1
|
Hwang H, Kim J, Kim TH, Han Y, Choi D, Cho S, Kim S, Park S, Park T, Piccinini F, Rhee WJ, Pyun JC, Lee M. Exosomal miR-6126 as a novel therapeutic target for overcoming resistance of anti-cancer effect in hepatocellular carcinoma. BMC Cancer 2024; 24:1557. [PMID: 39702014 DOI: 10.1186/s12885-024-13342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer globally, presenting a substantial health challenge, particularly due to late-stage diagnoses that limit treatment effectiveness. Sorafenib, a multi-kinase inhibitor, is the primary chemotherapeutic agent for advanced HCC, but it only extends survival by 2-3 months. However, drug resistance remains a major clinical challenge, necessitating the exploration of new molecular mechanisms, including the role of microRNAs (miRNAs) in sorafenib resistance. In this study, we aimed to identify miRNAs within exosomes derived from sorafenib-resistant HCC cells to elucidate the molecular mechanisms underlying resistance. METHODS Sorafenib-resistant cells were generated by culturing the human HCC cell line Huh7 in a medium containing 20 µM sorafenib for six months. Exosomes were isolated from the conditioned medium 24 h before cell harvest using exosome-depleted serum medium. miRNA sequencing and western blotting were used to analyze the expression profiles of exosomal miRNAs and proteins, respectively. pH measurement was performed to assess pH changes in response to sorafenib treatment and miRNA modulation. RESULTS A total of 180 exosomal miRNAs were found to be dysregulated between sorafenib-treated control Huh7 (Huh7S) and sorafenib-resistant Huh7 (Huh7RS) cells, as well as between untreated control Huh7 and Huh7RS cells. Among these, miR-6126 was significantly downregulated in Huh7RS cells compared to Huh7S cells. Functional studies using 2-dimensional (D) and 3D cell culture systems revealed that miR-6126 overexpression reduced sorafenib resistance in Huh7RS cells, while its inhibition increased resistance in Huh7 cells. miR-6126 downregulated key proteins involved in cancer stem cell maintenance, such as CD44 and HK2. Furthermore, the pH level was elevated in cells overexpressing miR-6126 following sorafenib treatment, whereas inhibiting miR-6126 resulted in a lower pH. CONCLUSIONS Exosomal miR-6126 plays a pivotal role in sorafenib resistance and tumorigenesis, highlighting its potential as a novel therapeutic target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Choi
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Chen B, Wang L, Li L, Zhou M, Pan S, Wang Q, Hou Y, Zhou X. N 6-methyladenosine facilitates arsenic-induced neoplastic phenotypes of human bronchial epithelial cells by promoting miR-106b-5p maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116803. [PMID: 39094460 DOI: 10.1016/j.ecoenv.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Arsenic is a widespread carcinogen and an important etiological factor for lung cancer. Dysregulated miRNAs have been implicated in arsenic carcinogenesis and the mechanisms of arsenic-induced dysregulated miRNAs have not been fully elucidated. N6-methyladenosine (m6A) modification is known to modulate pri-miRNA processing. However, whether m6A-mediated pri-miRNA processing is involved in arsenic carcinogenesis is poorly understood. Here, we found that m6A modification was significantly increased in arsenite-transformed human bronchial epithelial BEAS-2B cells (0.5 µM arsenite, 16 weeks). Meanwhile, METTL3 was significantly upregulated at week 12 and 16 during cell transformation. The proliferation, migration, invasion, and anchorage-independent growth of arsenite-transformed cells were inhibited by the reduction of m6A levels through METTL3 knockdown. Further experiments suggest that the oncogene miR-106b-5p is a potentially essential m6A target mediating arsenic-induced lung cancer. miR-106b-5p was observed to be upregulated after exposure to arsenite for 12 and 16 weeks, and the reduction of m6A levels caused by METTL3 knockdown inhibited miR-106b-5p maturation in arsenite-transformed cells. What's more, miR-106b-5p overexpression successfully rescued METTL3 knockdown-induced inhibition of the neoplastic phenotypes of transformed cells. Additionally, Basonuclin 2 (BNC2) was uncovered as a potential target of miR-106b-5p and downregulated by METTL3 via enhancing miR-106b-5p maturation. Additionally, the METTL3 inhibitor STM2457 suppressed neoplastic phenotypes of arsenite-transformed BEAS-2B cells by blocking pri-miR-106b methylation. These results demonstrate that m6A modification promotes the neoplastic phenotypes of arsenite-transformed BEAS-2B cells through METTL3/miR-106b-5p/BNC2 pathway, providing a new prospective for understanding arsenic carcinogenesis.
Collapse
Affiliation(s)
- Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lujiao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaxuan Hou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Luo R, Li L, Han Q, Fu J, Xiao F. HAGLR, stabilized by m6A modification, triggers PTEN-Akt signaling cascade-mediated RPE cell pyroptosis via sponging miR-106b-5p. J Biochem Mol Toxicol 2024; 38:e23596. [PMID: 38088496 DOI: 10.1002/jbt.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Consistent hyperglycaemia on retinal microvascular tissues is recognized as a vital inducer of diabetic retinopathy (DR) pathogenesis. In view of the essential functionality of long noncoding RNAs (lncRNAs) in multiple human diseases, we aim to figure out the exact role and underlying mechanisms of lncRNA HOXD Cluster Antisense RNA 1 (HAGLR) in DR pathogenesis. Serum specimens from patients with proliferative DR and healthy volunteers were collected for measuring HAGLR levels. Human primary retinal pigment epithelium (HRPE) cells kept in high glucose (HG) condition were applied to simulating hyperglycaemia of DR pathology in vitro. Cell proliferation, apoptosis, either pyroptosis was assess using Cell Counting Kit-8 TUNEL, flow cytometry, and enzyme-linked immunoassay assays. Bioinformatics analysis was subjected to examine the interaction between HAGLR and N6-methyladenosine (m6A)-bind protein IGF2BP2, as determined using RNA immunoprecipitation and RNA pull-down. Luciferase reporter assay was performed to assess the HAGLR-miR-106b-5p-PTEN axis. Levels of pyroptosis-associated biomarkers were detected using western blotting. Aberrantly overexpressed HAGLR was uncovered in the serum samples of DR patients and HG-induced HRPE cells, of which knockdown attenuated HG-induced cytotoxic impacts on cell apoptosis and pyroptosis. Whereas, reinforced HAGLR further aggravated these effects. IGF2BP2 positively regulated HAGLR in a m6A-dependent manner. HAGLR served as a sponge for miR-106b-5p to upregulate PTEN, thereby activating Akt signaling cascade. Rescue assays demonstrated that PTEN overexpression abolished the inhibition of silenced HAGLR on pyroptosis in HRPE cells. HAGLR, epigenetically modified by IGF2BP2 in an m6A-dependent manner, functioned as a sponge for miR-106b-5p, thereby activating PTEN/Akt signaling cascade to accelerate DR pathology.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Lan Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qingluan Han
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingsong Fu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Fan Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Ren X, Shen L, Gao S. Transcription Factor E2F1 Enhances Hepatocellular Carcinoma Cell Proliferation and Stemness by Activating GINS1. J Environ Pathol Toxicol Oncol 2024; 43:79-90. [PMID: 37824372 DOI: 10.1615/jenvironpatholtoxicoloncol.2023048594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Present studies report that high expression of GINS complex subunit 1 (GINS1) is notably pertinent to poor survival for hepatocellular carcinoma (HCC), but it remains unclear how GINS1 affects the progression of HCC. This study aims at investigating the mechanism by which GINS1 affects HCC cell proliferation and stemness. We performed bioinformatics analysis for determining GINS1 expression in HCC tissues, as well as the HCC patients' survival rate with different expression levels of GINS1. E2F transcription factor 1 (E2F1) was predicted as the upstream transcription factor of GINS1, and the binding relation between the two was verified by chromatin immunoprecipitation and dual-luciferase reporter assays. Quantitative real-time polymerase chain reaction was adopted to evaluate the expression of GINS1 and E2F1. The protein expression levels of GINS1, E2F1, and cell stemness-related genes (SOX-2, NANOG, OCT4, and CD133) were detected by Western blot. Afterward, the proliferative capacity and stemness of HCC tumor cells were determined through colony formation, cell counting kit-8, and sphere formation assays. Our study found the high expression of GINS1 and E2F1 in HCC, and overexpressed GINS1 markedly enhanced the sphere formation and proliferation of HCC cells, while silencing GINS1 led to the opposite results. Besides, E2F1 promoted the transcription of GINS1 by working as an upstream transcription factor. The results of the rescue experiment suggested that overexpressed E2F1 could offset the suppressive effect of GINS1 silencing on HCC cell stemness and proliferation. We demonstrated that the transcription factor E2F1 accelerated cell proliferation and stemness in HCC by activating GINS1 transcription. The results can provide new insight into the GINS1-related regulatory mechanism in HCC, which suggest that it may be an effective way for HCC treatment by targeting the E2F1/GINS1 axis.
Collapse
Affiliation(s)
- Xuefeng Ren
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Lianqiang Shen
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Shan Gao
- Department of General Surgery, Linping Campus, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 311100, China
| |
Collapse
|
7
|
Circular RNA circVPRBP serves as a microRNA-106b-5p sponge to regulate proliferation and metastasis of cervical cancer cells via tripartite motif-containing protein 3. Anticancer Drugs 2022; 33:850-860. [PMID: 35946546 DOI: 10.1097/cad.0000000000001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cervical cancer is a common malignant gynecological tumor for females all over the world. Circular RNAs (circRNAs) are being found to have relevance to various human cancers, including cervical cancer. This study is designed to explore the role and mechanism of circRNA DDB1- and CUL4-associated factor 1 (circVPRBP, also known as hsa_circ_0065898) on the progression of cervical cancer. CircVPRBP, microRNA-106b-5p (miR-106b-5p), and tripartite motif-containing protein 3 (TRIM3) levels were determined by real-time quantitative PCR. Cell proliferative ability, apoptosis rate, cell cycle progression, migration, and invasion were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, 5-ethynyl-2'-deoxyuridine, colony formation assay, flow cytometry, and transwell assays. Protein levels of matrix metallopeptidase 2 (MMP2) and matrix MMP9, and TRIM3 were measured by western blot assay. The binding relationship between miR-106b-5p and circVPRBP or TRIM3 was predicted by Starbase and then verified by a dual-luciferase reporter and RNA immunoprecipitation assays. The biological role of circVPRBP on cervical tumor growth was examined by the xenograft tumor model in vivo. CircVPRBP and TRIM3 were decreased, and miR-106b-5p was increased in cervical cancer tissues and cell lines. Furthermore, circVPRBP could suppress cell growth and metastasis of cervical cancer cells in vitro. Mechanically, circVPRBP could regulate TRIM3 expression by sponging miR-106b-5p. Also, circVPRBP upregulation repressed tumor growth of cervical cancer cells in vivo. CircVPRBP could inhibit the malignant biological behavior of cervical cancer cells by miR-106b-5p/TRIM3 axis, providing a promising therapeutic target for cervical cancer treatment.
