1
|
Kolipaka R, Magesh I, Bharathy MA, Karthik S, Saranya I, Selvamurugan N. A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res 2024; 9:687-694. [PMID: 38577015 PMCID: PMC10990750 DOI: 10.1016/j.ncrna.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M.R. Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S. Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - I. Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - N. Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
2
|
Chen G, Wang Y, Zhang L, Yang K, Wang X, Chen X. Research progress on miR-124-3p in the field of kidney disease. BMC Nephrol 2024; 25:252. [PMID: 39112935 PMCID: PMC11308398 DOI: 10.1186/s12882-024-03688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are 18-25 nucleotides long, single-stranded, non-coding RNA molecules that regulate gene expression. They play a crucial role in maintaining normal cellular functions and homeostasis in organisms. Studies have shown that miR-124-3p is highly expressed in brain tissue and plays a significant role in nervous system development. It is also described as a tumor suppressor, regulating biological processes like cancer cell proliferation, apoptosis, migration, and invasion by controlling multiple downstream target genes. miR-124-3p has been found to be involved in the progression of various kidney diseases, including diabetic kidney disease, calcium oxalate kidney stones, acute kidney injury, lupus nephritis, and renal interstitial fibrosis. It mediates these processes through mechanisms like oxidative stress, inflammation, autophagy, and ferroptosis. To lay the foundation for future therapeutic strategies, this research group reviewed recent studies on the functional roles of miR-124-3p in renal diseases and the regulation of its downstream target genes. Additionally, the feasibility, limitations, and potential application of miR-124-3p as a diagnostic biomarker and therapeutic target were thoroughly investigated.
Collapse
Affiliation(s)
- Guanting Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Linqi Zhang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China.
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China.
| | - Kang Yang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xixi Wang
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| | - Xu Chen
- Department of Nephrology, First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan Province, 450003, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan Province, 450003, China
| |
Collapse
|
3
|
Liao L, Wang H, Wei D, Yi M, Gu Y, Zhang M, Wang L. Exosomal microRNAs: implications in the pathogenesis and clinical applications of subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1300864. [PMID: 38143562 PMCID: PMC10748509 DOI: 10.3389/fnmol.2023.1300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder with a high fatality rate. Early brain injury (EBI) and cerebral vasospasm are two critical complications of SAH that significantly contribute to poor prognosis. Currently, surgical intervention and interventional therapy are the main treatment options for SAH, but their effectiveness is limited. Exosomes, which are a type of extracellular vesicles, play a crucial role in intercellular communication and have been extensively studied in the past decade due to their potential influence on disease progression, diagnosis, and treatment. As one of the most important components of exosomes, miRNA plays both direct and indirect roles in affecting disease progression. Previous research has found that exosomal miRNA is involved in the development of various diseases, such as tumors, chronic hepatitis, atherosclerosis, diabetes, and SAH. This review focuses on exploring the impact of exosomal miRNA on SAH, including its influence on neuronal apoptosis, inflammatory response, and immune activation following SAH. Furthermore, this review highlights the potential clinical applications of exosomal miRNA in the treatment of SAH. Although current research on this topic is limited and the clinical application of exosomal miRNA has inherent limitations, we aim to provide a concise summary of existing research progress and offer new insights for future research directions and trends in this field.
Collapse
Affiliation(s)
- Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haoran Wang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Deli Wei
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingliang Yi
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Yingjiang Gu
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The People’s Hospital of Fushun County, Zigong, China
| | - Mingwei Zhang
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Wang
- Department of Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Gourishetti K, Balaji Easwaran V, Mostakim Y, Ranganath Pai KS, Bhere D. MicroRNA (miR)-124: A Promising Therapeutic Gateway for Oncology. BIOLOGY 2023; 12:922. [PMID: 37508353 PMCID: PMC10376116 DOI: 10.3390/biology12070922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are involved in post-transcriptional gene regulation. Altered expression of miR has been associated with several pathological conditions. MicroRNA-124 (miR-124) is an abundantly expressed miR in the brain as well as the thymus, lymph nodes, bone marrow, and peripheral blood mono-nuclear cells. It plays a key role in the regulation of the host immune system. Emerging studies show that dysregulated expression of miR-124 is a hallmark in several cancer types and it has been attributed to the progression of these malignancies. In this review, we present a comprehensive summary of the role of miR-124 as a promising therapeutic gateway in oncology.
