1
|
Marks MP, Giménez CA, Isaja L, Vera MB, Borzone FR, Pereyra-Bonnet F, Romorini L, Videla-Richardson GA, Chasseing NA, Calvo JC, Vellón L. Role of hydroxymethylglutharyl-coenzyme A reductase in the induction of stem-like states in breast cancer. J Cancer Res Clin Oncol 2024; 150:106. [PMID: 38418798 PMCID: PMC10902018 DOI: 10.1007/s00432-024-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE De novo synthesis of cholesterol and its rate-limiting enzyme, 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMGCR), is deregulated in tumors and critical for tumor cell survival and proliferation. However, the role of HMGCR in the induction and maintenance of stem-like states in tumors remains unclear. METHODS A compiled public database from breast cancer (BC) patients was analyzed with the web application SurvExpress. Cell Miner was used for the analysis of HMGCR expression and statin sensitivity of the NCI-60 cell lines panel. A CRISPRon system was used to induce HMGCR overexpression in the luminal BC cell line MCF-7 and a lentiviral pLM-OSKM system for the reprogramming of MCF-7 cells. Comparisons were performed by two-tailed unpaired t-test for two groups and one- or two-way ANOVA. RESULTS Data from BC patients showed that high expression of several members of the cholesterol synthesis pathway were associated with lower recurrence-free survival, particularly in hormone-receptor-positive BC. In silico and in vitro analysis showed that HMGCR is expressed in several BC cancer cell lines, which exhibit a subtype-dependent response to statins in silico and in vitro. A stem-like phenotype was demonstrated upon HMGCR expression in MCF-7 cells, characterized by expression of the pluripotency markers NANOG, SOX2, increased CD44 +/CD24low/ -, CD133 + populations, and increased mammosphere formation ability. Pluripotent and cancer stem cell lines showed high expression of HMGCR, whereas cell reprogramming of MCF-7 cells did not increase HMGCR expression. CONCLUSION HMGCR induces a stem-like phenotype in BC cells of epithelial nature, thus affecting tumor initiation, progression and statin sensitivity.
Collapse
Affiliation(s)
- María Paula Marks
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Alejandra Giménez
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Luciana Isaja
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Mariana Belén Vera
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Pereyra-Bonnet
- Instituto de Ciencias Básicas y Medicina Experimental, Instituto Universitario del Hospital Italiano, Potosí 4265, C1199ACL, Buenos Aires, Argentina
- CASPR Biotech, Buenos Aires, Argentina
- CASPR Biotech, San Francisco, USA
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Guillermo Agustín Videla-Richardson
- Laboratorio de Investigación Aplicada a Las Neurociencias (LIAN), Fundación Para La Lucha Contra Las Enfermedades Neurológicas de La Infancia (FLENI), Ruta 9, Km 53, B1625, Buenos Aires, Escobar, Argentina
| | - Norma Alejandra Chasseing
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Inmunohematología, (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luciano Vellón
- Laboratorio de Células Madre/Stem Cells Lab (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Mousa NA, Hussein A, Elemam NM, Mohammed G, Elwany M, Basha T, AlHammadi AA, Majzob RS, Talaat IM. Are embryonic stem cell markers and ALDH1A1 relevant in the context of breast cancer estrogen positivity? Cancer Med 2024; 13:e7004. [PMID: 38400679 PMCID: PMC10891463 DOI: 10.1002/cam4.7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.
Collapse
Affiliation(s)
- Noha A. Mousa
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal Hussein
- Family and Community Medicine and Behavioural Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Noha M. Elemam
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Research Institute for Medical and Health Sciences, University of SharjahSharjahUnited Arab Emirates
| | - Ghada Mohammed
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Mona Elwany
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
| | - Tasneem Basha
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Amal A. AlHammadi
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Rana S. Majzob
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
- Medical Research Institute, Alexandria UniversityAlexandriaEgypt
- Pathology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| |
Collapse
|
3
|
Li H, Jin Y, Zhu Y, Shen B, Xu Y. Suppression of ZNF205-AS1/EGR4 positive feedback loop attenuates cisplatin resistance of non-small cell lung cancer cells via targeting miR-138-5p/OCT4 pathway. J Thorac Dis 2024; 16:296-310. [PMID: 38410545 PMCID: PMC10894440 DOI: 10.21037/jtd-23-1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/01/2023] [Indexed: 02/28/2024]
Abstract
Background Long non-coding RNAs (lncRNAs) are frequently reported to involve in the onset and development of non-small cell lung cancer (NSCLC). Cisplatin (DDP) resistance continues to pose a daunting challenge for improving the prognosis of NSCLC patients. The current study intends to elucidate the molecular mechanisms underlying the function of lncRNA ZNF205 AS1/early growth response 4 (EGR4) positive feedback loop in DDP resistance of NSCLC. Methods A series of assays, including real-time polymerase chain reaction (PCR), western blotting, flow cytometry, and dual-luciferase reporter, were performed to evaluate the effect of ZNF205-AS1/EGR4 loop in the established DDP-resistant A549 cell line and its progenitor A549 cell line. Immunohistochemistry (IHC) technique was conducted to investigate the expression pattern of EGR4 and octamer-binding protein 4 (OCT4) in NSCLC tissues. RNA pull-down assay was carried out to evaluate the interaction between miR-138-5p and EGR4 and OCT4. Transwell assay and wound healing assay was used to evaluate the invasive and migratory potential of cells subject to various treatment. The protein levels of Bcl2, Bax, Cl-caspase 3, Cl-PARP and OCT4 were measured in western blotting assay. Results The levels of ZNF205-AS1, EGR4 and OCT4 were notably upregulated in post-chemotherapy DDP-resistant lung specimens, as opposed to those pre-chemotherapy, and in A549/DDP cells than the progenitor DDP-sensitive A549 cells. In contrast, the level of miR-138-5p was significantly reduced in A549/DDP cells (P<0.05). Luciferase reporter assay confirmed the interaction between ZNF205-AS1 and miRNA-138-5p. Protein-RNA interaction was validated between miR-138-5p, EGR4 and OCT4. The higher chemosensitivity of DDP-resistant cells induced by the loss-of-function of ZNF205-AS1 could be diminished by a miR-138-5p inhibitor. Conclusions Our data demonstrated that miR-138-5p/OCT4 functions as a downstream effector of the ZNF205-AS1/EGR4 positive feedback loop and mediates resistance of NSCLC cells to DDP. Our work sheds light on the therapeutic strategies for NSCLC with DDP chemoresistance.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yingying Jin
- Department of Medical Record Library, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yefei Zhu
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Bingxiao Shen
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Youzu Xu
- Department of Respiratory and Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
4
|
De Martino M, Pellecchia S, Esposito F, Liotti F, Credendino SC, Prevete N, Decaussin-Petrucci M, Chieffi P, De Vita G, Melillo RM, Fusco A, Pallante P. The lncRNA RMST is drastically downregulated in anaplastic thyroid carcinomas where exerts a tumor suppressor activity impairing epithelial-mesenchymal transition and stemness. Cell Death Discov 2023; 9:216. [PMID: 37393309 DOI: 10.1038/s41420-023-01514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Thyroid cancer is the most prevalent endocrine malignancy and comprises a wide range of lesions subdivided into differentiated (DTC) and undifferentiated thyroid cancer (UTC), mainly represented by the anaplastic thyroid carcinoma (ATC). This is one of the most lethal malignancies in humankind leading invariably to patient death in few months. Then, a better comprehension of the mechanisms underlying the development of ATC is required to set up new therapeutic approaches. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not code for proteins. They show a strong regulatory function at both transcriptional and post-transcriptional level and are emerging as key players in regulating developmental processes. Their aberrant expression has been linked to several biological processes, including cancer, making them potential diagnostic and prognostic markers. We have recently analyzed the lncRNA expression profile in ATC through a microarray technique and have identified rhabdomyosarcoma 2-associated transcript (RMST) as one of the most downregulated lncRNA in ATC. RMST has been reported to be deregulated in a series of human cancers, to play an anti-oncogenic role in triple-negative breast cancer, and to modulate neurogenesis by interacting with SOX2. Therefore, these findings prompted us to investigate the role of RMST in ATC development. In this study we show that RMST levels are strongly decreased in ATC, but only slightly in DTC, indicating that the loss of this lncRNA could be related to the loss of the differentiation and high aggressiveness. We also report a concomitant increase of SOX2 levels in the same subset of ATC, that inversely correlated with RMST levels, further supporting the RMST/SOX2 relationship. Finally, functional studies demonstrate that the restoration of RMST in ATC cells reduces cell growth, migration and the stemness properties of ATC stem cells. In conclusion, these findings support a critical role of RMST downregulation in ATC development.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Napoli, Italy
| | - Simona Pellecchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Francesco Esposito
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Federica Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Sara Carmela Credendino
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
| | - Nella Prevete
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali (DiSMeT), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Myriam Decaussin-Petrucci
- Service d'Anatomie et Cytologie Pathologiques, Centre de Biologie Sud, Groupement Hospitalier Lyon Sud, Universite Lyon 1, 69495, Pierre Bénite, France
| | - Paolo Chieffi
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138, Napoli, Italy
| | - Gabriella De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Rosa Marina Melillo
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", Via Pansini 5, 80131, Napoli, Italy.
