steatotic (n = 4), or β-catenin activated (n = 1) subtypes. MicroRNA profile of all 3 HCA subtypes clustered between that of normal liver and HCC in principal component analysis. In both HCA and HCC, miR-200a, miR-429, and miR-490-3p were significantly downregulated compared to normal liver, whereas miR-452, miR-766, and miR-1180 were significantly upregulated. In addition, compared to HCA, HCC had significantly higher expression of members of the chromosome 19 miRNA cluster (C19MC), including miR-515-5p, miR-517a, miR-518b, and miR-520c-3p. Conclusions This study indicates that while there are significant differences in the molecular profile between HCA and HCC, several miRNAs are similarly deregulated in HCA and HCC compared to adjacent normal liver. These results may provide insights into the drivers of hepatocarcinogenesis and warrant further investigations.
Collapse
|
21
|
Li MF, Zeng JJ, Pan AP, Lin YH, Lin HS, Zhang RZ, Yang L, Zhang Y, Dang YW, Chen G. Investigation of miR-490-3p Expression in Hepatocellular Carcinoma Based on Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) and a Meta-Analysis of 749 Cases. Med Sci Monit 2018; 24:4914-4925. [PMID: 30007991 PMCID: PMC6067044 DOI: 10.12659/msm.908492] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background miR-490-3p could play vital roles in multiple cancers. However, the role of miR-490-3p in hepatocellular carcinoma (HCC) remains uncertain. In this study, we sought to explore the underlying role of miR-490-3p in HCC. Material/Methods In this study, we explored the clinical role of miR-490-3p in HCC via quantitative reverse transcription–polymerase chain reaction (RT-qPCR) and The Cancer Genome Atlas (TCGA) database. Then, a meta-analysis was performed to evaluate the expression trend and diagnostic value of miR-490-3p in HCC. Furthermore, 12 miRNA prediction algorithms were applied to predict the potential target genes of miR-490-3p. The differentially expressed genes in HCC in the Gene Expression Profiling Interactive Analysis (GEPIA) database were also selected. Additionally, bioinformatics analyses were utilized to investigate the possible functions and pathways of the target genes. Results miR-490-3p was clearly down-regulated in HCC based on RT-qPCR (P=0.002). Consistent with the results of RT-qPCR, miR-490 was more highly expressed in normal liver tissue than in HCC (P<0.001). Additionally, the meta-analysis confirmed the results from RT-qPCR and TCGA. Furthermore, based on the prediction algorithms and GEPIA, a total of 113 genes were selected. According to the bioinformatics analyses, we found that the most remarkably enriched functional terms included protein transport, poly(A) RNA binding, and intracellular organelle part. Additionally, the miR-490-3p target genes were significantly related to the pathways in cancer. Conclusions We found that miR-490-3p is down-regulated in HCC and is related to genes that have potential tumoral functions. However, the exact mechanism should be confirmed by functional experiments.
Collapse
Affiliation(s)
- Ming-Fen Li
- Clinical Laboratory, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ai-Ping Pan
- Clinical Laboratory, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Ying-Hui Lin
- Clinical Laboratory, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Hong-Sheng Lin
- Clinical Laboratory, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Rong-Zhen Zhang
- Department of Hepatology, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Lei Yang
- Clinical Laboratory, First Affiliated Hospital of the University of Chinese Medicine in Guangxi, Nanning, Guangxi, China (mainland)
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
22
|
Yang H, Zhang L, Wang XD, Huang ML, Lin P, Pang YY, Feng ZB, Chen G. Potential targets and clinical value of miR-490-5p in hepatocellular carcinoma: a study based on TCGA, qRT-PCR and bioinformatics analyses. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1123-1134. [PMID: 31938207 PMCID: PMC6958166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/07/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To explore potential targets and clinical value of miR-490-5p in the oncogenesis and progression of hepatocellular carcinoma (HCC). METHODS Clinical value of miR-490-5p was accessed through The Cancer Genome Atlas (TCGA) and qRT-PCR analyses. Potential target mRNAs of miR-490-5p were predicted by bioinformatics methods and were annotated as Gene Ontology (GO) function analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and Protein-Protein Interaction (PPI) network analysis. RESULTS miR-490 expression in HCC tissues was lower compared with normal control tissues based on TCGA and down regulation of miR-490-5p was verified by qRT-PCR (P<0.0001). Both miR-490 and miR-490-5p had moderate ability to diagnose HCC tissues from noncancerous tissues. Moreover, lower miR-490 level predicted poorer overall survival in patients with HCC (P=0.0063). One hundred and eighty-four mRNAs were selected as potential targets of miR-490-5p by overlap with 4,090 prediction genes and 1,478 differentially expressed genes (DEGs). Gene Ontology (GO) function analysis showed that the most significant terms were vasculature development, endoplasmic reticulum, and protein binding in biological process (BP), cellular component (CC), and molecular function (MF). In KEGG signaling pathway analysis, the statistically significant terms were lysosome, focal adhesion, glioma. In PPI network analysis, SRC, SRP9, PDGFRB, RPL28, and RPS23 were identified as the hub genes. CONCLUSION miR-490-5p is down-regulated in HCC and may be a prospectively diagnostic and prognostic biomarker. Moreover, miR-490-5p might directly target SRC, SRP9, PDGFRB, RPL28, or RPS23 and play an important role in HCC.