Collapse
|
8
|
Hongwei L, Juan L, Xiaoying X, Zhijun F. MicroRNA-106b-5p (miR-106b-5p) suppresses the proliferation and metastasis of cervical cancer cells via down-regulating fibroblast growth factor 4 (FGF4) expression. Cytotechnology 2022; 74:469-478. [PMID: 36110154 PMCID: PMC9374859 DOI: 10.1007/s10616-022-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the function and mechanism of microRNA-106b-5p (miR-106b-5p) in cervical cancer (CC). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to determine miR-106b-5p expression in CC tissues and normal gastric tissues. Cell counting kit-8 (CCK-8) and colony formation assays were used to analyze the regulatory effects of miR-106b-5p on CC cells' proliferative ability. Wound healing and Transwell assays were conducted to detect the effects of miR-106b-5p on cell migration and invasion. Besides, TargetScan was used to predict the potential target genes of miR-106b-5p. The interaction between miR-106b-5p and fibroblast growth factor 4 (FGF4) was proved by qRT-PCR, Western blot, and dual-luciferase reporter gene assay. MiR-106b-5p expression was down-regulated in CC tissues compared to non-tumorous tissues. The expression of miR-106b-5p was associated with the lymphatic node metastasis, FIGO stage and differentiation of CC. Functional assays revealed that miR-106b-5p overexpression suppressed CC cell proliferation, migration and invasion while miR-106b-5p inhibitor had the opposite effects. In addition, FGF4 was identified as a target gene of miR-106b-5p, and FGF could be negatively regulated by miR-106b-5p. MiR-106b-5p may serve as a tumor suppressor in CC, which can inhibit CC growth and metastasis by down-regulating FGF4 expression.
Collapse
Affiliation(s)
- Lei Hongwei
- Departments of Radiation Oncology, The Second Hospital of Dalian Medical University, Dalian Medical University, Zhong Shan Road No.467, Dalian, 116027 Liaoning Province China
| | - Li Juan
- Departments of Radiation Oncology, The Second Hospital of Dalian Medical University, Dalian Medical University, Zhong Shan Road No.467, Dalian, 116027 Liaoning Province China
| | - Xu Xiaoying
- Departments of Radiation Oncology, The Second Hospital of Dalian Medical University, Dalian Medical University, Zhong Shan Road No.467, Dalian, 116027 Liaoning Province China
| | - Fan Zhijun
- Departments of Radiation Oncology, The Second Hospital of Dalian Medical University, Dalian Medical University, Zhong Shan Road No.467, Dalian, 116027 Liaoning Province China
| |
Collapse
|
9
|
Tian W, Hao X, Nie R, Ling Y, Zhang B, Zhang H, Wu C. Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens. J Anim Sci Biotechnol 2022; 13:81. [PMID: 35791010 PMCID: PMC9258119 DOI: 10.1186/s40104-022-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Background Excessive abdominal fat deposition in commercial broilers presents an obstacle to profitable meat quality, feed utilization, and reproduction. Abdominal fat deposition depends on the proliferation of preadipocytes and their maturation into adipocytes, which involves a cascade of regulatory molecules. Accumulating evidence has shown that microRNAs (miRNAs) serve as post-transcriptional regulators of adipogenic differentiation in mammals. However, the miRNA-mediated molecular mechanisms underlying abdominal fat deposition in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken abdominal adipogenesis. Results We established a chicken model of abdominal adipocyte differentiation and analyzed miRNA and mRNA expression in abdominal adipocytes at different stages of differentiation (0, 12, 48, 72, and 120 h). A total of 217 differentially expressed miRNAs (DE-miRNAs) and 3520 differentially expressed genes were identified. Target prediction of DE-miRNAs and functional enrichment analysis revealed that the differentially expressed targets were significantly enriched in lipid metabolism-related signaling pathways, including the PPAR signaling and MAPK signaling pathways. A candidate miRNA, gga-miR-106-5p, exhibited decreased expression during the proliferation and differentiation of abdominal preadipocytes and was downregulated in the abdominal adipose tissues of fat chickens compared to that of lean chickens. gga-miR-106-5p was found to inhibit the proliferation and adipogenic differentiation of chicken abdominal preadipocytes. A dual-luciferase reporter assay suggested that the KLF15 gene, which encodes a transcriptional factor, is a direct target of gga-miR-106-5p. gga-miR-106-5p suppressed the post-transcriptional activity of KLF15, which is an activator of abdominal preadipocyte proliferation and differentiation, as determined with gain- and loss-of-function experiments. Conclusions gga-miR-106-5p functions as an inhibitor of abdominal adipogenesis by targeting the KLF15 gene in chickens. These findings not only improve our understanding of the specific functions of miRNAs in avian adipogenesis but also provide potential targets for the genetic improvement of excessive abdominal fat deposition in poultry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00727-x.
Collapse
Affiliation(s)
- Weihua Tian
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Hao
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Sanya Institute of China Agricultural University, Hainan, 572025, Sanya, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. .,Sanya Institute of China Agricultural University, Hainan, 572025, Sanya, China.
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
miR-106b as an emerging therapeutic target in cancer. Genes Dis 2022; 9:889-899. [PMID: 35685464 PMCID: PMC9170583 DOI: 10.1016/j.gendis.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) comprise short non-coding RNAs that function in regulating the expression of tumor suppressors or oncogenes and modulate oncogenic signaling pathways in cancer. miRNAs expression alters significantly in several tumor tissues and cancer cell lines. For example, miR-106b functions as an oncogene and increases in multiple cancers. The miR-106b directly targets genes involved in tumorigenesis, proliferation, invasion, migration, and metastases. This review has focused on the miR-106b function and its downstream target in different cancers and provide perspective into how miR-106 regulates cancer cell proliferation, migration, invasion, and metastases by regulating the tumor suppressor genes. Since miRNAs-based therapies are currently being developed to enhance cancer therapy outcomes, miR-106b could be an attractive and prospective candidate in different cancer types for detection, diagnosis, and prognosis assessment in the tumor.
Collapse
|
11
|
Enkhnaran B, Zhang GC, Zhang NP, Liu HN, Wu H, Xuan S, Yu XN, Song GQ, Shen XZ, Zhu JM, Liu XP, Liu TT. microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/p27 Signaling Pathway in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1971559. [PMID: 35342408 PMCID: PMC8947873 DOI: 10.1155/2022/1971559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022]
Abstract
microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.
Collapse
Affiliation(s)
- Bilegsaikhan Enkhnaran
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Xuan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guang-Qi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of, Fudan University, Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
HNRNPA2B1 inhibited SFRP2 and activated Wnt-β/catenin via m6A-mediated miR-106b-5p processing to aggravate stemness in lung adenocarcinoma. Pathol Res Pract 2022; 233:153794. [DOI: 10.1016/j.prp.2022.153794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/07/2023]
|
13
|
Takuma K, Fujihara S, Fujita K, Iwama H, Nakahara M, Oura K, Tadokoro T, Mimura S, Tani J, Shi T, Morishita A, Kobara H, Himoto T, Masaki T. Antitumor Effect of Regorafenib on MicroRNA Expression in Hepatocellular Carcinoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031667. [PMID: 35163589 PMCID: PMC8835935 DOI: 10.3390/ijms23031667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is one of the leading causes of cancer-related deaths worldwide. Regorafenib, a multi-kinase inhibitor, is used as a second-line treatment for advanced HCC. Here, we aimed to investigate the mechanism of the antitumor effect of regorafenib on HCC and evaluate altered microRNA (miRNA) expression. Cell proliferation was examined in six HCC cell lines (HuH-7, HepG2, HLF, PLC/PRF/5, Hep3B, and Li-7) using the Cell Counting Kit-8 assay. Xenografted mouse models were used to assess the effects of regorafenib in vivo. Cell cycle analysis, western blotting analysis, and miRNA expression analysis were performed to identify the antitumor inhibitory potential of regorafenib on HCC cells. Regorafenib suppressed proliferation in HuH-7 cell and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in regorafenib-sensitive cells. During miRNA analysis, miRNA molecules associated with the antitumor effect of regorafenib were found. Regorafenib suppresses cell proliferation and tumor growth in HCC by decreasing cyclin D1 via alterations in intracellular and exosomal miRNAs in HCC.
Collapse
Affiliation(s)
- Kei Takuma
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan;
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Graduate School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho 761-0793, Kita-gun, Kagawa, Japan; (K.T.); (S.F.); (K.F.); (M.N.); (K.O.); (T.T.); (S.M.); (J.T.); (T.S.); (A.M.); (H.K.); (T.H.)