- Instituto Nacional de Cancer, 37908, Laboratorio de Carcinogênese Molecular, Rua Andre Cavalcanti 37, Centro, 20231-050, Rio de Janeiro, Brazil.
| | - Pierlorenzo Pallante
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), Via Pansini 5, 80131, Napoli, Italy.
| |
Collapse
|
5
|
Bownes LV, Julson JR, Quinn CH, Hutchins SC, Erwin MH, Markert HR, Stewart JE, Mroczek-Musulman E, Aye J, Yoon KJ, Ohlmeyer M, Beierle EA. The Effects of Protein Phosphatase 2A Activation with Novel Tricyclic Sulfonamides on Hepatoblastoma. J Pediatr Surg 2023; 58:1145-1154. [PMID: 36907775 PMCID: PMC10198925 DOI: 10.1016/j.jpedsurg.2023.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND The tumor suppressor, protein phosphatase 2A (PP2A), is downregulated in hepatoblastoma. We aimed to examine the effects of two novel compounds of the tricyclic sulfonamide class, ATUX-3364 (3364) and ATUX-8385 (8385), designed to activate PP2A without causing immunosuppression, on human hepatoblastoma. METHODS An established human hepatoblastoma cell line, HuH6, and a human hepatoblastoma patient-derived xenograft, COA67, were treated with increasing doses of 3364 or 8385, and viability, proliferation, cell cycle and motility were investigated. Cancer cell stemness was evaluated by real-time PCR and tumorsphere forming ability. Effects on tumor growth were examined using a murine model. RESULTS Treatment with 3364 or 8385 significantly decreased viability, proliferation, cell cycle progression and motility in HuH6 and COA67 cells. Both compounds significantly decreased stemness as demonstrated by decreased abundance of OCT4, NANOG, and SOX2 mRNA. The ability of COA67 to form tumorspheres, another sign of cancer cell stemness, was significantly diminished by 3364 and 8385. Treatment with 3364 resulted in decreased tumor growth in vivo. CONCLUSION Novel PP2A activators, 3364 and 8385, decreased hepatoblastoma proliferation, viability, and cancer cell stemness in vitro. Animals treated with 3364 had decreased tumor growth. These data provide evidence for further investigation of PP2A activating compounds as hepatoblastoma therapeutics.
Collapse
Affiliation(s)
- Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sara Claire Hutchins
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael H Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Jamie Aye
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Chiang YF, Huang KC, Chen HY, Huang TC, Ali M, Chang HY, Shieh TM, Shih YH, Wang KL, Huang YJ, Chung CP, Hsia SM. The Adipokine Visfatin Modulates Cancer Stem Cell Properties in Triple-Negative Breast Cancer. Biomedicines 2023; 11:biomedicines11020297. [PMID: 36830834 PMCID: PMC9953233 DOI: 10.3390/biomedicines11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Obesity is a cancer progression risk factor; excessive adipocytes increase adipokine secretion. Visfatin, a novel adipokine highly expressed in cancer patients, is related to breast cancer risk. The modulation of nicotinamide adenine dinucleotide (NAD+) metabolism and the induction of a tumorigenic environment plays a vital role in cancer progression. Among cancer cell types, cancer stem-like cells (CSCs) with self-renewal and chemotherapy-resistance abilities could modulate tumor progression and cancer recurrence ability. In this study, we focused on visfatin's modulation effect on stemness-related properties using the high-malignancy breast cancer cell line MDA-MB-231 in in vitro and in vivo studies. Visfatin treatment significantly increased both the sphere number and sphere diameter and increased the protein expression of NANOG homeobox (NANOG), sex-determining region Y-box 2 (SOX2), and octamer-binding transcription factor 4 (OCT4), as well as SIRT1 protein levels. The serum angiogenesis marker VEGF and extracellular nicotinamide phosphoribosyl transferase (NAMPT, visfatin) were induced after visfatin treatment, increasing the stemness and angiogenesis environment, which were significantly reduced by the visfatin inhibitor FK866. Our results demonstrate that the visfatin-activated SIRT-SOX2 axis promotes triple-negative breast cancer stemness and enriches the tumorigenic microenvironment.
