1
|
Parmar K, Kundu R, Maiti A, Ball S. Updates in biology, classification, and management of acute myeloid leukemia with antecedent hematologic disorder and therapy related acute myeloid leukemia. Leuk Res 2024; 144:107546. [PMID: 38986173 DOI: 10.1016/j.leukres.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Acute myeloid leukemia with antecedent hematologic disorder (AHD-AML) and therapy related AML (t-AML) constitute a heterogenous disease with inferior outcomes. It is often characterized by high-risk cytogenetic and molecular alterations associated with AHD or prior cancer therapy. Historically, the standard of care treatment has been intensive induction with "7 + 3", with an improved overall response rate and survival with CPX-351. Results from large registry-based studies suggested that allogeneic hematopoietic stem cell transplant is preferable to consolidation chemotherapy alone for achieving long-term survival in patients with AHD-AML. Prevalence of high-risk genetic features and advanced age and comorbidities in patients make AHD-AML and t-AML clinically challenging subgroups to treat with intensive approaches. Recent reports on less intensive treatment options, particularly the hypomethylating agent-venetoclax combination, have shown encouraging response rates in these patients. However, emerging resistance mechanisms compromise duration of response and overall survival. Several novel agents targeting apoptotic machinery, signaling pathways, and immune checkpoints are under clinical investigation, with an aim to truly improve overall outcomes in this subgroup. We reviewed updates in biology, classification, and clinical data comparing safety and efficacy of intensive and less intensive treatment options, and summarized ongoing studies with promising novel therapies in AHD-AML and t-AML.
Collapse
Affiliation(s)
- Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rupayan Kundu
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Somedeb Ball
- Division of Hematology and Oncology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
3
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
4
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
5
|
Prathivadhi-Bhayankaram S, Abbasi MA, Ismayl M, Marar RI, Al-Abcha A, El-Am E, Ahmad A, Acevedo AD, Ellauzi R, Villarraga H, Paludo J, Anavekar N. Cardiotoxicities of Novel Therapies in Hematological Malignancies: Monoclonal Antibodies and Enzyme Inhibitors. Curr Probl Cardiol 2023; 48:101757. [PMID: 37094764 DOI: 10.1016/j.cpcardiol.2023.101757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Monoclonal antibodies (mAB) selectively target leukemia surface antigens and work by either blocking cell surface receptors or triggering the target cell's destruction. Similarly, enzyme inhibitors bind to complex molecular platforms and induce downstream mechanisms that trigger cell death. These are used in a variety of hematologic malignancies. Yet, they also elicit severe immune-mediated reactions as biological agents that require careful monitoring. Cardiovascular effects include cardiomyopathy, ventricular dysfunction, cardiac arrest, and acute coronary syndrome. While there have been scattered reviews of mAB and enzyme inhibitors, a consolidated resource regarding their cardiovascular risk profile is lacking. We provide general recommendations for initial screening and serial monitoring based on the literature.
Collapse
Affiliation(s)
- Sruti Prathivadhi-Bhayankaram
- Division of Internal Medicine, University of Iowa Healh Care, Iowa City, IA; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Muhannad Aboud Abbasi
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN.
| | - Mahmoud Ismayl
- Division of Internal Medicine, Creighton University, Omaha, NE; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Rosalyn I Marar
- Division of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Abdullah Al-Abcha
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Edward El-Am
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Ali Ahmad
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Andres Daryanani Acevedo
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Rama Ellauzi
- Division of Internal Medicine, University of Nebraska Medical Center, Omaha, NE; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Hector Villarraga
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Jonas Paludo
- Division of Internal Medicine, Henry Ford Hospital, Detroit, MI; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Nandan Anavekar
- Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN; Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022; 43:2759-2776. [PMID: 35379933 PMCID: PMC9622806 DOI: 10.1038/s41401-022-00902-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 12/17/2022] Open
Abstract
Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents. They are also extensively being used in cancer immunotherapy. On the other hand, exosomes are naturally occurring nanosized extracellular vesicles that serve an important role in cell-cell communication. Importantly, the exosomes also have proven their capability to carry an array of active pharmaceuticals and diagnostic molecules to the tumor cells. Exosomes, being enriched with tumor antigens, have numerous immunomodulatory effects. Much to our intrigue, in recent times, efforts have been directed toward developing smart, bioengineered, exosome-liposome hybrid nanovesicles, which are augmented by the benefits of both vesicular systems. This review attempts to summarize the contemporary developments in the use of exosome and liposome toward cancer diagnosis, therapy, as a vehicle for drug delivery, diagnostic carrier for tumor imaging, and cancer immunotherapy. We shall also briefly reflect upon the recent advancements of the exosome-liposome hybrids in cancer therapy. Finally, we put forward future directions for the use of exosome/liposome and/or hybrid nanocarriers for accurate diagnosis and personalized therapies for cancers.