- Correspondence: ; Tel.: +81-87-891-2156
| |
Collapse
|
14
|
Liu YM, Cao Y, Zhao PS, Wu LY, Lu YM, Wang YL, Zhao JF, Liu XG. CircCCNB1 silencing acting as a miR-106b-5p sponge inhibited GPM6A expression to promote HCC progression by enhancing DYNC1I1 expression and activating the AKT/ERK signaling pathway. Int J Biol Sci 2022; 18:637-651. [PMID: 35002514 PMCID: PMC8741844 DOI: 10.7150/ijbs.66915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Circular RNAs (circRNAs), which generally act as microRNA (miRNA) sponges to competitively regulate the downstream target genes of miRNA, play an essential role in cancer biology. However, few studies have been reported on the role of circRNA based competitive endogenous RNA (ceRNA) network in hepatocellular carcinoma (HCC). Herein, we aimed to screen and establish the circRNA/miRNA/mRNA networks related to the prognosis and progression of HCC and further explore the underlying mechanisms of tumorigenesis. Methods: GEO datasets GSE97332, GSE108724, and GSE101728 were utilized to screen the differentially expressed circRNAs (DE-circRNAs), DE-miRNAs, and DEmRNAs between HCC and matched para-carcinoma tissues. After six RNA-RNA predictions and five intersections between DE-RNAs and predicted RNAs, the survival-related RNAs were screened by the ENCORI analysis tool. The ceRNA networks were constructed using Cytoscape software, based on two models of up-regulated circRNA/down-regulated miRNA/up-regulated mRNA and down-regulated circRNA/up-regulated miRNA/down-regulated mRNA. The qRT-PCR assay was utilized for detecting the RNA expression levels in HCC cells and tissues. The apoptosis, Edu, wound healing, and transwell assays were performed to evaluate the effect of miR-106b-5p productions on the proliferation, invasion, and metastasis of HCC cells. In addition, the clone formation, cell cycle, and nude mice xenograft tumor assays were used to investigate the influence of hsa_circ_0001495 (circCCNB1) silencing and overexpression on the proliferation of HCC cells in vitro and in vivo. Furthermore, the mechanism of downstream gene DYNC1I1 and AKT/ERK signaling pathway via the circCCNB1/miR-106b-5p/GPM6A network in regulating the cell cycle was also explored. Results: Twenty DE-circRNAs with a genomic length less than 2000bp, 11 survival-related DE-miRNAs, and 61 survival-related DE-mRNAs were screened out and used to construct five HCC related ceRNA networks. Then, the circCCNB1/miR-106b-5p/GPM6A network was randomly selected for subsequent experimental verification and mechanism exploration at in vitro and in vivo levels. The expression of circCCNB1 and GPM6A were significantly down-regulated in HCC cells and cancer tissues, while miR-106b-5p expression was up-regulated. After transfections, miR-106b-5p mimics notably enhanced the proliferation, invasion, and metastasis of HCC cells, while the opposite was seen with miR-105b-5p inhibitor. In addition, circCCNB1 silencing promoted the clone formation ability, the cell cycle G1-S transition, and the growth of xenograft tumors of HCC cells via GPM6A downregulation. Subsequently, under-expression of GPM6A increased DYNC1I1 expression and activated the phosphorylation of the AKT/ERK pathway to regulate the HCC cell cycle. Conclusions: We demonstrated that circCCNB1 silencing promoted cell proliferation and metastasis of HCC cells by weakening sponging of oncogenic miR-106b-5p to induce GPM6A underexpression. DYNC1I1 gene expression was up-regulated and further led to activation of the AKT/ERK signaling pathway.
Collapse
Affiliation(s)
- Yan-Ming Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong, China.,Department of Clinical Laboratory, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Medical Technology, Medical College of Shaoguan University, Shaogguan, Guangdong, China
| | - Ping-Sen Zhao
- Department of Clinical Laboratory, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Liang-Yin Wu
- Department of Clinical Laboratory, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Ya-Min Lu
- Department of Clinical Laboratory, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Yu-Long Wang
- Department of Anesthesiology, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Jia-Feng Zhao
- Department of Hepatobiliary Surgery, YueBei People's Hospital, Shaoguan, Guangdong, China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Zeng Y, Xu Q, Xu N. Long non-coding RNA LOC107985656 represses the proliferation of hepatocellular carcinoma cells through activation of the tumor-suppressive Hippo pathway. Bioengineered 2021; 12:7964-7974. [PMID: 34565286 PMCID: PMC8806957 DOI: 10.1080/21655979.2021.1984005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important regulatory roles in hepatocellular carcinoma (HCC). However, the function of LOC107985656 in HCC progression remains unclear. The lncRNA, mRNA and miRNA levels in HCC tissues or cells were measured using real-time quantitative polymerase chain reaction (RT-qPCR). The proliferation of cancer cells was evaluated using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) viability and colony formation assays. Bioinformatics prediction, dual luciferase assay and RNA pull-down assay were performed to analyze the relationships between LOC107985656 and miR-106b-5p, or miR-106b-5p and large tumor suppressor 1 (LATS1). The protein expression levels were detected using Western blot. Results showed that LncRNA LOC107985656 was downregulated in HCC tissues and cells. Upregulation of LOC107985656 inhibited the proliferation of HCC cells, whereas its knockdown promoted this phenomenon. LOC107985656 could activate the tumor-suppressive Hippo pathway by repressing yes association protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) (two homologs of Yki) protein expression in HCC. Further investigation suggested that LOC107985656 regulated the expression of LATS1 by acting as a sponge for absorbing miR-106b-5p in HCC cells. In conclusion, this study unraveled the role of LOC107985656 following a ceRNA (competing endogenous RNAs) mechanism for the miR-106b-5p/LATS1 axis in HCC. The results indicate potential diagnostic and therapeutic applications of LOC107985656 in HCC.
Abbreviations:
HCC: hepatocellular carcinoma; LncRNA: long non-coding RNA; LATS1: large tumor suppressor 1; MTT: 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; YAP: yes association protein; WWTR1: WW domain-containing transcription regulator protein 1; cDNA: single‐stranded complementary DNA; RT-qPCR: real-time quantitative polymerase chain reaction; Radio-Immunoprecipitation Assay (RIPA); BCA: bicinchoninic acid; ASO: antisense oligonucleotide; MST1/2: Ste20-like kinases 1/2; TEAD: TEA domain transcription factor; ceRNA: competing endogenous RNAs.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Internal Medicine, Chenglong Campus Hospital, Sichuan Normal University, Sichuan Province China
| | - Qin Xu
- Department of Infectious Diseases, First Affiliated Hospital of Xinjiang Medical University, Xinjiang China
| | - Nan Xu
- Department of Infectious Diseases, West China Hospital of Sichuan University, Sichuan Province China
| |
Collapse
|
16
|
Ling B, Liao X, Tang Q, Ye G, Bin X, Wang J, Pang Y, Qi G. MicroRNA-106b-5p inhibits growth and progression of lung adenocarcinoma cells by downregulating IGSF10. Aging (Albany NY) 2021; 13:18740-18756. [PMID: 34351868 PMCID: PMC8351668 DOI: 10.18632/aging.203318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the mechanistic role and prognostic significance of IGSF10 in lung adenocarcinoma. Oncomine database analysis showed that IGSF10 expression was significantly reduced in most cancer types, including lung adenocarcinoma (LUAD). In the TCGA-LUAD dataset, IGSF10 expression correlated positively with proportions of tumor-infiltrated B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Kaplan-Meier survival analysis showed that overall survival of patients with low IGSF10 expression was significantly shorter than those with high IGSF10 expression. MiRWalk2.0 database analysis and dual luciferase reporter assays confirmed that miR-106b-5p suppressed IGSF10 expression by binding to its 3’UTR. MiR-106b-5p levels inversely correlated with IGSF10 expression in the TCGA-LUAD dataset. Moreover, inhibition of miR-106b-5p significantly decreased in vitro proliferation, migration, and invasion by LUAD cells, whereas miR-106b-5p overexpression reversed those effects. These results demonstrate that IGSF10 is an independent prognostic factor for LUAD. Furthermore, miR-106b-5p suppressed IGSF10 expression in LUAD tissues by binding to its 3’UTR, which makes IGSF10 and miR-106b-5p potential prognostic biomarkers and therapeutic targets in LUAD patients.
Collapse
Affiliation(s)
- Bo Ling
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Xianjiu Liao
- College of Pharmacy, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Qiang Tang
- Department of Burn and Plastic Surgery and Wound Repair, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangbin Ye
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.,Medical College of Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaoyun Bin
- College of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yaqin Pang
- College of Medical Laboratory, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| |
Collapse
|
17
|
The Fibroblast-Like Synoviocyte Derived Exosomal Long Non-coding RNA H19 Alleviates Osteoarthritis Progression Through the miR-106b-5p/TIMP2 Axis. Inflammation 2021; 43:1498-1509. [PMID: 32248331 DOI: 10.1007/s10753-020-01227-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects people worldwide. The interaction between fibroblast-like synoviocytes (FLSs) and chondrocytes may play a vital role in OA disease pathology. However, the underlying mechanisms by which FLSs exert regulatory effects on chondrocytes still need to be elucidated. Exosomes, small membrane vesicles secreted from living cells, are known to play a variety of roles in mediating cell-to-cell communication through the transferring of biological components such as non-coding RNAs and proteins. Here, we investigate the cellular processes of chondrocytes regulated by FLS-derived exosomes and the mechanisms of action underlying the functions of exosomes in OA pathogenesis. We observed that exosome-mediated cartilage repair was characterized by increased cell viability and migration as well as alleviated matrix degradation. Using chondrocyte cultures, the enhanced cellular proliferation and migration during exosome-mediated cartilage repair was linked to the exosomal lncRNA H19-mediated regulation of the miR-106b-5p/TIMP2 axis. Transfection of miR-106-5p mimics in chondrocytes significantly decreased cell proliferation and migration, promoted matrix degradation characterized by elevated MMP13 and ADAMTS5 expression, and reduced the expression of COL2A1 and ACAN in chondrocytes. Furthermore, we found that TIMP2 was directly regulated by miR-106-5p. Co-transfections of miR-106-5p mimics and TIMP2 resulted in higher levels of COL2A1 and ACAN, but lower levels of MMP13 and ADAMTS5. Together, these observations demonstrated that the lncRNA H19 may promote chondrocyte proliferation and migration and inhibit matrix degradation in OA possibly by targeting the miR-106b-5p/TIMP2 axis. In the future, H19 may serve as a potential therapeutic target for the treatment of OA.