Collapse
Affiliation(s)
- Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hsin-Yi Chang
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114201, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan
| | - Yun-Ju Huang
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan City 710301, Taiwan
| | - Cheng-Pei Chung
- Department of Nutrition and Health Sciences, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6558)
| |
Collapse
|
7
|
Hou J, Chen Q, Huang Y, Wu Z, Ma D. Caudatin blocks the proliferation, stemness and glycolysis of non-small cell lung cancer cells through the Raf/MEK/ERK pathway. PHARMACEUTICAL BIOLOGY 2022; 60:764-773. [PMID: 35387566 PMCID: PMC9004493 DOI: 10.1080/13880209.2022.2050768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT The antitumor effects of caudatin have been explored in multiple cancers, but the research on lung cancer has not been fully understood. OBJECTIVE We explored the effects of caudatin on non-small cell lung cancer (NSCLC) in vitro and in vivo. MATERIALS AND METHODS In the in vitro experiments, 0, 25, 50 and 100 μM of caudatin were selected to examine the effects on stemness and glycolysis. Subcutaneous tumour xenografts were constructed by injecting the nude mice (BALB/C) with 5 × 106 H1299 cells. In the in vivo experiments, all nude mice were divided into the caudatin group (50 mg/kg/day, n = 5) and the sham group (equal amount of DMSO, n = 5). RESULTS The IC50 of caudatin for H1299 and H520 cells was 44.68 μM and 69.37 μM, respectively. Compared with caudatin 0 μM group, cell apoptosis rate was increased about 10 times and cell stemness was decreased by 75-85% in caudatin 100 μM group. Glucose uptake (65-80% reduction), lactic acid production (75-80% reduction), ATP level (70-80% reduction) and the expression of HK2 and LDHA (75-85% reduction) were decreased in caudatin 100 μM group. The expression of Raf/MEK/ERK pathway related proteins was decreased to 20-25% by caudatin. Tumour weight (about 70% reduction) and the expression of stemness, glycolysis and Raf/MEK/ERK pathway related proteins (about 50-75% reduction) were suppressed by caudatin in vivo. DISCUSSION AND CONCLUSIONS We revealed that caudatin blocked stemness and glycolysis in NSCLC for the first time. More experiments about exact dosage of caudatin in vivo should be conducted.
Collapse
Affiliation(s)
- Juan Hou
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Qing Chen
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
| | - De Ma
- Department of Oncology, Jingjiang People’s Hospital, Taizhou, Jiangsu, China
- CONTACT De Ma Department of Oncology, Jingjiang People’s Hospital, No. 28 Zhongzhou Road, Jingjiang City, Jiangsu Province214500, China
| |
Collapse
|
8
|
Li N, Pang Y, Sang J, Sun Y, Hou W. The controversial expression of SOX2 in gastric cancer and its correlation with Helicobacter pylori infection: A meta-analysis. Medicine (Baltimore) 2022; 101:e30886. [PMID: 36221360 PMCID: PMC9542901 DOI: 10.1097/md.0000000000030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The expression of sex-determining region Y (SRY)-like high-mobility group (HMG) box 2 (SOX2) in gastric cancer and the prognosis of patients are controversial. This study analyzed the relationship between SOX2 expression and baseline data, clinicopathological parameters, prognosis, and Helicobacter pylori infection in patients with gastric cancer, and provided new supplements for the diagnosis and treatment of gastric cancer. METHODS The articles which reported SOX2 expression in gastric cancer from medical database was collected. The literature search was conducted in PubMed, Google Scholar, Cochrane library, SpringerLink, China National Knowledge Infrastructure, Web of Science, and Wanfang databases, which were written in English and Chinese. RESULTS A total of 32 articles, including 4641 gastric cancer patients. The results showed that SOX2 expression in gastric cancer group was lower than that in the para-cancerous control group (P < .001). Statistical difference was found between the SOX2 expression and differentiation (Well/Moderate vs Poor), TNM stage (I/II vs III/IV), lymphatic invasion (N0 vs N+), edge infiltration (R0 vs R1), and H pylori infection in the pathological parameters. The prognosis analysis showed that the level of SOX2 expression was unrelated to the overall survival of patients (P = .329). No statistical difference was observed between the SOX2 expression and the baseline data of the patients (all P > .05). CONCLUSIONS Although downregulation expression of SOX2 are related to clinicopathological parameters in gastric cancer, which is not correlated with prognosis. This controversy over the expression of SOX2 will provide a new idea for the study of gastric cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Yu Pang
- Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Jing Sang
- Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Yong Sun
- Department of Pediatrics, Tai’an City Central Hospital, Tai’an, Shandong, China
| | - Weiwei Hou
- Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong, China
- *Correspondence: Weiwei Hou, Department of Pathology, Tai’an City Central Hospital, Tai’an, Shandong 271000, China (e-mail: )
| |
Collapse
|
9
|
Doxorubicin resistant choriocarcinoma cell line derived spheroidal cells exhibit stem cell markers but reduced invasion. 3 Biotech 2022; 12:184. [PMID: 35875180 PMCID: PMC9300786 DOI: 10.1007/s13205-022-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022] Open
Abstract
Cell cycle-specific cancer chemotherapy is based on the ability of a drug to halt, minimise or destroy rapidly dividing cells. However, their efficacy is limited by the emergence of a self-renewing cell pool called “cancer stem cells” (CSC). Choriocarcinoma is a tumour of trophoblastic tissue. We, in this study, analysed whether spheroids generated from doxorubicin-treated and non-treated choriocarcinoma cell lines exhibit markers of stem cells. Two choriocarcinoma cell lines, namely JEG-3 and BeWo, were used in this study. Spheroids were generated from doxorubicin-treated cells and the non-treated cells under non-adherent condition, followed by analysis of stem-cell markers’ expression, namely NANOG, OCT4 and SOX2. Immunofluorescence analysis suggested a general increase in the markers’ concentration in spheroids relative to the parental cells. RT-qPCR and immunoblots showed an increase in the stem-cell marker expression in spheroids generated from doxorubicin-treated when compared to non-treated cells. In spheroids, Sox2 was significantly upregulated in doxorubicin-treated spheroids, whereas Nanog and Oct4 were generally downregulated when compared to non-treated spheroids. Both 2D and 3D invasion assays showed that the spheroids treated with doxorubicin exhibited reduced invasion. Our data suggest that choriocarcinoma cell lines may have the potential to produce spheroidal cells, yet the drug-treatment affected the invasion potential of spheroids.
Collapse
|
10
|
Regulation of the Cancer Stem Phenotype by Long Non-Coding RNAs. Cells 2022; 11:cells11152352. [PMID: 35954194 PMCID: PMC9367355 DOI: 10.3390/cells11152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells are a cell population within malignant tumors that are characterized by the ability to self-renew, the presence of specific molecules that define their identity, the ability to form malignant tumors in vivo, resistance to drugs, and the ability to invade and migrate to other regions of the body. These characteristics are regulated by various molecules, such as lncRNAs, which are transcripts that generally do not code for proteins but regulate multiple biological processes through various mechanisms of action. LncRNAs, such as HOTAIR, H19, LncTCF7, LUCAT1, MALAT1, LINC00511, and FMR1-AS1, have been described as key regulators of stemness in cancer, allowing cancer cells to acquire this phenotype. It has been proposed that cancer stem cells are clinically responsible for the high recurrence rates after treatment and the high frequency of metastasis in malignant tumors, so understanding the mechanisms that regulate the stem phenotype could have an impact on the improvement of cancer treatments.