Collapse
Affiliation(s)
| | - Bharti Bisht
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Suman Dutta
- International Institute of Innovation and Technology, New Town, Kolkata, 700156, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Cheng X, Yan H, Pang S, Ya M, Qiu F, Qin P, Zeng C, Lu Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front Chem 2022; 10:963004. [PMID: 36003616 PMCID: PMC9393238 DOI: 10.3389/fchem.2022.963004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although medicinal natural products and their derivatives have shown promising effects in disease therapies, they usually suffer the drawbacks in low solubility and stability in the physiological environment, low delivery efficiency, side effects due to multi-targeting, and low site-specific distribution in the lesion. In this review, targeted delivery was well-guided by liposomal formulation in the aspects of preparation of functional liposomes, liposomal medicinal natural products, combined therapies, and image-guided therapy. This review is believed to provide useful guidance to enhance the targeted therapy of medicinal natural products and their derivatives.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Hui Yan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Songhao Pang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Mingjun Ya
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Feng Qiu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Pinzhu Qin
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Chao Zeng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Yongna Lu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| |
Collapse
|
8
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Feng Z, Gu Y, Yuan M, Xiao R, Fei Z. Clinical Trials of Liposomes in Children’s Anticancer Therapy: A Comprehensive Analysis of Trials Registered on ClinicalTrials.gov. Int J Nanomedicine 2022; 17:1843-1850. [PMID: 35502234 PMCID: PMC9056094 DOI: 10.2147/ijn.s359666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Clinical trials have become essential for driving the development of medicine. However, little is known about the current status of clinical trials on liposomes in children’s anticancer therapy (LCAT). This study aimed to synthesize current finding from clinical trials of LCAT in ClinicalTrials.gov. Methods A cross-sectional descriptive study of clinical trials on LCAT was conducted, using studies registered on ClinicalTrials.gov through December 30, 2021. Results A total of 74 eligible trials were identified, accounting for 4.8% (74/1552) of all trials on liposomes for cancer therapy. Among these trials, 70 (94.6%) were interventional trials, and the remaining 4 (5.4%) were observational trials. Of the 70 interventional trials, 63 (90.0%) were for treatment, 48.6% were involving unlabeled allocations, 30.0% were randomized, 52.9% were single group assignment, 71.4% were without masking, 28.6% were Phase 3 trials, 30.0% were Phase 1 trials, and 24.3% were Phase 2 trials. Furthermore, 17 liposomal drugs for 123 types of cancer were investigated in the interventional trials, and these were mainly focused on organic chemicals (43/70, 61.4%). Of these cancers, the highest proportion was leukemia (15.4%), followed by lymphoma (9.8%) and ovarian cancer (8.9%). Conclusion High quality, adequately powered, masked, appropriately sized, and randomized clinical trials represent the critical priorities for conducting a high-quality clinical trial. However, most of these trials for LCAT were non-randomized, single group assignment, and non-blinded interventional trials of small scale, with various eligibility criteria and outcome measures. Our analysis highlights the need for improvement in the completeness of study designs curated on clinicalTrials.gov. We urge for decision-makers to avoid adopting entrenched positions about the study design of cancer clinical trials to avoid this problem. As such, tackling the problematic challenges related to cancer and designing efficient trials for cancer requires developing and applying new approaches and multiple strategies.
Collapse
Affiliation(s)
- Zhaosong Feng
- Pharmacy Department, Jianhu People’s Hospital, Jianhu, Jiangsu Province, 224700, People’s Republic of China
| | - Yuyang Gu
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
| | - Mengping Yuan
- Department of Gastroenterology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
| | - Renzhong Xiao
- R&D Center, Hunan Royal Pharmaceutical Technology Co., Ltd., Changsha, Hunan Province, 410000, People’s Republic of China
- Correspondence: Renzhong Xiao, R&D Center, Hunan Royal Pharmaceutical Technology Co., Ltd., Changsha City, Hunan Province, 410000, People’s Republic of China, Email
| | - Zhenghua Fei
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China
- Zhenghua Fei, Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, People’s Republic of China, Email
| |
Collapse
|
10
|
Price K, Cao Z, Lipkin C, Profant D, Robinson S. Comparison of Hospital Length of Stay and Supportive Care Utilization Between Patients Treated with CPX-351 and 7+3 for Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Clinicoecon Outcomes Res 2022; 14:21-34. [PMID: 35035224 PMCID: PMC8754465 DOI: 10.2147/ceor.s342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022]
Abstract
Purpose CPX-351 is dual-drug liposomal encapsulation of daunorubicin and cytarabine at a fixed synergistic 1:5 molar ratio. This study determined current real-world use of CPX-351 versus conventional 7+3 (cytarabine+daunorubicin) therapy and evaluated hospital length of stay (LOS) and supportive care utilization in t-AML and AML-MRC. Patients and Methods This retrospective, observational study utilized the Premier Healthcare Database and included patients who were aged ≥18 years with t-AML or AML-MRC and treated with CPX-351 or 7+3 between August 1, 2017 and February 28, 2019. All patients treated with 7+3 were required to be eligible for CPX-351 based on its FDA-approved indication. Outcome variables were annualized and adjusted for patient, hospital, and clinical confounding factors. The primary outcome was inpatient LOS. Secondary outcomes included use of blood products and use of anti-infectives. Results The study included 195 qualifying patients treated with CPX-351 and 160 patients treated with 7+3 who were eligible for CPX-351. Approximately one-third of the patients treated with CPX-351 were administered therapy in a hospital-based outpatient setting, and all patients treated with 7+3 received it in the inpatient setting. The regression-adjusted annualized inpatient LOS was shorter with CPX-351 than 7+3 (mean of 183.7 vs 197.1 days, p<0.001). The difference in mean-adjusted LOS was most pronounced for t-AML, with a mean-adjusted LOS of 168.9 versus 192.5 days for CPX-351 versus 7+3, respectively (nominal p<0.001). Supportive care utilization, including the number of administrations of red blood cells, the number of administrations of platelets, and the number of days on anti-infectives, was similar between treatment groups. Conclusion CPX-351 was associated with a shorter inpatient LOS than 7+3. Supportive care use, including blood products and anti-infectives, was similar for CPX-351 and 7+3. These findings suggest CPX-351 conveys resource advantages over 7+3 in patients with newly diagnosed t-AML and AML-MRC.