Collapse
|
18
|
Yang L, Si H, Ma M, Fang Y, Jiang Y, Wang J, Zhang C, Xiao H. LINC00221 silencing prevents the progression of hepatocellular carcinoma through let-7a-5p-targeted inhibition of MMP11. Cancer Cell Int 2021; 21:202. [PMID: 33836753 PMCID: PMC8035785 DOI: 10.1186/s12935-021-01819-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Microarray profiles of hepatocellular carcinoma (HCC) identified that long intergenic noncoding RNA 00221 (LINC00221) was upregulated. Herein, we aimed to identify the functional significance and underlying mechanisms of LINC00221 in HCC. Methods and results Human HCC samples had increased expression of LINC00221. Effects of LINC00221 on HCC cellular functions were analyzed using gain- and loss-function approaches. LINC00221 knockdown repressed HCC cell growth, migration, and invasion and enhanced their apoptosis. This anti-tumor effect was validated in vivo. Online prediction showed the potential binding relationship between LINC00221 and let-7a-5p, as well as that between let-7a-5p and matrix metalloproteinase 11 (MMP11). The results of luciferase, RNA immunoprecipitation, and RNA pull-down assays identified that LINC00221 interacted with let-7a-5p to increase expression of MMP11. Furthermore, we demonstrated that LINC00221 silencing increased let-7a-5p and inhibited MMP11 expression, thereby delaying the progression of HCC in vitro. Conclusions Silencing of LINC00221 could prevent HCC progression via upregulating let-7a-5p and downregulating MMP11. As such, LINC00221 inhibition presents a promising antitumor strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China
| | - Hailong Si
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China
| | - Meng Ma
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China
| | - Yu Fang
- Diagnostic Teaching and Research Unit, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Yina Jiang
- Diagnostic Teaching and Research Unit, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Jintao Wang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China
| | - Cheng Zhang
- Department of Hepatobiliary Surgery, Shaanxi Province, Xianyang Central Hospital, No. 78, Renmin East Road, Weicheng District, Xianyang, 712000, People's Republic of China.
| | - Haijuan Xiao
- Department of Oncology, Shaanxi Province, Affiliated Hospital of the Shaanxi University of Traditional Chinese Medicine, No. 2, Weiyang West Road, Xianyang, 712000, People's Republic of China.
| |
Collapse
|
19
|
Yang C, Dou R, Wei C, Liu K, Shi D, Zhang C, Liu Q, Wang S, Xiong B. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis. Mol Ther 2021; 29:2088-2107. [PMID: 33571679 DOI: 10.1016/j.ymthe.2021.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is reported to involve in the crosstalk between tumor cells and tumor-associated macrophages (TAMs). Exosomes are considered as important mediators of orchestrating intercellular communication. However, the underlying mechanisms by which EMT-colorectal cancer (CRC) cells promote the M2 polarization of TAMs remain less understood. In this study, we found that EMT-CRC cells promoted the M2-like polarization of macrophages by directly transferring exosomes to macrophages, leading to a significant increase of the microRNA-106b-5p (miR-106b) level in macrophages. Mechanically, an increased level of miR-106b activated the phosphatidylinositol 3-kinase (PI3K)γ/AKT/mammalian target of rapamycin (mTOR) signaling cascade by directly suppressing programmed cell death 4 (PDCD4) in a post-transcription level, contributing to the M2 polarization of macrophages. Activated M2 macrophages, in a positive-feedback manner, promote EMT-mediated migration, invasion, and metastasis of CRC cells. Clinically, miR-106b was significantly elevated in CRC tissues and negatively correlated with the levels of PDCD4 in CRC specimens, and high expression of exosomal miR-106b in plasma was significantly associated with the malignant progression of CRC. Taken together, our results indicate that exosomal miR-106b derived from EMT-CRC cells has an important role in intercellular communication for inducing M2 macrophage polarization, illuminating a novel mechanism underlying CRC progression and offering potential targets for prevention of CRC metastasis.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Dongdong Shi
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Chunxiao Zhang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Qing Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China; Hubei Cancer Clinical Study Center, Wuhan 430071, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| |
Collapse
|
20
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
21
|
Chen W, Zhang K, Yang Y, Guo Z, Wang X, Teng B, Zhao Q, Huang C, Qiu Z. MEF2A-mediated lncRNA HCP5 Inhibits Gastric Cancer Progression via MiR-106b-5p/p21 Axis. Int J Biol Sci 2021; 17:623-634. [PMID: 33613117 PMCID: PMC7893594 DOI: 10.7150/ijbs.55020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are deemed to be relevant to the tumorigenesis and development of a variety of tumors, containing gastric cancer (GC). The purpose of our investigations is to explore the character of HCP5 in GC. Methods: HCP5 expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) in 62 matched GC tissues and corresponding para-carcinoma tissues. In vitro and in vivo functional assays were subjected to verify the biological effects of HCP5 after alteration of HCP5. Chromatin immunoprecipitation assay (CHIP) assays were conducted to confirm that myocyte enhancer factor 2A (MEF2A) could bind to HCP5 promoter regions and thereby induce HCP5 expression. Analysis of the latent binding of miR-106b-5p to HCP5 and p21 was made by bioinformatics prediction and luciferase reporter assays. Results: Significant downregulation of HCP5 was detected in GC tissues. Negative correlation was determined between HCP5 expression level and tumor size and overall survival in GC patients. HCP5 depletion had a facilitating impact on proliferation, migration and invasion of GC cells. Consistently, overexpression of HCP5 came into an opposite effect. Moreover, we demonstrated that MEF2A could combine with the promoter region of HCP5 and thereby induce HCP5 transcription. Luciferase reporter assays revealed that HCP5 could compete with miR-106b-5p as a competing endogenous RNA (ceRNA) and upregulated p21 expression in GC. Conclusions: MEF2A-mediated HCP5 could exert an anti-tumor effect among the development of GC via miR-106b-5p/p21 axis, which provides a novel target for GC therapy.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Buwei Teng
- Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, 6 Zhenhua East Road, Haizhou District, City of Lianyungang, Jiangsu Province, 222061, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, 201600, China
| |
Collapse
|
22
|
Liu J, Lu J, Li W. A Comprehensive Prognostic and Immunological Analysis of a New Three-Gene Signature in Hepatocellular Carcinoma. Stem Cells Int 2021; 2021:5546032. [PMID: 34188686 PMCID: PMC8192212 DOI: 10.1155/2021/5546032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are few reports on the role of genes associated with the mRNA expression-based stemness index (mRNAsi) in the prognosis and immune regulation of hepatocellular carcinoma (HCC). This study is aimed at analyzing the expression profile and prognostic significance of a new mRNAsi-based three-gene signature in HCC. This three-gene signature was identified by analyzing mRNAsi data from the Cancer Genome Atlas (TCGA) HCC dataset. The prognostic value of the risk score based on the three-gene signature was evaluated by Cox regression and Kaplan-Meier analysis and then verified in the International Cancer Genome Consortium (ICGC) database. Meanwhile, the correlations between the risk score and immune cell infiltration patterns, microsatellite instability (MSI), tumor mutation burden (TMB), immune checkpoint molecules, hypoxia-related genes, immunotherapy response, and compounds targeting the gene signature were explored, respectively. The results showed that compared with normal liver tissues, the mRNAsi score of HCC tissues was significantly increased. PTDSS2, MRPL9, and SOCS were the genes most related to mRNAsi in HCC tissues. Survival analysis results suggested the risk score based on the three-gene signature was an independent predictor of the prognosis for patients with HCC. The nomogram combining the risk score and pathological stage showed a good predictive ability for the overall survival of patients with HCC patients. Meanwhile, the risk score was significantly related to immune cell infiltration patterns, MSI, TMB, several immune checkpoint molecules, and hypoxia-related genes. In addition, the risk score was associated with the immunotherapy response, and fifteen potential therapeutic drugs targeting the three-gene signature were identified. Therefore, we propose to use this three-gene signature including PTDSS2, MRPL9, and SOCS as a potential prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Jianjun Lu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510080, China
- Department of Medical Affairs, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| |
Collapse
|
23
|
Li Y, Chen G, Han Z, Cheng H, Qiao L, Li Y. IL-6/STAT3 Signaling Contributes to Sorafenib Resistance in Hepatocellular Carcinoma Through Targeting Cancer Stem Cells. Onco Targets Ther 2020; 13:9721-9730. [PMID: 33061451 PMCID: PMC7533247 DOI: 10.2147/ott.s262089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sorafenib is the standard first-line treatment for advanced hepatocellular carcinoma (HCC), even though acquired resistance to sorafenib has been found in many HCC patients, resulting in poor prognosis. Accumulating evidence demonstrates that liver cancer stem cells (LCSCs) contribute to sorafenib resistance in HCC. The inflammatory factor interleukin 6 (IL-6) plays a role in sorafenib resistance in HCC. However, the mechanism by which IL-6 in LCSCs is involved in the process of HCC sorafenib resistance remains elusive. Methods In this study, the sorafenib-resistant cell line PLC/PRF/5-R was generated by the concentration gradient method, and cell viability was determined by the CCK-8 assay. LCSCs were isolated from the PLC/PRF/5-R cell line by flow cytometry, and tumorigenesis was confirmed in nude mice. Blockade of IL-6 cells was achieved by lentiviral-mediated interference. The protein levels of stem cell markers (EpCAM, CD44), stemness markers (Oct3/4, β-catenin), and hepatocyte differentiation markers (glucose-6-phosphate, AFP) were measured by Western blotting analysis. Finally, a xenograft model was used to evaluate the function of IL-6 in the sorafenib resistance of HCC. Results The stable sorafenib-resistant HCC cell line PLC/PRF/5-R was established and showed significant epithelial–mesenchymal transition (EMT) characteristics; the isolated resistant LCSCs from PLC/PRF/5-R were more tumorigenic than the control LCSCs. We showed that IL-6, IL-6R, STAT3 and GP130 expression were dramatically increased in resistant LCSCs compared to control LCSCs. Downregulation of IL-6 expression with short hairpin RNA (shRNA) restored sorafenib sensitivity in resistant LCSCs, suggesting the critical roles of IL-6/STAT3 in inducing sorafenib resistance. Furthermore, a xenograft tumor model showed that IL-6 downregulation improved the antitumor effect of sorafenib. Conclusion LCSCs play an important role in sorafenib-resistant HCC, and inhibition of the IL-6/STAT3 signaling pathway improves the antitumor effects of sorafenib against HCC in vitro and in vivo. These findings demonstrate that IL-6 in LCSCs may function as a novel target for combating sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Yu Li
- General Surgery Department, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| | - Gang Chen
- General Surgery Department, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| | - Zhijian Han
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| | - Huijuan Cheng
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| | - Liang Qiao
- Storr Liver Unit at the Westmead Millennium Institute, The University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| | - Yumin Li
- General Surgery Department, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
24
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 430] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
25
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
26
|
Li N, Cheng C, Wang T. MiR-181c-5p Mitigates Tumorigenesis in Cervical Squamous Cell Carcinoma via Targeting Glycogen Synthase Kinase 3β Interaction Protein (GSKIP). Onco Targets Ther 2020; 13:4495-4505. [PMID: 32547080 PMCID: PMC7247609 DOI: 10.2147/ott.s245254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is a highly prevalent cancer and one of the main causes of death among women worldwide. The miR-181 family has turned out to be associated with tumorigenesis in a variety of tumors by regulating the expression of tumor-related genes. However, the mechanisms and biological function of miR-181c-5p in cervical squamous cell carcinoma (SCC) have not been well elucidated. MATERIALS AND METHODS SiHa cell lines with specific gene overexpression vectors were constructed. Targetscan was used to predict the binding site of miR-181c-5p and GSKIP. MTT assay was used to detect the clone formation rate. Flow cytometry was used to detect the apoptosis rate and to separate the cell markers. The Transwell test was used to detect cell invasion. Immunohistochemistry was used to detect protein expression in tumor tissues. Western Blotting was used to detect the expression levels of related proteins. RESULTS GSKIP was predicted to be the target gene of miR-181c-5p in cervical SCC. MiR-181c-5p overexpression suppressed SiHa cells proliferation and promoted apoptosis; the protein expressions of Ki67 and PCNA were decreased, but the expressions of Caspase-3 and Bax/Bcl-2 were increased. The overexpression of miR-181c-5p inhibited the stem-like properties of SiHa cells; the expressions of SOX2, OCT4 and CD44 were decreased. Furthermore, miR-181c-5p upregulation limited the invasion of SiHa cells; the expression of E-cadherin was higher, but the expressions of N-cadherin and Vimentin were lower. MiR-181c-5p overexpression inhibited tumorigenesis in cervical SCC tissues; the expressions of Ki67, Caspase-3, CD44 and Vimentin in vivo were consistent with those in vitro. CONCLUSION Taken together, miR-181c-5p was able to mitigate the cancer cell characteristic and invasive properties of cervical SCC through targeting GSKIP gene.