Collapse
Affiliation(s)
- Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Lu Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Xiao-Dong Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Meng-Lan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Peng Lin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, People’s Republic of China
| |
Collapse
|
23
|
Wang L, Sun K, Wu D, Xiu Y, Chen X, Chen S, Zong Z, Sang X, Liu Y, Zhao Y. DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med 2017; 21:3055-3065. [PMID: 28598010 PMCID: PMC5661118 DOI: 10.1111/jcmm.13217] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/23/2017] [Indexed: 01/17/2023] Open
Abstract
Recently, a large number of studies have focused on the important role of long non-coding RNAs (lncRNAs) in metabolism and development and have found that abnormal lncRNA expression is associated with the pathogenesis and development of many diseases. The lncRNA DLEU1 is involved in many solid tumours and haematological malignancies. However, its role in epithelial ovarian carcinoma (EOC) and the associated molecular mechanisms has not been reported. In this study, quantitative reverse transcription-PCR (qRT-PCR) demonstrated higher lncRNADLEU1 expression in EOC tissues than in normal tissues. Plasmid transfection of DLEU1 to up-regulate its expression in the ovarian cancer cell lines A2780 and OVCAR3 increased cell proliferation, migration, and invasion, while inhibited apoptosis. Nude mouse xenograft assay demonstrated that DLEU1 overexpression promoted tumour growth in vivo. QRT-PCR showed decreased miR-490-3p expression, while Western blotting demonstrated increased its target genes CDK1, cyclinD1 and SMARCD1, as well as matrix metalloproteinase-2 (MMP2), Bcl-xL and P70S6K protein expression, respectively. Short interfering RNA silencing of DLEU1 produced opposite results, where qRT-PCR showed increased miR-490-3p expression. The dual-luciferase reporter assay revealed a direct interaction between DLEU1 and miR-490-3p. MiR-490-3p plays a tumour suppressor role in epithelial ovarian cancer by targeting CDK1 regulation and influencing SMARCD1 and cyclin D1 (CCND1) expressions. Therefore, we suggest that through interaction with miR-490-3p, DLEU1 may influence the expression of CDK1, CCND1 and SMARCD1 protein, subsequently promoting the development and progression of EOC.
Collapse
MESH Headings
- Animals
- CDC2 Protein Kinase/genetics
- CDC2 Protein Kinase/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromosomal Proteins, Non-Histone
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Transplantation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Li‐Li Wang
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Kai‐Xuan Sun
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Dan‐Dan Wu
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yin‐Ling Xiu
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Xi Chen
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Shuo Chen
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Zhi‐Hong Zong
- Department of Biochemistry and Molecular BiologyCollege of Basic MedicineChina Medical UniversityShenyangChina
| | - Xiu‐Bo Sang
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yao Liu
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Yang Zhao
- Department of GynecologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
24
|
Zhang A, Lakshmanan J, Motameni A, Harbrecht BG. MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Mol Cell Biochem 2017; 441:89-98. [PMID: 28887744 DOI: 10.1007/s11010-017-3176-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Primary liver cancer (hepatocellular carcinoma, HCC) is a leading cause of cancer-related deaths, and alternative ways to treat this disease are urgently needed. In recent years, novel approaches to cancer treatment have been based on microRNAs, small non-coding RNA molecules that play a crucial role in cancer progression by regulating gene expression. Overexpression of some microRNAs has shown therapeutic potential, but whether or not this was the case for microRNA-203 (miR-203) in liver cancer was unknown. Therefore, the aim of this study was to investigate the effect of miR-203 overexpression in liver cancer and explore the related mechanisms. Liver cancer cells from the HepG2 and Hep3B cell lines were transfected with either miR-203 mimics or negative control RNA, and then the cells were subjected to cell viability, cell proliferation, and Western blotting assays. As a result of microRNA-203 overexpression, HepG2 and Hep3B cell viability and cell proliferation significantly declined. Furthermore, microRNA-203 overexpression led to inhibited expression of phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3)/protein kinase B (Akt), c-Jun, and p38 mitogen-activated protein kinases (p38 MAPK), and restored glycogen synthase kinase 3 (GSK 3) activity in HepG2 cells. Our results suggest that c-Jun, p38 MAPK, PIK3CA/Akt, and GSK3 signaling involved in the effect of miR-203 on the proliferation of HCC cells.