Collapse
|
11
|
Xing X, Li F, Hu Y, Zhang L, Hui Q, Qin H, Jiang Q, Jiang W, Fang C, Zhang L. Discovery of Novel Tetrahydro-β-carboline Containing Aminopeptidase N Inhibitors as Cancer Chemosensitizers. Front Oncol 2022; 12:894842. [PMID: 35677165 PMCID: PMC9168271 DOI: 10.3389/fonc.2022.894842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Aminopeptidase N (APN, CD13) is closely associated with the development and progression of cancer. Previous studies suggested APN as a biomarker for cancer stem cells. APN inhibitors have been intensively evaluated as chemosensitizers for cancer treatments. In the present study, tetrahydro-β-carboline scaffold was introduced to the structure of APN inhibitors. The synthesized compounds showed potent enzyme inhibitory activities compared with Bestatin, an approved APN inhibitor, in cell-based enzymatic assay. In combination with chemotherapeutic drugs, representative APN inhibitor molecules D12, D14 and D16 significantly improved the antiproliferative potency of anticancer drugs in the in vitro tests. Further mechanistic studies revealed that the anticancer effects of these drug combinations are correlated with decreased APN expression, increased ROS level, and induction of cell apoptosis. The spheroid-formation assay and colony-formation assay results showed effectiveness of Paclitaxel-APN inhibitor combination against breast cancer stem cell growth. The combined drug treatment led to reduced mRNA expression of OCT-4, SOX-2 and Nanog in the cancer stem cells tested, suggesting the reduced stemness of the cells. In the in vivo study, the selected APN inhibitors, especially D12, exhibited improved anticancer activity in combination with Paclitaxel compared with Bestatin. Collectively, potent APN inhibitors were discovered, which could be used as lead compounds for tumor chemo-sensitization and cancer stem cell-based therapies.
Collapse
Affiliation(s)
- Xiaoyan Xing
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yajie Hu
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wenyan Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- Department of Pharmacology, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
12
|
Najafzadeh B, Motafakkerazad R, Najafi S, Amini M, Alemohammad H, Vasefifar P, Baradaran B. Nanog suppression enhanced the chemosensitivity of Human Non-Small-Cell Lung Cancer cells to Cisplatin and inhibited cell migration. Pathol Res Pract 2022; 233:153869. [DOI: 10.1016/j.prp.2022.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
|
13
|
Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 2021; 39:14. [PMID: 34812991 DOI: 10.1007/s12032-021-01610-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.
Collapse
|
14
|
Kim S, Bok E, Lee S, Lee HJ, Choe Y, Kim NH, Lee WJ, Rho GJ, Lee SL. Metastasis prognostic factors and cancer stem cell-related transcription factors associated with metastasis induction in canine metastatic mammary gland tumors. J Vet Sci 2021; 22:e62. [PMID: 34423600 PMCID: PMC8460459 DOI: 10.4142/jvs.2021.22.e62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Background Canine mammary gland tumor (MGT) is the most common cancer in aged female dogs. Although it's important to identify reliable metastasis or prognostic factors by evaluating related to cell division, adhesion, and cancer stem cell-related transcription factor (TF) in metastasis-induced canine MGT, but there are limited studies. Objectives We aimed to identify metastasis prognostic factors and cancer stem cell-TFs in canine MGTs. Methods Age-matched female dogs diagnosed with MGT only were classified into metastatic and non-metastatic groups by histopathological staining of MGT tissues. The mRNA levels of cancer prognostic metastasis molecular factors (E-cadherin, ICAM-1, PRR14, VEGF, HPRT1, RPL4 and hnRNP H) and cancer stem cell-related TFs (Oct4, Sox2, and Nanog) were compared between metastatic and non-metastatic canine MGT tissues using qRT-PCR analysis. Results The mRNA levels of ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog in metastatic MGT group were significantly higher than those in non-metastatic MGT group. However, mRNA level of RPL4 was significantly lower in metastatic MGT group. Loss of E-cadherin and HPRT1 was observed in the metastatic MGT group but it was not significant. Conclusions Consistent expression patterns of all metastasis-related factors showing elevation in ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog, but decreases in RPL4 levels occurred in canine MGT tissues, which was associated with metastasis. Thus, these cancer prognostic metastasis factors and TFs of cancer stem cells, except for E-cadherin and HPRT1, can be used as reliable metastasis factors for canine MGT and therapeutic strategy.
Collapse
Affiliation(s)
- Saetbyul Kim
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Eunyeong Bok
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Sangyeob Lee
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyeon-Jeong Lee
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Yongho Choe
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Na-Hyun Kim
- Gyeongnam Department of Environment & Toxicology, Korea Institute of Toxicology, Munsan 52834, Korea
| | - Won-Jae Lee
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Gyu-Jin Rho
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Sung-Lim Lee
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
15
|
AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, Gowher H. Oct4-Mediated Inhibition of Lsd1 Activity Promotes the Active and Primed State of Pluripotency Enhancers. Cell Rep 2021; 30:1478-1490.e6. [PMID: 32023463 DOI: 10.1016/j.celrep.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. H3K4me1 demethylation in F9 ECCs could not be rescued by Lsd1 overexpression. Given our observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Oct4 interaction with Lsd1 affects its catalytic activity. Our data show a dose-dependent inhibition of Lsd1 activity by Oct4 and retention of H3K4me1 at PpGe in Oct4-overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells could establish a "primed" enhancer state that is susceptible to reactivation, leading to aberrant PpG expression.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Putu Ayu Sudyanti
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen McCune
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brice H Spears
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - James A Breedlove
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
Simultaneous and quantitative monitoring transcription factors in human embryonic stem cell differentiation using mass spectrometry-based targeted proteomics. Anal Bioanal Chem 2021; 413:2081-2089. [PMID: 33655347 DOI: 10.1007/s00216-021-03160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/27/2022]
Abstract
Human embryonic stem cells (hESCs) can be self-propagated indefinitely in culture while holding the capacity to generate almost all cell types. Although this powerful differentiation ability of hESCs has become a potential source of cell replacement therapies, application of stem cells in clinical practice relies heavily on the exquisite control of their developmental fate. In general, an essential first step in differentiation is to exit the pluripotent state, which is precariously balanced and depends on a variety of factors, mainly centering on the core transcriptional mechanism. To date, much evidence has indicated that transcription factors such as Sox2, Oct4, and Nanog control the self-renewal and pluripotency of hESCs. Their expression displays a restricted spatial-temporal pattern and their small changes in level can significantly affect directed differentiation and the cell type derived. So far, few assays have been developed to monitor this process. Herein, we provided a mass spectrometry (MS)-based approach for simultaneous and quantitative monitoring of these transcription factors, in an attempt to provide insight into their contributions in hESC differentiation.
Collapse
|
17
|
Klepinina L, Klepinin A, Truu L, Chekulayev V, Vija H, Kuus K, Teino I, Pook M, Maimets T, Kaambre T. Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS One 2021; 16:e0245348. [PMID: 33471801 PMCID: PMC7817017 DOI: 10.1371/journal.pone.0245348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of butyrate to promote differentiation of cancer cells has important implication for colorectal cancer (CRC) prevention and therapy. In this study, we examined the effect of sodium butyrate (NaBT) on the energy metabolism of colon adenocarcinoma Caco-2 cells coupled with their differentiation. NaBT increased the activity of alkaline phosphatase indicating differentiation of Caco-2 cells. Changes in the expression of pluripotency-associated markers OCT4, NANOG and SOX2 were characterized during the induced differentiation at mRNA level along with the measures that allowed distinguishing the expression of different transcript variants. The functional activity of mitochondria was studied by high-resolution respirometry. Glycolytic pathway and phosphotransfer network were analyzed using enzymatical assays. The treatment of Caco-2 cells with NaBT increased production of ATP by oxidative phosphorylation, enhanced mitochondrial spare respiratory capacity and caused rearrangement of the cellular phosphotransfer networks. The flexibility of phosphotransfer networks depended on the availability of glutamine, but not glucose in the cell growth medium. These changes were accompanied by suppressed cell proliferation and altered gene expression of the main pluripotency-associated transcription factors. This study supports the view that modulating cell metabolism through NaBT can be an effective strategy for treating CRC. Our data indicate a close relationship between the phosphotransfer performance and metabolic plasticity of CRC, which is associated with the cell differentiation state.