Collapse
Affiliation(s)
- Niuniu Li
- Department of Gynecology and Obstetrics of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| | - Chun Cheng
- Department of Pediatrics, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei435000, People’s Republic of China
| | - Tieyan Wang
- Clinical Pathology Department of Shiyan, Taihe Hospital of Hubei Province, Shiyan, Hubei442000, People’s Republic of China
| |
Collapse
|
27
|
Yang C, Dou R, Yin T, Ding J. MiRNA-106b-5p in human cancers: diverse functions and promising biomarker. Biomed Pharmacother 2020; 127:110211. [PMID: 32422566 DOI: 10.1016/j.biopha.2020.110211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs), as a class of small, well-conserved, non-coding RNA molecules, hold the capacity to post-transcriptionally suppress the expression of over 50% protein-coding genes. Emerging and accumulating evidence suggests that miRNAs function as the master regulators of multiple pathophysiological processes, and play important roles in diverse human diseases, especially in tumorigenesis and progression. MiR-106b-5p, a member of miR-106b seed family, has been demonstrated to be aberrantly expressed in human solid malignancies, and to play paradoxically opposing functions as an oncomiR or a tumor suppressor in tumor development. In addition, it has been recently reported to be a promising biomarker for prognostic evaluation for cancer patients. In the present review, we provided an overview to summarize the present findings of miR-106b-5p in cancer research fields, thereby establishing comprehensive understanding of its diverse functions and clinical implications in human cancers.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China; Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| |
Collapse
|
28
|
Shi DM, Shi XL, Xing KL, Zhou HX, Lu LL, Wu WZ. miR-296-5p suppresses stem cell potency of hepatocellular carcinoma cells via regulating Brg1/Sall4 axis. Cell Signal 2020; 72:109650. [PMID: 32320856 DOI: 10.1016/j.cellsig.2020.109650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a pivotal event during cancer progression such as relapse and metastasis, is positively correlated with the stemness potency of tumor cells. Our previous study showed that miR-296-5p attenuated EMT program of hepatocellular carcinoma cells (HCC) through NRG1/ERBB2/ERBB3 signaling. In the present study, we uncovered that miR-296-5p was able to inhibit the stemness potency of HCC by decreasing the number and size of tumorspheres, downregulating the expression of CSC biomarkers and hampering the ability of tumorigenesis in NOD/SCID mice. Brahma-related gene-1 (Brg1), as the target protein of miR-296-5p detected by bioinformatics methods, activates a series of downstream cascades through directly binding to Sall4 promoter and enhancing Sall4 transcription. Importantly, the higher expressions of Brg1 and Sall4 in tumor tissues of HCC patients suggest poorer prognoses after surgical extraction. In conclusion, miR-296-5p exerts an inhibitory effect on stemness potency of HCC cells via Brg1/Sall4 axis.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Xiao-Li Shi
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Kai-Lin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Hong-Xin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Li-Li Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China.
| |
Collapse
|
29
|
Chen H, Ma Q, Zhang J, Meng Y, Pan L, Tian H. miR‑106b‑5p modulates acute pulmonary embolism via NOR1 in pulmonary artery smooth muscle cells. Int J Mol Med 2020; 45:1525-1533. [PMID: 32323756 PMCID: PMC7138273 DOI: 10.3892/ijmm.2020.4532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/17/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pulmonary embolism (APE) is a common cause of acute cardiovascular failure and has a high morbidity and mortality rate. Inhibiting the excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) is a potential treatment strategy following an APE. Various microRNAs (miRNAs/miRs) have been shown to regulate cell proliferation, apoptosis and other physiological processes. However, the specific mechanisms underlying the action of multiple miRNAs are still not understood in APE. In the present study, the role of miR‑106b‑5p on APE was demonstrated in platelet‑derived growth factor (PDGF)‑induced PASMCs in vitro and in an APE‑mouse model in vivo. The results showed that miR‑106b‑5p expression was downregulated in PDGF‑induced PASMCs and APE mice, and NOR1 levels were upregulated. Proliferating cell nuclear antigen (PCNA) expression levels in cells and proliferation of PASMCs proliferation and migration were reduced following treatment with miR‑106b‑5p agomiR, and increased following treatment with miR‑106b‑5p antagomiR. miR‑106b‑5p targeted the 3' untranslated region of NOR‑1 mRNA and reduced NOR1 expression. NOR1 overexpression reversed the effects of miR‑106‑5p on PDGF‑induced PASMCs. The functional roles of miR‑106b‑5p in PDGF‑induced PASMCs and an APE mouse‑model, and the underlying molecular mechanisms were evaluated. AgomiR‑106b‑5p improved APE‑induced mortality and pulmonary vascular proliferation in mice. These data suggest that miR‑106‑5p is a novel regulator of proliferation of PASMCs and of pulmonary vascular remodeling through PDGF‑induced PASMCs in an APE mouse model via targeting NOR1. These results expand the understanding of the pathogenesis underlying APE and highlight potential novel therapeutic targets.
Collapse
Affiliation(s)
- Heming Chen
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiang Ma
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Junbo Zhang
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Meng
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongyan Tian
- Department of Peripheral Vascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
30
|
miR-106b-5p promotes cell proliferation and cell cycle progression by directly targeting CDKN1A in osteosarcoma. Exp Ther Med 2020; 19:3203-3210. [PMID: 32266016 PMCID: PMC7132225 DOI: 10.3892/etm.2020.8574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA (miR)-106b-5p has been reported to act as both an oncogene and tumor suppressor in several tumors. The aim of the present study was to investigate the biological function of miR-106b-5p in osteosarcoma (OS). miR-106b-5p expression was observed to be significantly increased in OS tissues and cell lines. MTT assay and flow cytometry analysis determined that miR-106b-5p inhibitor transfection suppressed OS cell proliferation and induced cell cycle G0/G1 phase arrest. Furthermore, bioinformatics analysis and a luciferase reporter assay demonstrated that cyclin-dependent kinase inhibitor 1A (CDKN1A) was a potential target of miR-106b-5p. p21 protein expression was found to be significantly increased by miR-106b-5p downregulation in OS cells. Further analysis demonstrated that CDKN1A was downregulated in OS tissues and was negatively correlated with miR-106b-5p expression. Furthermore, upregulation of CDKN1A expression mimicked, whilst CDKN1A knockdown reversed the suppressive effects of miR-106b-5p inhibitor on OS cell proliferation and cell cycle progression. In summary, the present data suggested that miR-106b-5p promotes cell proliferation and cell cycle progression by directly targeting CDKN1A in OS.
Collapse
|
31
|
Zhang Y, Wang L, Xu J, Kong X, Zou L. Up-regulated miR-106b inhibits ox-LDL-induced endothelial cell apoptosis in atherosclerosis. ACTA ACUST UNITED AC 2020; 53:e8960. [PMID: 32130290 PMCID: PMC7057938 DOI: 10.1590/1414-431x20198960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
This research aimed to explore the molecular mechanism of microRNA (miR)-106b in cell apoptosis of atherosclerosis (AS). Human aortic endothelial cells (HAECs) were divided into control group, oxidized-low-density lipoproteins (ox-LDL) group, miR-106b NC+ox-LDL group, miR-106b mimics+ox-LDL group, miR-106b mimics+PTEN+ox-LDL group, and miR-106b mimics+empty+ox-LDL group. Real-time fluorescence quantitative polymerase chain reaction, cholecystokinin, TdT-mediated biotinylated nick end-labeling assay, luciferase reporter gene assay, and flow cytometry analysis were performed to determine the morphology, proliferation, and apoptosis in HSECs. Moreover, the levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), Bcl-2, p-P13K, and p-AKT in HAECs were detected by western blot. MiR-106b was down-regulated in ox-LDL-induced HAECs. PTEN was the target gene of miR-106b-5p. Overexpression of PTEN inhibited the anti-apoptotic effect of miR-106b. Compared with the control group, the proportion and number of HAECs apoptosis and Bax, caspase-3, and caspase-9 expression in ox-LDL and miR-106b mimics+PTEN+ox-LDL groups were significantly increased (all P<0.05). Moreover, the activity of HAECs and Bcl-2 were decreased significantly (all P<0.05). Overexpression of miR-106b in ox-LDL-induced AS inhibited endothelial cell apoptosis. Furthermore, miR-106b might activate the PI3K/AKT pathway by down-regulating the expression of PTEN in ox-LDL-induced HAECs.