Collapse
Affiliation(s)
| | - Zhun Cao
- Premier Inc., Charlotte, NC, USA
| | | | | | | |
Collapse
|
11
|
Gundersen ET, Førde JL, Tislevoll BS, Leitch C, Barratt G, Gjertsen BT, Herfindal L. Repurposing chlorpromazine for anti-leukaemic therapy by nanoparticle encapsulation. Int J Pharm 2021; 612:121296. [PMID: 34793932 DOI: 10.1016/j.ijpharm.2021.121296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Treatment of acute myeloid leukaemia (AML) relies on decades-old drugs, and while recent years have seen some breakthroughs, AML is still characterised by poor prognosis and survival rate. Drug repurposing can expedite the preclinical development of new therapies, and by nanocarrier encapsulation, the number of potentially viable drug candidates can be further expanded. The anti-psychotic drug chlorpromazine (CPZ) has been identified as a candidate for repurposing for AML therapy. Nanoencapsulation may improve the suitability of CPZ for the treatment of AML by reducing its effect on the central nervous system. Using the emulsion-evaporation technique, we have developed PEGylated PLGA nanoparticles loaded with CPZ for AML therapy. The nanoparticles were characterised to be between 150 and 300 nm by DLS, of spherical morphology by TEM, with a drug loading of at least 6.0% (w/w). After an initial burst release of adsorbed drug, the remaining 80% of the drug was retained in the PLGA nanoparticles for at least 24 h. The CPZ-loaded nanoparticles had equal cytotoxic potential towards AML cells to free CPZ, but acted more slowly, in line with the protracted drug release. Crucially, nanoparticles injected intravenously into zebrafish larvae did not accumulate in the brain, and nanoencapsulation also prevented CPZ from crossing an artificial membrane model. This demonstrates that the purpose for nanoencapsulation of CPZ is fulfilled, namely avoiding effects on the central nervous system while retaining the anti-AML activity of the drug.
Collapse
Affiliation(s)
- Edvin Tang Gundersen
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Benedicte Sjo Tislevoll
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Calum Leitch
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gillian Barratt
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Châtenay-Malabry, France
| | - Bjørn Tore Gjertsen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res 2021; 10:766-790. [PMID: 32170656 DOI: 10.1007/s13346-020-00744-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomedicine is a rapidly emerging field with several breakthroughs in the therapeutic drug delivery application. The unique properties of the nanoscale delivery systems offer huge advantages to their payload such as solubilization, increased bioavailability, and improved pharmacokinetics with an overall goal of enhanced therapeutic index. Nanomedicine has the potential for integrating and enabling new therapeutic modalities. Several nanoparticle-based drug delivery systems have been granted approval for clinical use based on their outstanding clinical outcomes. Nanomedicine faces several challenges that hinder the realization of its full potential. In this review, we discuss the critical formulation- and biological-related quality features that significantly influence the performance of nanoparticulate systems in vivo. We also discuss the quality-by-design approach in the pharmaceutical manufacturing and its implementation in the nanomedicine. A deep understanding of these nanomedicine quality checkpoints and a systematic design that takes them into consideration will hopefully expedite the clinical translation process. Graphical abstract.