Collapse
Affiliation(s)
- Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- * E-mail:
| | - Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kaisa Kuus
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
18
|
Qiao S, Zhao Y, Tian H, Manike I, Ma L, Yan H, Tian W. 3D Co-cultured Endothelial Cells and Monocytes Promoted Cancer Stem Cells' Stemness and Malignancy. ACS APPLIED BIO MATERIALS 2021; 4:441-450. [PMID: 35014295 DOI: 10.1021/acsabm.0c00927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing and constitute the primary cause of cancer relapse post-cancer therapy. The CSC niche is composed of various nonmalignant stromal cells that support CSCs' survival during cancer chemoradiotherapy. Understanding the cross-talk between CSCs and stromal cells could pave the way for developing therapeutic strategies to eradicate CSCs. Traditionally, CSC research has been relying on animal models, which can give rise to complications and poor translation in clinical practice. An efficient model to co-culture CSCs and stromal cells is urgently needed. Hence, we leveraged our expertise in enriching CSCs from in vitro cell lines with a 3D alginate-based platform, as reported previously. We established a 3D co-culture system that allowed us to study the interactions between stromal cells and CSCs over an extended period. We showed that the self-renewal capacity and stemness of CSCs were significantly enhanced when co-cultured with 3D cultured human umbilical vein endothelial cells (HUVECs) or a human monocyte cell line (THP1). Strikingly, the expression of MDR1 in 3D co-cultured CSCs was upregulated, leading to enhanced chemotoxic drug tolerance. We suggest that our in vitro co-culture model can impact CSC research and clinical practice when the goal is to develop therapeutics that target and eradicate CSCs by targeting stromal cells.
Collapse
Affiliation(s)
- Shupei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China.,Harbin Medical University, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ishara Manike
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Liang Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, Stockholm 106 91, Sweden.,AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience/Biomedicum, Karolinska Institute, Solnavägen 9, Solna 171 77, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
19
|
Bazzolo B, Sieni E, Zamuner A, Roso M, Russo T, Gloria A, Dettin M, Conconi MT. Breast Cancer Cell Cultures on Electrospun Poly(ε-Caprolactone) as a Potential Tool for Preclinical Studies on Anticancer Treatments. Bioengineering (Basel) 2020; 8:bioengineering8010001. [PMID: 33375053 PMCID: PMC7822015 DOI: 10.3390/bioengineering8010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
During anticancer drug development, most compounds selected by in vitro screening are ineffective in in vivo studies and clinical trials due to the unreliability of two-dimensional (2D) in vitro cultures that are unable to mimic the cancer microenvironment. Herein, HCC1954 cell cultures on electrospun polycaprolactone (PCL) were characterized by morphological analysis, cell viability assays, histochemical staining, immunofluorescence, and RT-PCR. Our data showed that electrospun PCL allows the in vitro formation of cultures characterized by mucopolysaccharide production and increased cancer stem cell population. Moreover, PCL-based cultures were less sensitive to doxorubicin and electroporation/bleomycin than those grown on polystyrene plates. Collectively, our data indicate that PCL-based cultures may be promising tools for preclinical studies.
Collapse
Affiliation(s)
- Bianca Bazzolo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, via Dunant, 3, 21100 Varese, Italy
- Correspondence:
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Martina Roso
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54-Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (T.R.); (A.G.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, via Marzolo, 9, 35131 Padova, Italy; (A.Z.); (M.R.); (M.D.)
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy; (B.B.); (M.T.C.)
| |
Collapse
|
20
|
Dirican E, Kankaya B, Büyükaşık S, Alış H, Velidedeoğlu M, İlvan S, İlvan A. Investigation of alterations in PIK3CA and OCT-4 gene expression in breast cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zhao X, Lu H, Sun Y, Liu L, Wang H. Prognostic value of octamer binding transcription factor 4 for patients with solid tumors: A meta-analysis. Medicine (Baltimore) 2020; 99:e22804. [PMID: 33080755 PMCID: PMC7571959 DOI: 10.1097/md.0000000000022804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Octamer binding transcription factor 4 (Oct4) is critically important in the development and progression of cancer, and is considered a potential biomarker for tumor prognosis. However, the prognostic value of Oct4 in patients with solid tumors remains elusive. Herein, we conducted a meta-analysis to assess the prognostic value of Oct4 in patients with solid tumors. METHODS We conducted a literature search on PubMed, Embase, and Web of Science databases to retrieve comprehensive and eligible studies published until December 2019. The study was conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS)/progress-free survival (PFS) were used to evaluate the prognostic value of Oct4 in patients with solid tumors via either random or fixed-effects models. RESULTS In total, 36 studies with 5198 patients were included in the meta-analysis. Notably, elevated Oct4 expression was associated with worse OS (pooled HR: 2.02, 95% CI: 1.55-2.62, P < .001) and DFS/RFS/PFS (pooled HR: 2.34, 95% CI: 1.88-2.92, P < .001). CONCLUSION This work demonstrated that patients with solid tumors show high expression of Oct4 which is linked to worse prognosis in patients with solid tumors including hepatocellular carcinoma (OS, DFS/RFS/PFS), esophageal squamous cell carcinoma (OS), gastric cancer (OS), cervical cancer (OS, DFS/RFS/PFS), and colorectal cancer (OS, DFS/RFS/PFS), this implicated Oct4 as a potential biomarker to predict the prognosis of tumors.
Collapse
Affiliation(s)
| | | | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College
| | - Li Liu
- Department of Epidemiology and Biostatistics, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
22
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
23
|
From ACTH-Dependent to ACTH-Independent Cushing's Syndrome from a Malignant Mixed Corticomedullary Adrenal Tumor: Potential Role of Embryonic Stem Cells. Case Rep Endocrinol 2020; 2020:4768281. [PMID: 32426170 PMCID: PMC7218959 DOI: 10.1155/2020/4768281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/21/2020] [Accepted: 02/22/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To report the immunohistochemical and molecular evaluation of a patient with ectopic ACTH syndrome (EAS) from a MCAT which has single cells with features of both 96 medullary and cortical differentiation. Case Description and Methods. A 16-year-old woman presented with severe EAS and a large right MCAT composed of ACTH-secreting cells resembling pheochromocytoma and another lineage similar to adrenal carcinoma. Immunohistochemistry (IHC) showed positivity for medullary (ACTH, chromogranin A, synaptophysin, and PS-100) and epithelial components (inhibin, melan-A, and calretinin). Embryonic stem cell markers were evaluated using RT/PCR and immunofluorescence. After initial surgery, the tumor recurred shifting to rapidly progressive ACTH-independent liver metastasis. Results Histopathology and IHC revealed two distinct and intermingled cellular patterns, while some cells immunostained for both medullary and cortical markers. Demonstration of all stem cell biomarkers by RT/PCR and immunofluorescence was predominantly localized to the nucleus, whereas SOX2 immunoreactivity was evident in the cytoplasm as well. Conclusion The expression of cancer stem cell biomarkers points towards the involvement of primitive embryonic cells as the origin of this neoplasm and maybe to the clinically aggressive and biochemically changing behavior.