Collapse
Affiliation(s)
- Yunqing Zhang
- Department of Cardiology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Li Wang
- Department III of Cardiology, The Central Hospital of Dalian, Dalian, Liaoning, China
| | - Jie Xu
- Department of Endocrinology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaomei Kong
- Department of Endocrinology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lin Zou
- Department of Cardiology, Zuanshiwan Branch of The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
32
|
Wu H, Wang J, Ma Z. Long noncoding RNA HOXA-AS2 mediates microRNA-106b-5p to repress sepsis-engendered acute kidney injury. J Biochem Mol Toxicol 2020; 34:e22453. [PMID: 32048402 DOI: 10.1002/jbt.22453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
HOXA cluster antisense RNA 2 (HOXA-AS2) is a long noncoding RNA associated with the development of numerous cancers. But, whether HOXA-AS2 exhibits a certain function in sepsis-engendered acute kidney injury (AKI) remains uninvestigated. We strived to unveil the role of HOXA-AS2 in sepsis-engendered AKI. The expression of HOXA-AS2 in sepsis patients, animal models and lipopolysaccharide (LPS)-impaired HK-2 cells was primarily assessed via a real-time quantitative polymerase chain reaction. The effects of HOXA-AS2 on cell survival of HK-2 cells under LPS irritation were evaluated after overexpression of HOXA-AS2. The correlation between HOXA-AS2 and microRNA (miR)-106b-5p was forecasted via bioinformatics software and verified by using a luciferase report system. Subsequently, the functions of miR-106b-5p in LPS-damaged HK-2 cells were reassessed. Western blot was used for the determination of Wnt/β-catenin and nuclear factor-κB (NF-κB) pathways. HOXA-AS2 expression was decreased in sepsis patients, animal operation group and LPS-irritated HK-2 cells. Overexpressed HOXA-AS2 mollified LPS-triggered impairment in HK-2 cells. In addition, a negative mediatory relation between HOXA-AS2 and miR-106b-5p was predicated. Synchronously, overexpressed miR-106b-5p counteracted the protection of HOXA-AS2 in LPS-damaged HK-2 cells. Ultimately, Wnt/β-catenin and NF-κB pathways were hindered by HOXA-AS2 via targeting miR-106b-5p. HOXA-AS2 exhibited protection in sepsis-engendered AKI via targeting miR-106b-5p and hindering the Wnt/β-catenin and NF-κB pathways.
Collapse
Affiliation(s)
- Huifeng Wu
- Department of Emergency, Tongchuan People's Hospital, Tongchuan, Shaanxi, China
| | - Jing Wang
- Department of Critical Care Medicine I, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zhen Ma
- Department of Critical Care Medicine II, Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
33
|
Piao L, Li H, Feng Y, Yang Z, Kim S, Xuan Y. SET domain-containing 5 is a potential prognostic biomarker that promotes esophageal squamous cell carcinoma stemness. Exp Cell Res 2020; 389:111861. [PMID: 31981592 DOI: 10.1016/j.yexcr.2020.111861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
SET domain-containing 5 (SETD5) is an uncharacterized member of the protein lysine methyltransferase family. Although it was reported that SETD5 gene mutations are associated with the several types of human cancer, its functional role in esophageal squamous cell carcinoma (ESCC) progression has not been fully elucidated. In the present study, we used tissue samples from 147 patients with ESCC and ESCC cell lines to determine the clinicopathological significance of SETD5 in ESCC and its effects on ESCC stemness. We performed immunohistochemical staining, immunofluorescence imaging, and tumor sphere formation, colony formation, flow cytometry, wound healing, Transwell, and western blotting assays. SETD5 expression was upregulated in ESCC tissue and associated with primary tumor (pT) stage, clinical stage, lymph node metastasis, shorter overall survival rate, and disease-free survival rate. Cox regression analyses indicated that SETD5 is an independent poor prognostic factor of ESCC. In addition, SETD5 expression was correlated with cancer stemness-related protein, hypoxia-inducible factor-1α (HIF-1α), and CD68 expression. Moreover, immunofluorescence analysis revealed that SETD5 was co-localized with CD44 and SOX2 in TE10 and TE11 cells and that exposing cells to cobalt chloride increased HIF-1α, SETD5, and stemness-related protein expression in a time-dependent manner. Furthermore, SETD5 expression was significantly correlated with the expression of cell cycle-related genes and PI3K/Akt signaling pathway-related proteins. Finally, knocking down SETD5 downregulated the expression of stemness-related and PI3K/Akt signaling pathway proteins, while inhibiting tumor spheroid formation, cell proliferation, migration, and invasion in ESCC cells. These results indicate that SETD5 expression is associated with cancer stemness and that SETD5 is a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, 110-745, South Korea
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
34
|
Sun S, Chen H, Xu C, Zhang Y, Zhang Q, Chen L, Ding Q, Deng Z. Exosomal miR-106b serves as a novel marker for lung cancer and promotes cancer metastasis via targeting PTEN. Life Sci 2020; 244:117297. [PMID: 31954745 DOI: 10.1016/j.lfs.2020.117297] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
As novel non-invasive tumor diagnostic biomarkers, exosomal bioactive miRNAs have received increasing attention. Herein, the aim of this study is to explore the clinical values and roles of exosomal miR106b in lung cancer. The exosomal miR-106b level was much higher in the serum of patients with lung cancer than that in healthy volunteers. Also, the exosomal miR-106b level in the lung cancer patient serum was associated with TNM stages and lymph node metastasis. Furthermore, exosomal miR-106b enhanced the migrated and invasive ability of lung cancer cells and increased the MMP-2 and MMP-9 expression. Mechanistically, exosomal miR-106b could target PTEN, and promote lung cancer cell migration and invasion. More importantly, PTEN overexpression reversed the effect of exosomal miR-106b on lung cancer cell migration and invasion. Taken together, these findings indicate that exosomal miR-106b may be a promising diagnostic biomarker and drug target for patients with lung cancer.
Collapse
Affiliation(s)
- Shifang Sun
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Hailin Chen
- Department of Clinical Laboratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Chenlei Xu
- Department of Clinical Pharmacology, The Affiliated Hospital of Medical School of Ningbo University
| | - Yun Zhang
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Qiaoli Zhang
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Lei Chen
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Qunli Ding
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University
| | - Zaichun Deng
- Department of Respiratory, The Affiliated Hospital of Medical School of Ningbo University.
| |
Collapse
|
35
|
MicroRNAs in Animal Models of HCC. Cancers (Basel) 2019; 11:cancers11121906. [PMID: 31805631 PMCID: PMC6966618 DOI: 10.3390/cancers11121906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. miRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.
Collapse
|
36
|
Li Y, Liu J, Hu W, Zhang Y, Sang J, Li H, Ma T, Bo Y, Bai T, Guo H, Lu Y, Xue X, Niu M, Ge S, Wen S, Wang B, Gao W, Wu Y. miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma. Onco Targets Ther 2019; 12:10441-10453. [PMID: 31819525 PMCID: PMC6890199 DOI: 10.2147/ott.s224325] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies revealed that miR-424-5p regulates the malignant behavior of multiple cancer types. However, the expression and function of miR-424-5p in laryngeal squamous cell carcinoma (LSCC) is unclear. Purpose This study aimed to evaluate the association of miR-424-5p level with clinical features of LSCC and investigate the effect and potential mechanism of miR-424-5p on LSCC progression. Methods The expression of miR-424-5p in LSCC and paired adjacent normal margin (ANM) tissues from 106 patients with LSCC were analyzed by quantitative PCR (qPCR), and clinical significance was analyzed. Target genes of miR-424-5p were predicted, followed by functional annotation. The functional role of miR-424-5p in LSCC was investigated by molecular and cellular experiments with LSCC cell lines, with flow cytometry used for cell cycle analysis. In addition, miR-424-5p regulation of the predicted target gene cell adhesion molecule 1 (CADM1) was validated by qPCR, Western blot analysis and luciferase reporter assay. Results miR-424-5p was upregulated in LSCC versus ANM tissues. High miR-424-5p level was significantly associated with poor differentiation, advanced tumor stage and cervical lymph node metastasis. Bioinformatics analysis showed that miR-424-5p target genes are mainly enriched in biological processes of the cell cycle, cell division, and negative regulation of cell migration, and were involved in multiple cancer-related pathways. Overexpression of miR-424-5p promoted proliferation, migration, invasion, and adhesion of LSCC cells and affected the cell cycle progression. Additionally, CADM1 was a direct target of miR-424-5p in LSCC cells. Conclusion miR-424-5p functions as an oncogene to promote the aggressive progression of LSCC, and CADM1 is a direct downstream target of miR-424-5p in LSCC cells. miR-424-5p may be a potential therapeutic target in LSCC.
Collapse
Affiliation(s)
- Yujun Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Wanglai Hu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230027, People's Republic of China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Jiangwei Sang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, Dalian, Liaoning 116001, People's Republic of China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing 101149, People's Republic of China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Tao Bai
- Department of Pathology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shanshan Ge
- Health Management Center, the First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, People's Republic of China
| | - Shuxin Wen
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Shanxi Province, Taiyuan 030001, Shanxi, People's Republic of China
| |
Collapse
|
37
|
Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, Azzolina A, Montalto G, Cervello M, McCubrey JA. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915-929. [PMID: 31657972 DOI: 10.1080/14728222.2019.1685501] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Hepatocellular carcinoma (HCC) is a significant problem globally because of viral infections and the increasing incidence of obesity and fatty liver disease. However, it is difficult to treat because its inherent genetic heterogeneity results in activation of numerous signaling pathways. Kinases have been targeted for decades with varying results, but the development of therapeutic resistance is a major challenge.Areas covered: The key roles of the RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1, TP53 microRNAs (miRs) as therapeutic targets are discussed and we suggests novel approaches for targeting miRs or their downstream targets to combat HCC. We performed literature searches using the Medline Database from 2000 to the present.Expert opinion: The involvement of RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC and TP53 pathways as drivers of the disease and drug resistance is a challenge. Moreover, miRs regulate the expression of key genes in these pathways. What we and others are proposing is the prospect of targeting miRs and their downstream targets to improve conventional approaches to treat HCC. Combination approaches are often promising because multiple signaling pathways are deregulated due to diverse mutations and events.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Maria R Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonina Azzolina
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| |
Collapse
|
38
|
Cheng CC, Chao WT, Liao CC, Shih JH, Lai YS, Hsu YH, Liu YH. The Roles Of Angiogenesis And Cancer Stem Cells In Sorafenib Drug Resistance In Hepatocellular Carcinoma. Onco Targets Ther 2019; 12:8217-8227. [PMID: 31632072 PMCID: PMC6783114 DOI: 10.2147/ott.s217468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background An increasing number of studies support cancer stem cells as the reason for chemoresistance to sorafenib therapy in hepatocellular carcinoma (HCC), but the mechanism is still unclear. In this study, the mechanism of sorafenib resistance in cancer stem cells was examined by in vitro experiments and xenograft mouse model. Methods The expression of cancer stem cell markers in the Chang liver cell line and PLC/PRF/5 and HepG2 hepatoma cell lines were compared by immunoblot assay before and after sorafenib treatment in vitro. As a xenograft mouse model, subcutaneous injection of hepatoma cells followed by sorafenib therapy was performed in NU/NU mice. The effects of sorafenib therapy on tumor growth and cancer stem cell markers were studied. Angiogenesis associated with cancer stem cells was studied by immunoblot and immunohistochemistry assay. Results The expression of cancer stem cell markers was higher in PLC/PRF/5 and HepG2 cells than Chang liver cells, indicating that these hepatoma cells had more stemness-related characteristics. The cancer stem cell markers were upregulated in the hepatoma cell lines following sorafenib treatment in vitro. In the xenograft model, tumors from PLC/PRF/5 and HepG2 cells with high E-cadherin expression were more resistance to sorafenib therapy. However, the expression of cancer stem cell markers was not significantly different after sorafenib therapy in these tumors. Furthermore, we found that sorafenib therapy induced angiogenesis within tumors from high E-cadherin expressing hepatoma cells. Conclusion The mechanism of chemoresistance in sorafenib therapy in HCC may be the tumor angiogenesis associated with high E-cadherin expression in cancer stem cells.