Collapse
Affiliation(s)
- Annie Zhang
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Jaganathan Lakshmanan
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA.
| | - Amirreza Motameni
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Brian G Harbrecht
- Price Institute of Surgical Research and Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
25
|
Zhang SQ, Yang Z, Cai XL, Zhao M, Sun MM, Li J, Feng GX, Feng JY, Ye LH, Niu JQ, Zhang XD. miR-511 promotes the proliferation of human hepatoma cells by targeting the 3'UTR of B cell translocation gene 1 (BTG1) mRNA. Acta Pharmacol Sin 2017; 38:1161-1170. [PMID: 28603285 DOI: 10.1038/aps.2017.62] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Aberrant expression of miR-511 is involved in the development of cancer, but the role of miR-511 in hepatocellular carcinoma (HCC) is not well documented. In this study, we explored the molecular mechanisms of miR-511 in hepatocarcinogenesis. Our results of bioinformatics analysis suggested that B cell translocation gene 1 (BTG1), a member of anti-proliferative gene family, was one of the putative targets of miR-511. The expression levels of miR-511 were significantly higher in 30 clinical HCC tissues than in corresponding peritumor tissues, and were negatively correlated with those of BTG1 in the HCC tissues (r=-0.6105, P<0.01). In human hepatoma cell lines HepG2 and H7402, overexpression of miR-511 dose-dependently inhibited the expression of BTG1, whereas knockdown of miR-511 dose-dependently increased the expression of BTG1. Luciferase reporter gene assays verified that miR-511 targeted the 3'UTR of BTG1 mRNA. In the hepatoma cells, overexpression of miR-511 significantly decreased BTG1-induced G1 phase arrest, which was rescued by overexpression of BTG1. Furthermore, overexpression of miR-511 promoted the proliferation of the hepatoma cells, which was rescued by overexpression of BTG1. Conversely, knockdown of miR-511 inhibited cell proliferation, which was reversed by knockdown of BTG1. In conclusion, miR-511 promotes the proliferation of human hepatoma cells in vitro by targeting the 3'UTR of BTG1 mRNA.
Collapse
|
26
|
Wang Y, Sui Y, Zhu Q, Sui X. Hsa-miR-599 suppresses the migration and invasion by targeting BRD4 in breast cancer. Oncol Lett 2017; 14:3455-3462. [PMID: 28927100 PMCID: PMC5587950 DOI: 10.3892/ol.2017.6651] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-associated mortality in females in the USA. Hsa-miR-599 was demonstrated to function as a tumour suppressor during cancer progression. However, the function and mechanism of the hsa-miR-599 in human breast cancer remain elusive. Thus, the aim of the present study was to investigate the potential role of hsa-miR-599 in breast cancer biology. The expression levels of hsa-miR-599 in 40 pairs of surgical specimens and human breast cancer cell lines were detected using quantitative polymerase chain reaction analysis. The overexpression of hsa-miR-599 was established by transfecting mimics into the MCF-7 and MDA-MB-231 cell lines. Cell counting kit-8, colony formation and transwell assays were used to investigate the potential function of hsa-miR-599 in MCF-7 and MDA-MB-231 cell lines. Luciferase assays combined with western blot analysis was performed to validate the regulation of a putative target of hsa-miR-599. The results demonstrated that hsa-miR-599 was downregulated in the breast cancer tissues and breast cancer cell lines. Overexpression of hsa-miR-599 was revealed to inhibit the viability and proliferation of cell in vitro and tumour growth in vivo. The results of the luciferase assay indicate that bromodomain containing 4 (BRD4) is a direct target of hsa-miR-599. Furthermore, the xenograft mouse model demonstrated that overexpressed hsa-miR-599 reduced BRD4 expression. These results suggest that hsa-miR-599 serves as an oncosuppressive microRNA that impairs breast cancer tumorigenesis and progression by directly targeting BRD4. Furthermore, increased BRD4 expression partially reversed the suppressive effect of hsa-miR-599. In conclusion, the results of the present study demonstrated that hsa-miR-599 suppressed breast cancer progression by downregulating BRD4. The overexpression of hsa-miR-599 may be considered as a novel therapeutic target for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Yonghui Wang
- Department of Breast Surgery, Weifang People's Hospital, Weifang, Shandong 261042, P.R. China