Collapse
|
13
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
14
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
15
|
The role of m 6A modification in physiology and disease. Cell Death Dis 2020; 11:960. [PMID: 33162550 PMCID: PMC7649148 DOI: 10.1038/s41419-020-03143-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Similar to DNA epigenetic modifications, multiple reversible chemical modifications on RNAs have been uncovered in a new layer of epigenetic modification. N6-methyladenosine (m6A), a modification that occurs in ~30% transcripts, is dynamically regulated by writer complex (methylase) and eraser (RNA demethylase) proteins, and is recognized by reader (m6A-binding) proteins. The effects of m6A modification are reflected in the functional modulation of mRNA splicing, export, localization, translation, and stability by regulating RNA structure and interactions between RNA and RNA-binding proteins. This modulation is involved in a variety of physiological behaviors, including neurodevelopment, immunoregulation, and cellular differentiation. The disruption of m6A modulations impairs gene expression and cellular function and ultimately leads to diseases such as cancer, psychiatric disorders, and metabolic disease. This review focuses on the mechanisms and functions of m6A modification in a variety of physiological behaviors and diseases.
Collapse
|
16
|
Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD. New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J 2020; 10:107. [PMID: 33127875 PMCID: PMC7599225 DOI: 10.1038/s41408-020-00376-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Conventional therapy for acute myeloid leukemia is composed of remission induction with cytarabine- and anthracycline-containing regimens, followed by consolidation therapy, including allogeneic stem cell transplantation, to prolong remission. In recent years, there has been a significant shift toward the use of novel and effective, target-directed therapies, including inhibitors of mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase (IDH), the B-cell lymphoma 2 inhibitor venetoclax, and the hedgehog pathway inhibitor glasdegib. In older patients the combination of a hypomethylating agent or low-dose cytarabine, venetoclax achieved composite response rates that approximate those seen with standard induction regimens in similar populations, but with potentially less toxicity and early mortality. Preclinical data suggest synergy between venetoclax and FLT3- and IDH-targeted therapies, and doublets of venetoclax with inhibitors targeting these mutations have shown promising clinical activity in early stage trials. Triplet regimens involving the hypomethylating agent and venetoclax with FLT3 or IDH1/2 inhibitor, the TP53-modulating agent APR-246 and magrolimab, myeloid cell leukemia-1 inhibitors, or immune therapies such as CD123 antibody-drug conjugates and programmed cell death protein 1 inhibitors are currently being evaluated. It is hoped that such triplets, when applied in appropriate patient subsets, will further enhance remission rates, and more importantly remission durations and survival.
Collapse
Affiliation(s)
- Naval Daver
- MD Anderson Cancer Center, Houston, TX, USA.
| | - Andrew H Wei
- The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Daniel A Pollyea
- University of Colorado Department of Medicine, Division of Hematology, Aurora, CO, USA
| | | | - Paresh Vyas
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford Comprehensive BRC, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
17
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Gene expression analysis of activating and inhibitory receptors of natural killer cells in patients with acute myeloblastic leukemia. Adv Med Sci 2020; 65:354-360. [PMID: 32592956 DOI: 10.1016/j.advms.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/02/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE Natural killer (NK) cells are cytotoxic lymphocytes, which have long been known to play an essential role in immune surveillance of tumor cells. The results of several clinical studies imply evidence of impaired activity of NK cells in acute myeloblastic leukemia (AML). The aim of this study was to investigate the gene expression of activating and inhibitory receptors of NK cells in patients with newly diagnosed AML before and after induction therapy using 7 + 3 regimen in comparison to healthy donors. MATERIALS AND METHODS Sixteen AML patients aged 16-64 years as well as 16 matched healthy individuals were studied. Peripheral blood samples from patients were obtained in two steps, namely, in newly diagnosed patients and 28 days after receiving induction therapy. Real-time PCR was performed to evaluate the expression levels of activating receptors, including DNAM-1 and NKp46 as well as inhibitory receptors of KIR2DL1 and NKG2A. RESULTS Our results demonstrated that the newly diagnosed patients showed over 50% decrease in NKp46 expression and a 6-fold increase in KIR2DL1 expression compared to healthy controls. The mRNA expression analysis in patients after induction therapy suggested a significant decrease in mRNA expressions of KIR2DL1 and NKG2A in comparison to newly diagnosed patients. CONCLUSION Herewith, we show a statistical difference in mRNA expression levels of activating (NKp46) and inhibitory receptors from NK cells in newly diagnosed AML patients when compared with healthy controls or patients who received induction therapy, supporting the findings of researchers who reported the impaired NK cells cytotoxicity in AML patients.
Collapse
|
19
|
Liu X, Tang I, Wainberg ZA, Meng H. Safety Considerations of Cancer Nanomedicine-A Key Step toward Translation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000673. [PMID: 32406992 PMCID: PMC7486239 DOI: 10.1002/smll.202000673] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
The rate of translational effort of nanomedicine requires strategic planning of nanosafety research in order to enable clinical trials and safe use of nanomedicine in patients. Herein, the experiences that have emerged based on the safety data of classic liposomal formulations in the space of oncology are discussed, along with a description of the new challenges that need to be addressed according to the rapid expansion of nanomedicine platform beyond liposomes. It is valuable to consider the combined use of predictive toxicological assessment supported by deliberate investigation on aspects such as absorption, distribution, metabolism, and excretion (ADME) and toxicokinetic profiles, the risk that may be introduced during nanomanufacture, unique nanomaterials properties, and nonobvious nanosafety endpoints, for example. These efforts will allow the generation of investigational new drug-enabling safety data that can be incorporated into a rational infrastructure for regulatory decision-making. Since the safety assessment relates to nanomaterials, the investigation should cover the important physicochemical properties of the material that may lead to hazards when the nanomedicine product is utilized in humans.