Collapse
Affiliation(s)
- Chiung-Chi Cheng
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, Changhua 505, Taiwan.,Center for General Education, Providence University, Taichung City 433, Taiwan
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung City 407, Taiwan
| | - Chen-Chun Liao
- Department of Life Science, Tunghai University, Taichung City 407, Taiwan
| | - Jing-Hao Shih
- Department of Life Science, Tunghai University, Taichung City 407, Taiwan
| | - Yih-Shyong Lai
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, Tzu Chi University, Hualien 97004, Taiwan
| | - Yi-Hsiang Liu
- Department of Pathology, Chang Bing Show-Chwan Memorial Hospital, Changhua 505, Taiwan.,Department of Pathology, Tzu Chi University, Hualien 97004, Taiwan
| |
Collapse
|
39
|
Gu H, Gu S, Zhang X, Zhang S, Zhang D, Lin J, Hasengbayi S, Han W. miR-106b-5p promotes aggressive progression of hepatocellular carcinoma via targeting RUNX3. Cancer Med 2019; 8:6756-6767. [PMID: 31503422 PMCID: PMC6825988 DOI: 10.1002/cam4.2511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background and Objectives The roles of microRNA(miR)‐106b‐5p in hepatocellular carcinoma (HCC) remain unclear. We aimed here to investigate the clinical significance of miR‐106b‐5p expression in HCC and its underlying mechanisms. Methods Expression levels of miR‐106b‐5p in 108 HCC clinical samples by quantitative real‐time reverse transcription PCR. Associations of miR‐106b‐5p expression with various clinicopathological features and patients' prognosis were evaluated by Chi‐square test, Kaplan‐Meier, and Cox proportional regression analyses, respectively. The target gene of miR‐106b‐5p and their functions in HCC cells were investigated by luciferase reporter, CCK‐8, and Transwell Matrigel invasion assays. Results miR‐106b‐5p expression was markedly higher in HCC tissues than in noncancerous adjacent liver tissues (P < .001). miR‐106b‐5p upregulation was significantly associated with advanced TNM stage (P = .02), short recurrence‐free (P = .005), and overall (P = .001) survivals. Importantly, miR‐106b‐5p expression was an independent predictor of poor prognosis (P < .05). RUNX3 was identified as a direct target gene of miR‐106b‐5p in HCC cells. Functionally, miR‐106b‐5p upregulation promoted the viability and invasion of HCC cells, while enforced RUNX3 expression reversed the oncogenic effects of miR‐106b‐5p overexpression. Conclusions miR‐106b‐5p may serve as a potent prognostic marker for tumor recurrence and survival of HCC patients. miR‐106b‐5p may exert an oncogenic role in HCC via regulating its target gene RUNX3.
Collapse
Affiliation(s)
- Hao Gu
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Shensen Gu
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Xinlong Zhang
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Songjiang Zhang
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Dongming Zhang
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Junsheng Lin
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Saiken Hasengbayi
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| | - Wei Han
- Digestive Vascular Surgery Center, Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
40
|
Role of miRNA-Regulated Cancer Stem Cells in the Pathogenesis of Human Malignancies. Cells 2019; 8:cells8080840. [PMID: 31530793 PMCID: PMC6721829 DOI: 10.3390/cells8080840] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Recent biomedical discoveries have revolutionized the concept and understanding of carcinogenesis, a complex and multistep phenomenon which involves accretion of genetic, epigenetic, biochemical, and histological changes, with special reference to MicroRNAs (miRNAs) and cancer stem cells (CSCs). miRNAs are small noncoding molecules known to regulate expression of more than 60% of the human genes, and their aberrant expression has been associated with the pathogenesis of human cancers and the regulation of stemness features of CSCs. CSCs are the small population of cells present in human malignancies well-known for cancer resistance, relapse, tumorigenesis, and poor clinical outcome which compels the development of novel and effective therapeutic protocols for better clinical outcome. Interestingly, the role of miRNAs in maintaining and regulating the functioning of CSCs through targeting various oncogenic signaling pathways, such as Notch, wingless (WNT)/β-Catenin, janus kinases/ signal transducer and activator of transcription (JAK/STAT), phosphatidylinositol 3-kinase/ protein kinase B (PI3/AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-kB), is critical and poses a huge challenge to cancer treatment. Based on recent findings, here, we have documented the regulatory action or the underlying mechanisms of how miRNAs affect the signaling pathways attributed to stemness features of CSCs, such as self-renewal, differentiation, epithelial to mesenchymal transition (EMT), metastasis, resistance and recurrence etc., associated with the pathogenesis of various types of human malignancies including colorectal cancer, lung cancer, breast cancer, head and neck cancer, prostate cancer, liver cancer, etc. We also shed light on the fact that the targeted attenuation of deregulated functioning of miRNA related to stemness in human carcinogenesis could be a viable approach for cancer treatment.
Collapse
|
41
|
Yu LX, Zhang BL, Yang MY, Liu H, Xiao CH, Zhang SG, Liu R. MicroRNA-106b-5p promotes hepatocellular carcinoma development via modulating FOG2. Onco Targets Ther 2019; 12:5639-5647. [PMID: 31406464 PMCID: PMC6642636 DOI: 10.2147/ott.s203382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background: A recent study has revealed that miR-106b-5p might promote hepatocellular carcinoma (HCC) stemness maintenance and metastasis by targeting PTEN via PI3K/Akt pathway based on HCC cell lines and animal models. Its clinical relevance remains unknown. Purpose: Herein, we aimed to evaluate associations of miR-106b-5p dysregulation with various clinicopathological features of HCC patients and investigate its functions during HCC progression. Patients and methods: At first, miR-106b-5p expression in 130 pairs of HCC and adjacent normal liver tissues was detected by quantitative PCR. Chi-square test was then performed to determine clinical significance. Further investigations on its functions were performed by miRNA target prediction and validation, as well as cellular experiments. Results: miR-106b-5p levels in HCC tissues were significantly higher than those in the adjacent normal liver tissues (P<0.001). High miR-106b-5p expression was significantly associated with advanced tumor stage (P=0.02) and high tumor grade (P=0.03). In addition, Friend of GATA 2 (FOG2) was identified as a direct target of miR-106b-5p in HCC cells. Moreover, the clinical relevance to HCC progression of the combined high miR-106b-5p and low FOG2 expression was more significant than high miR-106b-5p alone. Functionally, enforced expression of miR-106b-5p reduced FOG2 expression and promoted the proliferation and invasion of HCC cells. Furthermore, co-transfection of FOG2 restored the oncogenic roles of miR-106b-5p over-expression. Conclusion: Our data offer the convincing evidence that miR-106b-5p upregulation may promote the aggressive progression of HCC. miR-106b-5p overexpression may promote HCC cell proliferation and invasion by suppressing FOG2, implying its potentials as a promising therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Ling-Xiang Yu
- Departments of Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China.,Department of Hepatobiliary Surgery, 302 Military Hospital of China, Beijing 100039, People's Republic of China
| | - Bo-Lun Zhang
- Department of General Surgery, Clinical Medical College of Weifang Medical University, Weifang 261053, People's Republic of China
| | - Mu-Yi Yang
- Department of Hepatobiliary Surgery, 302 Military Hospital of China, Beijing 100039, People's Republic of China
| | - Hu Liu
- Department of Hepatobiliary Surgery, 302 Military Hospital of China, Beijing 100039, People's Republic of China
| | - Chao-Hui Xiao
- Department of Hepatobiliary Surgery, 302 Military Hospital of China, Beijing 100039, People's Republic of China
| | - Shao-Geng Zhang
- Department of Hepatobiliary Surgery, 302 Military Hospital of China, Beijing 100039, People's Republic of China
| | - Rong Liu
- Departments of Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China
| |
Collapse
|
42
|
Zhang P, Lu X, Shi Z, Li X, Zhang Y, Zhao S, Liu H. miR-205-5p regulates epithelial-mesenchymal transition by targeting PTEN via PI3K/AKT signaling pathway in cisplatin-resistant nasopharyngeal carcinoma cells. Gene 2019; 710:103-113. [PMID: 31158447 DOI: 10.1016/j.gene.2019.05.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) symbolizes the predominant program of advanced-stage cancer, it is critical in cancer progression, metastasis, and chemotherapy resistance. In this study, the metastatic properties of nasopharyngeal carcinoma (NPC) cells were evaluated by morphological examination, wound healing assay, migration and invasion assay. Western blotting and qRT-PCR were used to ascertain the expression of markers which were associated with EMT. The effects of miR-205-5p on invasion, migration, EMT and proliferation of NPC cells were evaluated and the molecular mechanisms of their interaction were explored. In this study, we manifested firstly that the expression of miR-205-5p in cisplatin-resistant NPC cell line HNE1/DDP was obviously up-regulated than that in its parental cell line HNE1. Then we analyzed the specific role of miR-205-5p through functional assays by transfecting specific mimics and inhibitors. The results indicated that low expression of miR-205-5p restrained EMT progression of HNE1/DDP cells. Further studies on the mechanism of miR-205-5p manifested that PTEN was a downstream candidate gene of miR-205-5p, down-regulated PTEN expression could counteract the effect of miR-205-5p inhibitors, and the regulation of EMT by miR-205-5p on HNE1/DDP cells depended on the PI3K/AKT signaling pathway. Overall, our results indicated that miR-205-5p was targeting PTEN to regulate EMT through the PI3K/AKT pathway. This study will supply a new treatment target for advanced NPC.