Collapse
|
24
|
Dai Y, Huang H, Zhu Y, Cheng J, Shen AZ, Liu Y. Combating metastasis of breast cancer cells with a carboplatin analogue containing an all-trans retinoic acid ligand. Dalton Trans 2020; 49:5039-5043. [PMID: 32242881 DOI: 10.1039/d0dt00507j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pt-ATRA, a carboplatin analogue containing an all-trans retinoic acid (ATRA) derivative ligand, was synthesized via a click reaction. Upon cellular internalization, Pt-ATRA exhibits a dual function, releasing an active Pt(ii) moiety to induce cell apoptosis and ATRA to inhibit tumor metastasis.
Collapse
Affiliation(s)
- Yi Dai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
25
|
Zhao G, Wang X, Qu L, Zhu Z, Hong J, Hou H, Li Z, Wang J, Lv Z. The Clinical and Molecular Characteristics of Sex-Determining Region Y-Box 2 and its Prognostic Value in Breast Cancer: A Systematic Meta-Analysis. Breast Care (Basel) 2020; 16:16-26. [PMID: 33716628 DOI: 10.1159/000505806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Transcription factor SOX2 (sex-determining region Y-box 2) has a crucial role in the maintenance of the stem cell state. However, current evidence regarding the role of SOX2 in breast cancer is conflicting. We conducted this meta-analysis to clarify the association of SOX2 expression with clinical and molecular features and its prognostic effect on breast cancer. Methods All relevant articles were searched using electronic databases. The pooled odds ratios (ORs) or hazard ratios (HRs: multivariate Cox survival analysis) with their 95% confidence intervals (CIs) were calculated. Results A final total of 18 studies containing 3,080 patients with breast cancer were included. SOX2 protein expression was not related to age, menopausal status, lymph node metastasis, lymphovascular invasion, molecular estrogen receptor status, progesterone receptor status, triple-negative status, and the overall survival in breast cancer, but was closely associated with advanced tumor grade (grade 3 vs. grade 1-2: OR = 2.74, 95% CI = 1.85-4.06, p < 0.001), clinical stage (stage 3-4 vs. stage 0-2: OR = 2.46, 95% CI = 1.37-4.40, p = 0.002), pT stage (T stage 2-4 vs. T stage 1: OR = 1.52, 95% CI = 1.07-2.17, p = 0.019), molecular human epidermal growth factor receptor 2 (HER2) status (positive vs. negative: OR = 1.61, 95% CI = 1.21-2.14, p = 0.001), epidermal growth factor receptor (EGFR) status (positive vs. negative: OR = 2.21, 95% CI = 1.13-4.33, p = 0.021), and worse disease-free survival (DFS) (HR = 2.66, 95% CI = 1.20-5.91, p = 0.016) of breast cancer. Conclusions SOX2 expression is correlated with breast cancer progression, HER2 status, and EGFR status, and may be an independent prognostic marker for predicting poor DFS.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Limei Qu
- Department of Pathology, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhu Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Haiqin Hou
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zuonong Li
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jun Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center, the First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
27
|
Grubelnik G, Boštjančič E, Pavlič A, Kos M, Zidar N. NANOG expression in human development and cancerogenesis. Exp Biol Med (Maywood) 2020; 245:456-464. [PMID: 32041418 PMCID: PMC7082888 DOI: 10.1177/1535370220905560] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NANOG is an important stem cell transcription factor involved in human development and cancerogenesis. Its expression is complex and regulated on different levels. Moreover, NANOG protein might regulate hundreds of target genes at the same time. NANOG is crucial for preimplantation development phase and progressively decreases during embryonic stem cells differentiation, thus regulating embryonic and fetal development. Postnatally, NANOG is undetectable or expressed in very low amounts in the majority of human tissues. NANOG re-expression can be detected during cancerogenesis, already in precancerous lesions, with increasing levels of NANOG in high grade dysplasia. NANOG is believed to enable cancer cells to obtain stem-cell like properties, which are believed to be the source of expanding growth, tumor maintenance, metastasis formation, and tumor relapse. High NANOG expression in cancer is frequently associated with advanced stage, poor differentiation, worse overall survival, and resistance to treatment, and is therefore a promising prognostic and predictive marker. We summarize the current knowledge on the role of NANOG in cancerogenesis and development, including our own experience. We provide a critical overview of NANOG as a prognostic and diagnostic factor, including problems regarding its regulation and detection.
Collapse
Affiliation(s)
- Gašper Grubelnik
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Ana Pavlič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marina Kos
- Clinical Hospital Center Sestre Milosrdnice and University of Zagreb Medical School, Zagreb 10 000, Croatia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
28
|
Wang S, Liu X, Chen Y, Zhan X, Wu T, Chen B, Sun G, Yan S, Xu L. The role of SOX2 overexpression in prognosis of patients with solid tumors: A meta-analysis and system review. Medicine (Baltimore) 2020; 99:e19604. [PMID: 32221082 PMCID: PMC7220337 DOI: 10.1097/md.0000000000019604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Many studies have been done to reported the value of SRY-related HMG-box Gene 2 (SOX2) in prognosis of solid tumors. But results were not particularly consistent among these studies because of the limitations of the small sample data. METHODS We searched relevant studies published before November 2018 by PubMed, Web of Science and EMBASE. In this meta-analysis, hazard ratio (HR) values for overall survival (OS) were cumulatively pooled and quantitatively analyzed. RESULTS A meta-analysis based on 12 studies with 3318 patients was conducted to assess the potential correlation between SOX2 overexpression and OS in human solid tumors. A total of 12 studies (n = 3318) were assessed in the meta-analysis. It suggested that the high expression of SOX2 obviously indicates poor survival and prognosis in both univariate and multivariate analysis. In the univariate analysis, the combined HR for OS was 1.66 (95% confidence interval [CI]: 1.46-1.89, P < .001). The pooled HR of multivariate analysis for OS was 1.51 (95% confidence interval [CI]: 1.32-1.71, P < .001). CONCLUSIONS This meta-analysis indicated that the high expression level of SOX2 is significantly associated with a decline in survival of human with solid tumors. On the basis of the expression level in solid tumors, SOX2 is expected to be a meaningful prognostic biomarker and effective therapeutic target.