Collapse
Affiliation(s)
- Xiangsheng Liu
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
| | - Ivanna Tang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zev A. Wainberg
- Division of Hematology Oncology, Department of Medicine, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| | - Huan Meng
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, 90095 CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 90095 CA, USA
| |
Collapse
|
20
|
Montesinos P, Gil A, Sierra J. Current status of acute myeloid leukaemia in Spain: Results from a Delphi study on its epidemiology, disease management and unmet clinical needs. Med Clin (Barc) 2020; 156:573-574. [PMID: 32616317 DOI: 10.1016/j.medcli.2020.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Pau Montesinos
- Hospital Universitario y Politécnico de La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Alicia Gil
- Omakase Consulting, S. L., Barcelona, Spain
| | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
21
|
Novotná E, Morell A, Büküm N, Hofman J, Danielisová P, Wsól V. Interactions of antileukemic drugs with daunorubicin reductases: could reductases affect the clinical efficacy of daunorubicin chemoregimens? Arch Toxicol 2020; 94:3059-3068. [PMID: 32588086 DOI: 10.1007/s00204-020-02818-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 11/27/2022]
Abstract
Although novel anticancer drugs are being developed intensively, anthracyclines remain the gold standard in the treatment of acute myeloid leukaemia (AML). The reductive conversion of daunorubicin (Dau) to less active daunorubicinol (Dau-ol) is an important mechanism that contributes to the development of pharmacokinetic anthracycline resistance. Dau is a key component in many AML regimes, in which it is combined with many drugs, including all-trans-retinoic acid (ATRA), cytarabine, cladribine and prednisolone. In the present study, we investigated the influence of these anticancer drugs on the reductive Dau metabolism mediated by the aldo-keto reductases AKR1A1, 1B10, 1C3, and 7A2 and carbonyl reductase 1 (CBR1). In incubation experiments with recombinant enzymes, cladribine and cytarabine did not significantly inhibit the activity of the tested enzymes. Prednisolone inhibited AKR1C3 with an IC50 of 41.73 µM, while ATRA decreased the activity of AKR1B10 (IC50 = 78.33 µM) and AKR1C3 (IC50 = 1.17 µM). Subsequent studies showed that AKR1C3 inhibition mediated by ATRA exhibited tight binding (Kiapp = 0.54 µM). Further, the combination of 1 µM ATRA with different concentrations of Dau demonstrated synergistic effects in HCT116 and KG1a human cells expressing AKR1C3. Our results suggest that ATRA-mediated inhibition of AKR1C3 can contribute to the mechanisms that are hidden beyond the beneficial clinical outcome of the ATRA-Dau combination.
Collapse
Affiliation(s)
- Eva Novotná
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Anselm Morell
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Neslihan Büküm
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Petra Danielisová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic
| | - Vladimír Wsól
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 50005, Czech Republic.
| |
Collapse
|
22
|
Nanocarriers as Magic Bullets in the Treatment of Leukemia. NANOMATERIALS 2020; 10:nano10020276. [PMID: 32041219 PMCID: PMC7075174 DOI: 10.3390/nano10020276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
Abstract
Leukemia is a type of hematopoietic stem/progenitor cell malignancy characterized by the accumulation of immature cells in the blood and bone marrow. Treatment strategies mainly rely on the administration of chemotherapeutic agents, which, unfortunately, are known for their high toxicity and side effects. The concept of targeted therapy as magic bullet was introduced by Paul Erlich about 100 years ago, to inspire new therapies able to tackle the disadvantages of chemotherapeutic agents. Currently, nanoparticles are considered viable options in the treatment of different types of cancer, including leukemia. The main advantages associated with the use of these nanocarriers summarized as follows: i) they may be designed to target leukemic cells selectively; ii) they invariably enhance bioavailability and blood circulation half-life; iii) their mode of action is expected to reduce side effects. FDA approval of many nanocarriers for treatment of relapsed or refractory leukemia and the desired results extend their application in clinics. In the present review, different types of nanocarriers, their capability in targeting leukemic cells, and the latest preclinical and clinical data are discussed.