| | - Yana Sui
- Emergency Department of Weifang Traditional Chinese Hospital, Weifang, Shandong 261042, P.R. China
| | - Qinwei Zhu
- Emergency Department of Weifang Traditional Chinese Hospital, Weifang, Shandong 261042, P.R. China
| | - Xiaomei Sui
- Radiotherapy Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
27
|
Dong W, Li B, Wang J, Song Y, Zhang Z, Fu C. MicroRNA-337 inhibits cell proliferation and invasion of cervical cancer through directly targeting specificity protein 1. Tumour Biol 2017. [PMID: 28641487 DOI: 10.1177/1010428317711323] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Wei Dong
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, P.R. China
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Juan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Yipeng Song
- Radiation Oncology Department, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, P.R. China
| | - Zicheng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Chengrui Fu
- Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, P.R. China
| |
Collapse
|
28
|
Sun LN, Xing C, Zhi Z, Liu Y, Chen LY, Shen T, Zhou Q, Liu YH, Gan WJ, Wang JR, Xu Y, Li JM. Dicer suppresses cytoskeleton remodeling and tumorigenesis of colorectal epithelium by miR-324-5p mediated suppression of HMGXB3 and WASF-2. Oncotarget 2017; 8:55776-55789. [PMID: 28915552 PMCID: PMC5593523 DOI: 10.18632/oncotarget.18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates that microRNAs, a class of small and well-conserved noncoding RNAs, participate in many physiological and pathological processes. RNase III endonuclease DICER is one of the key enzymes for microRNA biogenesis. Here, we found that DICER was downregulated in tumor samples of colorectal cancer (CRC) patients at both mRNA and protein levels. Importantly, intestinal epithelial cell (IEC)-specific deletion of Dicer mice got more tumors after azoxymethane and dextran sulfate sodium (DSS) administration. Interestingly, IEC-specific deletion of Dicer led to severe chronic inflammation and epithelium layer remodeling in mice with or without DSS administration. Microarray analysis of 3 paired Dicer deletion CRC cell lines showed that miR-324-5p was one of the most significantly decreased miRNAs. In the intestinal epithelium of IEC-specific deletion of Dicer mice, miR-324-5p was also found to be markedly reduced. Mechanistically, miR-324-5p directly bound to the 3′untranslated regions (3′UTRs) of HMG-box containing 3 (HMGXB3) and WAS protein family member 2 (WASF-2), two key proteins participated in cell motility and cytoskeleton remodeling, to suppress their expressions. Intraperitoneal injection of miR-324-5p AgomiR (an agonist of miR-324-5p) curtailed chronic inflammation and cytoskeleton remodeling of colorectal epithelium and restored intestinal barrier function in IEC-specific deletion of Dicer mice induced by DSS. Therefore, our study reveals a key role of a DICER/miR-324-5p/HMGXB3/WASF-2 axis in tumorigenesis of CRC by regulation of cytoskeleton remodeling and maintaining integrity of intestinal barriers.
Collapse
Affiliation(s)
- Li Na Sun
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Cheng Xing
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Liang-Yan Chen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Qun Zhou
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yu Hong Liu
- Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Wen Juan Gan
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Jing-Ru Wang
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Ming Li
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| |
Collapse
|
29
|
Li Y, Shan F, Chen J. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J Surg Oncol 2017; 15:69. [PMID: 28327197 PMCID: PMC5361711 DOI: 10.1186/s12957-017-1120-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/14/2017] [Indexed: 02/01/2023] Open
Abstract
Background The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. Methods To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3’-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. Results AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1’s ability to bind Flotillin-1. Conclusions miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100048, China
| | - Fei Shan
- Department of Cardiac Surgery, Affiliated Hospital of Medical College of Yan'an University, Yan'an, Shanxi, 716000, China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|