Collapse
Affiliation(s)
- Shengjie Wang
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
| | - Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University
| | - Ying Chen
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
| | - Xiaozhen Zhan
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
| | - Tujin Wu
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
| | - Bing Chen
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
| | - Guangwen Sun
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Songling Yan
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Lin Xu
- Department of Thyroid and Breast Surgery, Fujian Medical University Xiamen Humanity Hospital,
- Department of Gastrointestinal Surgery, Fujian Medical University Xiamen Humanity Hospital, Xiamen, Fujian, China
| |
Collapse
|
29
|
Clinical and Survival Impact of Sex-Determining Region Y-Box 2 in Colorectal Cancer: An Integrated Analysis of the Immunohistochemical Study and Bioinformatics Analysis. JOURNAL OF ONCOLOGY 2020; 2020:3761535. [PMID: 32104175 PMCID: PMC7040407 DOI: 10.1155/2020/3761535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/30/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022]
Abstract
Transcription factor sex-determining region Y-box 2 (SOX2) involves in the maintenance of cancer stem cells. However, the role of SOX2 in colorectal cancer (CRC) remains unclear. This study was conducted to investigate the effect of SOX2 on CRC. Studies were searched using electronic databases. The combined odds ratios (ORs) or hazard ratios (HRs: multivariate Cox survival analysis) with their 95% confidence intervals (CIs) were calculated. The Cancer Genome Atlas (TCGA) and GEO datasets were further applied to validate the survival effect. The functional analysis of SOX2 was investigated. In this work, 13 studies including 2337 patients were identified, and validation data were enrolled from TCGA and GEO datasets. SOX2 expression was not significantly related to age, gender, microsatellite instability (MSI) status, clinical stage, histological grade, tumor size, pT-stage, lymph node metastasis, distal metastasis, and cancer-specific survival (CSS) but was correlated with worse overall survival (OS: n = 536 patients) (P < 0.05). Furthermore, TCGA data demonstrated similar results, with no significant correlation between SOX2 and pathological characteristics. Further validation data (OS: n = 1408 and disease-free survival (DFS): n = 1367) showed that SOX2 expression was correlated with worse OS (HR = 1.35, 95% CI: 1.11–1.65, P=0.004) and DFS (HR = 1.30, 95% CI: 1.04–1.62, P=0.02). The functional analyses showed that SOX2 involved in cell-cell junction, focal adhesion, extracellular matrix- (ECM-) receptor interaction, and MAP kinase activity. Our findings suggest that SOX2 expression may be correlated with the worse prognosis of CRC.
Collapse
|
30
|
Identification of Cancer Stem Cell Subpopulations in Head and Neck Metastatic Malignant Melanoma. Cells 2020; 9:cells9020324. [PMID: 32019273 PMCID: PMC7072148 DOI: 10.3390/cells9020324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in many cancer types. This study identified and characterized CSCs in head and neck metastatic malignant melanoma (HNmMM) to regional lymph nodes using induced pluripotent stem cell (iPSC) markers. Immunohistochemical (IHC) staining performed on 20 HNmMM tissue samples demonstrated expression of iPSC markers OCT4, SOX2, KLF4, and c-MYC in all samples, while NANOG was expressed at low levels in two samples. Immunofluorescence (IF) staining demonstrated an OCT4+/SOX2+/KLF4+/c-MYC+ CSC subpopulation within the tumor nests (TNs) and another within the peritumoral stroma (PTS) of HNmMM tissues. IF also showed expression of NANOG by some OCT4+/SOX2+/KLF4+/c-MYC+ cells within the TNs in an HNmMM tissue sample that expressed NANOG on IHC staining. In situ hybridization (n = 6) and reverse-transcription quantitative polymerase chain reaction (n = 5) on the HNmMM samples confirmed expression of all five iPSC markers. Western blotting of primary cell lines derived from four of the 20 HNmMM tissue samples showed expression of SOX2, KLF4, and c-MYC but not OCT4 and NANOG, and three of these cell lines formed tumorspheres in vitro. We demonstrate the presence of two putative CSC subpopulations within HNmMM, which may be a novel therapeutic target in the treatment of this aggressive cancer.
Collapse
|
31
|
Jahangiri R, Mosaffa F, EmamiRazavi A, Gharib M, Jamialahmadi K. Increased Expression of Gankyrin and Stemness Factor Oct-4 are Associated with Unfavorable Clinical Outcomes and Poor Benefit of Tamoxifen in Breast Carcinoma Patients. Pathol Oncol Res 2019; 26:1921-1934. [PMID: 31853860 DOI: 10.1007/s12253-019-00766-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022]
Abstract
Tamoxifen is the most important treatment component in estrogen receptor positive (ER+) breast carcinoma patients. Tamoxifen resistance incidence presents an important obstacle in clinical treatment. Mechanisms underlying tamoxifen refractory are not completely understood. Although elevated expression of Gankyrin (P28GANK) and stem cell markers Nanog, Oct-4 and Sox-2 have been reported in breast carcinoma, their role in tamoxifen resistance progression has not been explored. In the present study, P28GANK and stem cell markers Nanog, Oct-4 and Sox-2 expression were evaluated using quantitative RT-PCR and immunohistochemical technology in 72 breast carcinoma patients who received tamoxifen as adjuvant anti-hormone treatment. Expression data were correlated with the clinical outcome and survival of patients. Data analysis showed that P28GANK, Oct-4 and Sox-2 transcripts were significantly overexpressed in tamoxifen resistance patients. Immunohistochemical staining indicated that protein expression of P28GANK and Oct-4 were also significantly higher in tamoxifen resistance patients. We have shown a positive correlation between mRNA and protein expression of P28GANK, Oct-4 and Sox-2. Multivariate logistic regression analysis indicated that P28GANK (P = 0.002) and Oct-4 (P = 0.013) overexpression could be negative independent factors of disease outcome. Additionally, in the whole study group, multivariate Cox regression analysis revealed that high expression of P28GANK and Oct-4 remained significant and unfavorable predictive factors for patients' survival. These findings suggest that Gankyrin and Oct-4 overexpression could promote tamoxifen refractory in breast cancer patients. More studies are warranted to clarify the predictive role of these potential biomarkers for patients who don't benefit from tamoxifen treatment and their possible application as prognostic markers in ER+ tamoxifen-treated breast carcinoma patients.
Collapse
Affiliation(s)
- Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashahd University of Medical Sciences, Mashhad, Iran
| | - Amirnader EmamiRazavi
- Iran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
33
|
Siddiqui Z, Srivastava AN, Sankhwar SN, Zaidi N, Fatima N, Singh S, Yusuf M. Oct-4: a prognostic biomarker of urinary bladder cancer in North India. Ther Adv Urol 2019; 11:1756287219875576. [PMID: 31632462 PMCID: PMC6769204 DOI: 10.1177/1756287219875576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022] Open
Abstract
Background The objective of this study was to evaluate Octamer-binding transcription factor 4 (Oct-4), neutrophil to lymphocyte ratio (NLR) and body mass index (BMI) as independent prognostic biomarkers for prediction of urinary bladder cancer (UBC) outcomes. With the advancement in prognostic biomarker discovery, tumor recurrence is difficult to accurately predict in UBC. UBC is costly to treat due to the requirement of frequent invasive follow-up sessions. Therefore, it is of utmost importance to evaluate good prognostic biomarkers for UBC surveillance. Methods We studied 39 UBC tissue samples. Oct-4 protein expression was evaluated semiquantitatively by immunohistochemistry (IHC). Complete blood count data and body weight as well as the height of the patients were retrieved and recorded before the date of the first transurethral resection of bladder tumor (TURBT). The follow-up period was 48 months for recurrence-free survival (RFS), progression-free survival (PFS), and overall survival (OS). Results Oct-4 expression profile was found to be significantly associated with gender (p = 0.028), tumor grade (p = 0.038), tumor stage (p = 0.003), lymph node status (p = 0.029), recurrence (p = 0.004), progression (p = 0.011), and treatment modality (p = 0.016). Tumor grade and progression were found significant with NLR values (tumor grade, p = 0.006; progression, p = 0.038) and BMI (tumor grade, p = 0.036; progression, p = 0.014). Moreover, BMI was also significantly associated with UBC recurrence (p = 0.014). Kaplan-Meier survival analysis showed poor prognosis with both high Oct-4 expression (RFS, p = 0.001; PFS, p = 0.004; OS, p = 0.014) and high NLR values (RFS, p = 0.049; PFS, p = 0.004; OS, p = 0.005). Patients with high BMI too had poor RFS (p = 0.025) and poor PFS (p = 0.032). Furthermore, multivariate Cox regression analysis, indicated Oct-4 as an independent prognostic biomarker for RFS (HR = 0.240, 95% CI, 0.072-0.804, p = 0.021). Conclusions We conclude that the expression profile of Oct-4 will be beneficial in prediction of UBC recurrence, and could have profound implications on the development of new therapeutic targets for UBC treatment.