Collapse
|
23
|
Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer. Life Sci 2019; 232:116678. [PMID: 31344429 DOI: 10.1016/j.lfs.2019.116678] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 11/22/2022]
Abstract
AIMS In this work, it was sought to determine if there was synergism between doxorubicin (DOX), a well-known antineoplastic, and sclareol (SC), a diterpene from natural origin, in breast cancer treatment. Moreover, it was investigated if their co-loading in the same nanocarrier would result in a gain of activity and/or a toxicity diminishment. MAIN METHODS The synergism of the DOX:SC combination was evaluated in MDA-MB-231 and 4T1 cells. A nanostructured lipid carrier (NLC) co-encapsulating DOX and SC in their synergistic molar ratio was prepared and characterised, in terms of mean diameter, zeta potential, DOX encapsulation efficiency, small angle X-ray scattering, differential scanning calorimetry, and polarised light microscopy for further intravenous administration. The anticancer activity of the combination, free and encapsulated, was evaluated in 4T1-tumour bearing mice. KEY FINDINGS It was determined that DOX:SC combination at the molar ratio 1:1.9 presents better synergistic anticancer activity than the molar ratio 1:7.5 in vitro. DOX:SC-loaded NLC (NLC-DOX-SC) improved in vitro cytotoxic and in vivo antitumour activity compared to free DOX. Although NLC-DOX-SC and free DOX:SC, at the synergistic molar ratio, showed similar activity in the in vivo study, the free combination provoked body weight loss, behaviour alterations and haematological toxicity in the animals, while this was not observed for NLC-DOX-SC. SIGNIFICANCE This work shows that SC and DOX present synergistic anticancer activity for breast cancer treatment whereas NLC-DOX-SC was a feasible alternative to attain the benefits posed by DOX:SC combination but with none to fewer side effects.
Collapse
|
24
|
Abstract
VYXEOS™ is a liposomal-encapsulated formulation of daunorubicin and cytarabine delivering a fixed, synergistic 1:5 molar ratio (hereafter referred to as daunorubicin/cytarabine liposome). Daunorubicin/cytarabine liposome is approved in several countries worldwide for the treatment of adults with therapy-related acute myeloid leukaemia (tAML) and AML with myelodysplasia-related changes (MRC). Approval was based on its clinical benefit in older patients with newly diagnosed high-risk/secondary AML in a pivotal phase III trial. In this study, daunorubicin/cytarabine liposome significantly prolonged overall survival (OS) and event-free survival (EFS) relative to conventional chemotherapy with cytarabine plus daunorubicin (hereafter referred to as 7 + 3). Daunorubicin/cytarabine liposome was also associated with significantly higher rates of complete remission (CR) and CR with incomplete haematological recovery (CRi) compared with 7 + 3. Daunorubicin/cytarabine liposome had an acceptable tolerability profile in older patients with newly diagnosed high-risk/secondary AML. The safety profile of daunorubicin/cytarabine liposome, including types and severities of adverse events, was generally similar to that of 7 + 3. Therefore, daunorubicin/cytarabine liposome is an important treatment option for adults with newly diagnosed tAML or AML-MRC.
Collapse
|
25
|
Wang W, Tse-Dinh YC. Recent Advances in Use of Topoisomerase Inhibitors in Combination Cancer Therapy. Curr Top Med Chem 2019; 19:730-740. [PMID: 30931861 DOI: 10.2174/1568026619666190401113350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors targeting human topoisomerase I and topoisomerase II alpha have provided a useful chemotherapy option for the treatment of many patients suffering from a variety of cancers. While the treatment can be effective in many patient cases, use of these human topoisomerase inhibitors is limited by side-effects that can be severe. A strategy of employing the topoisomerase inhibitors in combination with other treatments can potentially sensitize the cancer to increase the therapeutic efficacy and reduce resistance or adverse side effects. The combination strategies reviewed here include inhibitors of DNA repair, epigenetic modifications, signaling modulators and immunotherapy. The ongoing investigations on cellular response to topoisomerase inhibitors and newly initiated clinical trials may lead to adoption of novel cancer therapy regimens that can effectively stop the proliferation of cancer cells while limiting the development of resistance.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States.,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
26
|
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine 2019; 14:1937-1952. [PMID: 30936695 PMCID: PMC6430183 DOI: 10.2147/ijn.s198353] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipid-polymer hybrid nanoparticles (LPHNPs) are next-generation core-shell nanostructures, conceptually derived from both liposome and polymeric nanoparticles (NPs), where a polymer core remains enveloped by a lipid layer. Although they have garnered significant interest, they remain not yet widely exploited or ubiquitous. Recently, a fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids. Owing to its two-in-one structure, this approach is of particular interest as a combinatorial drug delivery platform in oncology. In particular, the outer surface can be decorated in multifarious ways for active targeting of anticancer therapy, delivery of DNA or RNA materials, and use as a diagnostic imaging agent. This review will provide an update on recent key advancements in design, synthesis, and bioactivity evaluation as well as discussion of future clinical possibilities of LPHNPs.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Drug Discovery and Nanomedicine Research Program,
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA,
| | - Ariana K Waters
- Drug Discovery and Nanomedicine Research Program,
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA,
| | | | - Achal Singh Achrol
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA,
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA,
| | - Venkata Mahidhar Yenugonda
- Drug Discovery and Nanomedicine Research Program,
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA, USA,
| |
Collapse
|
27
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
28
|
He H, Yuan D, Wu Y, Cao Y. Pharmacokinetics and Pharmacodynamics Modeling and Simulation Systems to Support the Development and Regulation of Liposomal Drugs. Pharmaceutics 2019; 11:E110. [PMID: 30866479 PMCID: PMC6471205 DOI: 10.3390/pharmaceutics11030110] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022] Open
Abstract
Liposomal formulations have been developed to improve the therapeutic index of encapsulated drugs by altering the balance of on- and off-targeted distribution. The improved therapeutic efficacy of liposomal drugs is primarily attributed to enhanced distribution at the sites of action. The targeted distribution of liposomal drugs depends not only on the physicochemical properties of the liposomes, but also on multiple components of the biological system. Pharmacokinetic⁻pharmacodynamic (PK⁻PD) modeling has recently emerged as a useful tool with which to assess the impact of formulation- and system-specific factors on the targeted disposition and therapeutic efficacy of liposomal drugs. The use of PK⁻PD modeling to facilitate the development and regulatory reviews of generic versions of liposomal drugs recently drew the attention of the U.S. Food and Drug Administration. The present review summarizes the physiological factors that affect the targeted delivery of liposomal drugs, challenges that influence the development and regulation of liposomal drugs, and the application of PK⁻PD modeling and simulation systems to address these challenges.