Collapse
Affiliation(s)
- Pei Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Xingyue Lu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Zongfen Shi
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Xian Li
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Yuelin Zhang
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China; Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, PR China
| | - Surong Zhao
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China.
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China.
| |
Collapse
|
43
|
Zhang P, Lu X, Shi Z, Li X, Zhang Y, Zhao S, Liu H. WITHDRAWN: miR-205-5p regulates epithelial-mesenchymal transition by targeting PTEN via PI3K/AKT signaling pathway in cisplatin-resistant nasopharyngeal carcinoma cells. Gene X 2019. [DOI: 10.1016/j.gene.2019.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
44
|
Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, Tsukui M, Takaoka Y, Nomoto H, Isoda N, Yamamoto H. Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci 2019; 110:771-783. [PMID: 30520543 PMCID: PMC6361611 DOI: 10.1111/cas.13902] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a common cause of liver cirrhosis and hepatocellular carcinoma (HCC). However, effective therapeutic strategies for preventing and treating NASH‐mediated liver cirrhosis and HCC are lacking. Cholesterol is closely associated with vascular endothelial growth factor (VEGF), a key factor that promotes HCC. Recent reports have demonstrated that statins could prevent HCC development. In contrast, we have little information on ezetimibe, an inhibitor of cholesterol absorption, in regards to the prevention of NASH‐related liver cirrhosis and HCC. In the present study, a steatohepatitis‐related HCC model, hepatocyte‐specific phosphatase and tensin homolog (Pten)‐deficient (PtenΔhep) mice were fed a high‐fat (HF) diet with/without ezetimibe. In the standard‐diet group, ezetimibe did not reduce the development of liver tumors in PtenΔhep mice, in which the increase of serum cholesterol levels was mild. Feeding of a HF diet increased serum cholesterol levels markedly and subsequently increased serum levels of VEGF, a crucial component of angiogenesis. The HF diet increased the number of VEGF‐positive cells and vascular endothelial cells in the tumors of PtenΔhep mice. Kupffer cells, macrophages in the liver, increased VEGF expression in response to fat overload. Ezetimibe treatment lowered cholesterol levels and these angiogenetic processes. As a result, ezetimibe also suppressed inflammation, liver fibrosis and tumor growth in PtenΔhep mice on the HF diet. Tumor cells were highly proliferative with HF‐diet feeding, which was inhibited by ezetimibe. In conclusion, ezetimibe suppressed development of liver tumors by inhibiting angiogenesis in PtenΔhep mice with hypercholesterolemia.
Collapse
Affiliation(s)
- Kouichi Miura
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirohide Ohnishi
- Department of Gastroenterology, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Naoki Morimoto
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shinichiro Minami
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mitsuaki Ishioka
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Shunji Watanabe
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mamiko Tsukui
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshinari Takaoka
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Nomoto
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Norio Isoda
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hironori Yamamoto
- Division of Gastroenterology, Department of Medicine, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
45
|
Yi Y, Liu Y, Wu W, Wu K, Zhang W. The role of miR-106p-5p in cervical cancer: from expression to molecular mechanism. Cell Death Discov 2018; 4:36. [PMID: 30275981 PMCID: PMC6148547 DOI: 10.1038/s41420-018-0096-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/29/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
This study aims to investigate the role of miR-106b-5p in cervical cancer by performing a comprehensive analysis on its expression and identifying its putative molecular targets and pathways based on The Cancer Genome Atlas (TCGA) dataset, Gene Expression Omnibus (GEO) dataset, and literature review. Significant upregulation of miR-106b-5p in cervical cancer is confirmed by meta-analysis with the data from TCGA, GEO, and literature. Moreover, the expression of miR-106b-5p is significantly correlated with the number of metastatic lymph nodes. Our bioinformatics analyses show that miR-106b could promote cervical cancer progression by modulating the expression of GSK3B, VEGFA, and PTK2 genes. Importantly, these three genes play a crucial role in PI3K-Akt signaling, focal adhesion, and cancer. Both the expression of miR-106b-5p and key genes are upregulated in cervical cancer. Several explanations could be implemented for this upregulation. However, the specific mechanism needs to be investigated further.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 Hubei People's Republic of China
| |
Collapse
|
46
|
Xu W, Huang Y, Yang Z, Hu Y, Shu X, Xie C, He C, Zhu Y, Lu N. Helicobacter pylori promotes gastric epithelial cell survival through the PLK1/PI3K/Akt pathway. Onco Targets Ther 2018; 11:5703-5713. [PMID: 30254463 PMCID: PMC6140703 DOI: 10.2147/ott.s164749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Helicobacter pylori (H. pylori) infection plays a critical role in the process of gastric carcinogenesis. However, the complicated pathogenic mechanism is still unclear. Polo-like kinase 1 (PLK1) is involved in the development of multiple human malignancies, including gastric cancer. Therefore, this study aimed to elucidate the role of PLK1 in H. pylori-induced gastric carcinogenesis and the underlying signaling mechanism. Materials and methods We detected the expression of PLK1 in 166 patients in different stages of gastric carcinogenesis as well as the established Mongolian gerbil model with H. pylori infection by immunohistochemistry. Cell Counting Kit-8 was used to estimate the survival of gastric cancer cells. Results We found that PLK1 expression in gastric cancer tissues was significantly higher than that of paired adjacent mucosa. PLK1 expression was increased in intestinal metaplasia, dysplasia, and gastric cancer tissues compared to chronic non-atrophic gastritis tissues. Notably, PLK1 expression was much lower in H. pylori-negative tissues than in H. pylori-positive tissues at intestinal metaplasia stage. In addition, H. pylori infection increased PLK1 expression in the gastric epithelial cells of the Mongolian gerbil model, which was positively related to the duration of H. pylori infection. Inhibition of PLK1 significantly reduced H. pylori-induced cell proliferation. Furthermore, incubation of MKN-28 cells with H. pylori resulted in a significant increase in PLK1, p-PTEN, and the downstream PI3K/Akt pathway, and pretreatment with a PLK1 inhibitor reversed these molecular changes. Conclusion PLK1 is involved in H. pylori-induced gastric carcinogenesis at the early stage by activating the PI3K/Akt signaling pathway. These results may contribute to the development of new control strategies for H. pylori infection-related gastric cancer.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| |
Collapse
|
47
|
Mehlich D, Garbicz F, Włodarski PK. The emerging roles of the polycistronic miR-106b∼25 cluster in cancer - A comprehensive review. Biomed Pharmacother 2018; 107:1183-1195. [PMID: 30257332 DOI: 10.1016/j.biopha.2018.08.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776 Warsaw, Poland
| | - Paweł K Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland.
| |
Collapse
|
48
|
Lin H, Huang ZP, Liu J, Qiu Y, Tao YP, Wang MC, Yao H, Hou KZ, Gu FM, Xu XF. MiR-494-3p promotes PI3K/AKT pathway hyperactivation and human hepatocellular carcinoma progression by targeting PTEN. Sci Rep 2018; 8:10461. [PMID: 29992971 PMCID: PMC6041272 DOI: 10.1038/s41598-018-28519-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Recent studies have shown that miR-494-3p is oncogene and has a central role in many solid tumors; however, the role of miR-494-3p in the progression and prognosis of hepatocellular carcinoma (HCC) remains unknown. In this study, it was found that miR-494-3p was up-regulated in HCC tissues. The high level of miR-494-3p in HCC tumors was correlated with aggressive clinicopathological characteristics and predicted poor prognosis in HCC patients. Functional study demonstrated that miR-494-3p significantly promoted HCC cell metastasis in vitro and vivo. Since phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a basic oncogenic driver in HCC, a potential role of miR-494-3p was explored as well as its target genes in PI3K/AKT activation. Of all the predicted target genes of miR-494-3p, the tumor-suppressor phosphatase and tensin homolog (PTEN) were identified. In conclusion, the data we collected could define an original mechanism of PI3K/AKT hyperactivation and sketch the regulatory role of miR-494-3p in suppressing the expression of PTEN. Therefore, targeting miR-494-3p could provide an effective therapeutic method for the treatment of the disease.
Collapse
Affiliation(s)
- Hui Lin
- The First Department of General Surgeny, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Zhi-Ping Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Jiao Liu
- Department of Hepatobiliary Surgery, Shanghai Public Health Clinical Center Affiliated to Fudan University, 921 Tongxin Road, Hongkou, Shanghai, 200080, China
| | - Yun Qiu
- Department of Radiotherapy, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Yuan-Ping Tao
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Meng-Chao Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Hui Yao
- Department of Radiotherapy, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China
| | - Ke-Zhu Hou
- The First Department of General Surgeny, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China.
| | - Fang-Ming Gu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Xuan-Fu Xu
- Department of Gastroenterology, Shidong Hospital, Yangpu District, Shanghai, Anhui Medical University, 999 Shiguang Road, Shanghai, 200438, China.
| |
Collapse
|
49
|
Zhu HR, Huang RZ, Yu XN, Shi X, Bilegsaikhan E, Guo HY, Song GQ, Weng SQ, Dong L, Janssen HL, Shen XZ, Zhu JM. Microarray Expression Profiling of microRNAs Reveals Potential Biomarkers for Hepatocellular Carcinoma. TOHOKU J EXP MED 2018; 245:89-98. [DOI: 10.1620/tjem.245.89] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hai-Rong Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Ren-Zheng Huang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Xiang-Nan Yu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Xuan Shi
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | | | - Hong-Ying Guo
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Guang-Qi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Shu-Qiang Weng
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| | - Harry L.A. Janssen
- Division of Gastroenterology, University of Toronto and University Health Network
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
- Shanghai Institute of Liver Disease
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University
| | - Ji-Min Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University
| |
Collapse
|