Collapse
Affiliation(s)
- Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India; Department of Biotechnology, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
| | - Anand N Srivastava
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, Uttar Pradesh, India
| | - Satya N Sankhwar
- Department of Urology, King George's Medical University, Lucknow, India
| | - Noorin Zaidi
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Naseem Fatima
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Shivangi Singh
- Research Metabolic Unit, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Mohd Yusuf
- Department of Pathology, King George's Medical University, Lucknow, India
| |
Collapse
|
34
|
Bai X, Gao C, Zhang L, Yang S. Integrin α7 high expression correlates with deteriorative tumor features and worse overall survival, and its knockdown inhibits cell proliferation and invasion but increases apoptosis in breast cancer. J Clin Lab Anal 2019; 33:e22979. [PMID: 31325216 PMCID: PMC6805256 DOI: 10.1002/jcla.22979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/19/2019] [Accepted: 06/30/2019] [Indexed: 12/31/2022] Open
Abstract
Background This study aimed to investigate the correlation of integrin α7 (ITGA7) expression with clinical/pathological characteristics and overall survival (OS), and its knockdown on inhibiting cell activities in breast cancer. Methods A total of 191 breast cancer patients underwent surgery were retrospectively reviewed, and ITGA7 expression in tumor tissues was determined by immunofluorescence and real‐time quantitative polymerase chain reaction. Patients’ clinical/pathological data were recorded, and OS was calculated. In vitro, control shRNA and ITGA7 shRNA plasmids were transfected into MCF7 cells to evaluate the influence of ITGA7 knockdown on cell proliferation, apoptosis, and invasion. Results Ninety‐two (48.2%) patients presented with ITGA7 high expression, and 99 patients (51.8%) presented with ITGA7 low expression. ITGA7 expression was positively correlated with T stage, tumor‐node metastasis (TNM) stage, and pathological grade. Kaplan‐Meier curves showed that ITGA7 high expression was associated with shorter OS, and multivariate Cox's proportional hazards regression displayed that ITGA7 high expression was an independent predictive factor for poor OS. Moreover, in vitro experiments disclosed that cell proliferation (by Cell Counting Kit‐8 assay) and cell invasion (by Matrigel invasion assay) were reduced, while cell apoptosis rate (by Annexin V/propidium iodide assay) was enhanced by ITGA7 knockdown in MCF‐7 cells. Conclusion Integrin α7 high expression correlates with increased T stage, TNM stage, and pathological grade as well as worse OS, and its knockdown enhances cell apoptosis but inhibits cell proliferation and invasion in breast cancer.
Collapse
Affiliation(s)
- Xiaorong Bai
- Department of Breast Surgery, GanSu Provincial Cancer Hospital, Lanzhou, China
| | - Chen Gao
- Department of Breast Surgery, GanSu Provincial Cancer Hospital, Lanzhou, China
| | - Lifeng Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Suisheng Yang
- Department of Breast Surgery, GanSu Provincial Cancer Hospital, Lanzhou, China
| |
Collapse
|
35
|
Liu W, Chen G, Sun L, Zhang Y, Han J, Dai Y, He J, Shi S, Chen B. TUFT1 Promotes Triple Negative Breast Cancer Metastasis, Stemness, and Chemoresistance by Up-Regulating the Rac1/β-Catenin Pathway. Front Oncol 2019; 9:617. [PMID: 31338333 PMCID: PMC6629836 DOI: 10.3389/fonc.2019.00617] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a potential target for more effective treatment of TNBC.
Collapse
Affiliation(s)
- Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Guanglei Chen
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lisha Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Zhang
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yuna Dai
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Jianchao He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Telang N. Targeting drug resistant stem cells in a human epidermal growth factor receptor‑2‑enriched breast cancer model. ACTA ACUST UNITED AC 2019. [DOI: 10.3892/wasj.2019.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nitin Telang
- Cancer Prevention Research Program, Palindrome Liaisons Consultants, Montvale, NJ 07645‑1559, USA
| |
Collapse
|
37
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019. [PMID: 31681564 DOI: 10.3389/fonc.2019.01003.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Augustus M C Tilley
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
38
|
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC, Tiwari AK, Raman D. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol 2019; 9:1311. [PMID: 31867270 PMCID: PMC6909344 DOI: 10.3389/fonc.2019.01311] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are intrinsically chemoresistant and capable of self-renewal. Following chemotherapy, patients can develop minimal residual disease due to BCSCs which can repopulate into a relapsed tumor. Therefore, it is imperative to co-target BCSCs along with the bulk tumor cells to achieve therapeutic success and prevent recurrence. So, it is vital to identify actionable molecular targets against both BCSCs and bulk tumor cells. Previous findings from our lab and others have demonstrated that inhibition of the emerging drug target eIF4A with Rocaglamide A (RocA) was efficacious against triple-negative breast cancer cells (TNBC). RocA specifically targets the pool of eIF4A bound to the oncogenic mRNAs that requires its helicase activity for their translation. This property enables specific targeting of tumor cells. The efficacy of RocA against BCSCs is unknown. In this study, we postulated that eIF4A could be a vulnerable node in BCSCs. In order to test this, we generated a paclitaxel-resistant TNBC cell line which demonstrated an elevated level of eIF4A along with increased levels of cancer stemness markers (ALDH activity and CD44), pluripotency transcription factors (SOX2, OCT4, and NANOG) and drug transporters (ABCB1, ABCG2, and ABCC1). Furthermore, genetic ablation of eIF4A resulted in reduced expression of ALDH1A1, pluripotency transcription factors and drug transporters. This pointed out that eIF4A is likely associated with selected set of proteins that are critical to BCSCs, and hence targeting eIF4A may eliminate BCSCs. Therefore, we isolated BCSCs from two TNBC cell lines: MDA-Bone-Un and SUM-159PT. Following RocA treatment, the self-renewal ability of the BCSCs was significantly reduced as determined by the efficiency of the formation of primary and secondary mammospheres. This was accompanied by a reduction in the levels of NANOG, OCT4, and drug transporters. Exposure to RocA also induced cell death of the BCSCs as evaluated by DRAQ7 and cell viability assays. RocA treatment induced apoptosis with increased levels of cleaved caspase-3. Overall, we identified that RocA is effective in targeting BCSCs, and eIF4A is an actionable molecular target in both BCSCs and bulk tumor cells. Therefore, anti-eIF4A inhibitors could potentially be combined synergistically with existing chemo-, radio- and/or immunotherapies.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Megan Robeson
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Diwakar Bastihalli-Tukaramrao
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus M. C. Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
- *Correspondence: Dayanidhi Raman
| |
Collapse
|