Collapse
Affiliation(s)
- Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dongfen Yuan
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260, USA.
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Abstract
The field of nanomedicine has made substantial strides in the areas of therapeutic and diagnostic development. For example, nanoparticle-modified drug compounds and imaging agents have resulted in markedly enhanced treatment outcomes and contrast efficiency. In recent years, investigational nanomedicine platforms have also been taken into the clinic, with regulatory approval for Abraxane® and other products being awarded. As the nanomedicine field has continued to evolve, multifunctional approaches have been explored to simultaneously integrate therapeutic and diagnostic agents onto a single particle, or deliver multiple nanomedicine-functionalized therapies in unison. Similar to the objectives of conventional combination therapy, these strategies may further improve treatment outcomes through targeted, multi-agent delivery that preserves drug synergy. Also, similar to conventional/unmodified combination therapy, nanomedicine-based drug delivery is often explored at fixed doses. A persistent challenge in all forms of drug administration is that drug synergy is time-dependent, dose-dependent and patient-specific at any given point of treatment. To overcome this challenge, the evolution towards nanomedicine-mediated co-delivery of multiple therapies has made the potential of interfacing artificial intelligence (AI) with nanomedicine to sustain optimization in combinatorial nanotherapy a reality. Specifically, optimizing drug and dose parameters in combinatorial nanomedicine administration is a specific area where AI can actionably realize the full potential of nanomedicine. To this end, this review will examine the role that AI can have in substantially improving nanomedicine-based treatment outcomes, particularly in the context of combination nanotherapy for both N-of-1 and population-optimized treatment.
Collapse
Affiliation(s)
- Dean Ho
- Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
30
|
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) patients with a complex karyotype (CK-AML) show at least 3 unrelated clonal cytogenetic abnormalities with notoriously poor outcome. Such cases fall into either AML with myelodysplasia-related changes or therapy-related AML in the current World Health Organization classification of AML. Allogeneic stem cell transplantation is one of the only treatment modalities that can provide a long-term survival benefit and is recommended as a consolidative treatment in patients who are able to achieve complete remission. Unfortunately, transplantation is also associated with a higher relapse rate and more than half of CK-AML patients relapse from disease within the first 2 years. The probability of achieving remission with traditional induction using cytarabine and daunorubicin or idarubicin ("7 + 3") is so small that investigational therapies should be considered up front in these patients. Less intensive therapeutic backbones, typically using one of the hypomethylating agents, azacitidine or decitabine, minimize toxicity and show a trend toward the improved overall survival. CPX 351 (Vyxeos) is a liposomal formulation of cytarabine and daunorubicin and this encapsulation leads to prolonged exposure to the two drugs. This drug is approved for AML patients with MDS-related changes and therapy-related AML, both of which are frequently associated with complex karyotype. Such patients show improved outcome in trials using this combination. Combination therapy that includes venetoclax (BCL2 inhibitor) with hypomethylating agents may also be appropriate for such patients.
Collapse
|
31
|
Ip S, MacLaughlin CM, Joseph M, Mullaithilaga N, Yang G, Wang C, Walker GC. Dual-Mode Dark Field and Surface-Enhanced Raman Scattering Liposomes for Lymphoma and Leukemia Cell Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1534-1543. [PMID: 30350697 DOI: 10.1021/acs.langmuir.8b02313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional probes are needed to characterize individual cells simultaneously by different techniques to provide complementary information. A preparative method and an in vitro demonstration of function are presented for a dual-function dark field microscopy/surface-enhanced Raman scattering (SERS) liposome probe for cancer. Liposomes composed of zwitterionic lipids are valuable both to limit biofouling and to serve as a modular matrix to incorporate a variety of functional molecules and hence are used here as vehicles for SERS-active materials. Dark field microscopy and SERS represent new combined functionalities for targeted liposomal probes. Two methods of antibody conjugation to SERS liposomes are demonstrated: (i) direct conjugation to functional groups on the SERS liposome surface and (ii) postinsertion of lipid-functionalized antibody fragments (Fabs) into preformed SERS liposomes. In vitro experiments targeting both lymphoma cell line LY10 and primary human chronic lymphocytic leukemia (CLL) cells demonstrate the usefulness of these probes as optical contrast agents in both dark field and Raman microscopy.
Collapse
Affiliation(s)
- Shell Ip
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Christina M MacLaughlin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Michelle Joseph
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| | - Nisa Mullaithilaga
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Guisheng Yang
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Chen Wang
- Department of Pathology and Laboratory Medicine , Mount Sinai Hospital and Faculty of Medicine, University of Toronto , 600 University Avenue , Toronto , Ontario M5G 1X5 , Canada
| | - Gilbert C Walker
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S3H6 , Canada
| |
Collapse
|
32
|
|
33
|
|
34
|
Li T, Mudie S, Cipolla D, Rades T, Boyd BJ. Solid State Characterization of Ciprofloxacin Liposome Nanocrystals. Mol Pharm 2018; 16:184-194. [PMID: 30495965 DOI: 10.1021/acs.molpharmaceut.8b00940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liposomes have been widely researched as drug delivery systems; however, the solid state form of drug inside the liposome, whether it is in solution or in a solid state, is often not studied. The solid state properties of the drug inside the liposomes are important, as they dictate the drug release behavior when the liposomes come into contact with physiological fluid. Recently, a new approach of making liposomal ciprofloxacin nanocrystals was proposed by the use of an additional freeze-thawing step in the liposomal preparation method. This paper aims to determine the solid state properties of ciprofloxacin inside the liposomes after this additional freeze-thawing cycle using cryo-TEM, small-angle X-ray scattering (SAXS), and cross-polarized light microscopy (CPLM). Ciprofloxacin precipitated in the ciprofloxacin hydrate crystal form with a unit cell dimension of 16.7 Å. The nanocrystals also showed a phase transition at 93 °C, which represents dehydration of the hydrate crystals to the anhydrate form of ciprofloxacin, verified by temperature-dependent SAXS measurements. Furthermore, the dependence of the solid state form of the nanocrystals on pH was investigated in situ, and it was shown that the liposomal ciprofloxacin nanocrystals retained their crystalline form at pH 6-10. Understanding the solid state attributes of nanocrystals inside liposomes provides improved understanding of drug dissolution and release as well as opening avenues to new applications where the nanosized crystals can provide a dissolution benefit.
Collapse
Affiliation(s)
| | - Stephen Mudie
- SAXS/WAXS Beamline , Australian Synchrotron , Clayton , Victoria 3168 , Australia
| | - David Cipolla
- Insmed Inc. , 10 Finderne Avenue , Building 10, Bridgewater , New Jersey 08807-3365 , United States
| | - Thomas Rades
- Department of Pharmacy , University of Copenhagen , Copenhagen 2100 , Denmark
| | | |
Collapse
|
35
|
Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in "smart" delivery systems for extended drug release in cancer therapy. Int J Nanomedicine 2018; 13:4727-4745. [PMID: 30154657 PMCID: PMC6108334 DOI: 10.2147/ijn.s168053] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advances in nanomedicine have become indispensable for targeted drug delivery, early detection, and increasingly personalized approaches to cancer treatment. Nanoparticle-based drug-delivery systems have overcome some of the limitations associated with traditional cancer-therapy administration, such as reduced drug solubility, chemoresistance, systemic toxicity, narrow therapeutic indices, and poor oral bioavailability. Advances in the field of nanomedicine include “smart” drug delivery, or multiple levels of targeting, and extended-release drug-delivery systems that provide additional methods of overcoming these limitations. More recently, the idea of combining smart drug delivery with extended-release has emerged in hopes of developing highly efficient nanoparticles with improved delivery, bioavailability, and safety profiles. Although functionalized and extended-release drug-delivery systems have been studied extensively, there remain gaps in the literature concerning their application in cancer treatment. We aim to provide an overview of smart and extended-release drug-delivery systems for the delivery of cancer therapies, as well as to introduce innovative advancements in nanoparticle design incorporating these principles. With the growing need for increasingly personalized medicine in cancer treatment, smart extended-release nanoparticles have the potential to enhance chemotherapy delivery, patient adherence, and treatment outcomes in cancer patients.
Collapse
Affiliation(s)
| | - Komal Bajwa
- Postgraduate Medical Education, Graduate Diploma and Professional Master in Medical Sciences, School of Medicine, Queen's University
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University,
| | | | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University,
| |
Collapse
|