Collapse
Affiliation(s)
- Karthik Gourishetti
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| | - Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Youssef Mostakim
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deepak Bhere
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
5
|
Si M, Song Y, Wang X, Wang D, Liu X, Qu X, Song Z, Yu X. CXCL12/CXCR7/β-arrestin1 biased signal promotes epithelial-to-mesenchymal transition of colorectal cancer by repressing miRNAs through YAP1 nuclear translocation. Cell Biosci 2022; 12:171. [PMID: 36210463 PMCID: PMC9549625 DOI: 10.1186/s13578-022-00908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Chemokine CXC motif receptor 7 (CXCR7) is an atypical G protein-coupled receptor (GPCR) that signals in a biased fashion. CXCL12/CXCR7 biased signal has been reported to play crucial roles in multiple stages of colorectal cancer (CRC). However, the mechanism of CXCL12/CXCR7 biased signal in promoting CRC progression and metastasis remains obscure. RESULTS We demonstrate that CXCR7 activation promotes EMT and upregulates the expression of Vimentin and doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p through YAP1 nuclear translocation. Cell transfection and luciferase assay prove that these miRNAs regulate EMT by targeting Vimentin and DCLK1. More importantly, CXCL12/CXCR7/β-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoters of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 suppresses EMT and tumor metastasis upon CXCR7 activation in vivo in tumor xenografts of nude mice and inflammatory colonic adenocarcinoma models. Clinically, the expression of CXCR7 is positively correlated with nuclear YAP1 levels and EMT markers. CONCLUSIONS Our studies reveal a novel mechanism and clinical significance of CXCL12/CXCR7 biased signal in promoting EMT and invasion in CRC progression. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Mahan Si
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yujia Song
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Wang
- grid.24696.3f0000 0004 0369 153XDepartment of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dong Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xianjun Qu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiyu Song
- grid.414011.10000 0004 1808 090XDepartment of Pharmacy, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Xinfeng Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ren X, Fan Y, Shi D, Xu E, Liu Y. MicroRNA-124 inhibits canine mammary carcinoma cell proliferation, migration and invasion by targeting CDH2. Res Vet Sci 2022; 146:5-14. [DOI: 10.1016/j.rvsc.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 01/09/2023]
|
7
|
Wang H, Chen Y, Yang D, Ma L. Perspective of Human Condensins Involved in Colorectal Cancer. Front Pharmacol 2021; 12:664982. [PMID: 34557090 PMCID: PMC8453263 DOI: 10.3389/fphar.2021.664982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022] Open
Abstract
Although many important roles are played by human condesins in condensation and segregation of mitotic chromosomes, what roles of human condensins play in colorectal cancer are still unclear at present. Recently, abnormal expressions of all eight subunits of human condensins have been found in colorectal cancer and they are expected to become potential biomarkers and therapeutic targets for colorectal cancer in the future. However, there are still no reviews on the significance of abnormal expression of human condensin subunits and colorectal cancer until now. Based on a brief introduction to the discovery and composition of human condensins, the review summarized all abnormally expressed human subunits found in colorectal cancer based on publicly published papers. Moreover, Perspective of application on abnormally expressed human subunits in colorectal cancer is further reviewed.
Collapse
Affiliation(s)
- Hongzhen Wang
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Yao Chen
- School of Life Sciences, Jilin Normal University, Siping, China
| | - Dawei Yang
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| | - Liang Ma
- The Department of General Surgery, The Central People's Hospital of Siping City, Siping, China
| |
Collapse
|
8
|
Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M. An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 2021; 135:111198. [PMID: 33412388 DOI: 10.1016/j.biopha.2020.111198] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-124 (miR-124) is a copious miRNA in the brain, but it is expressed in a wide range of human/animal tissues participating in the pathogenesis of several disorders. Based on its important function in the development of the nervous system, abnormal expression of miR-124 has been detected in nervous system diseases including Alzheimer's disease, Parkinson's disease, Hypoxic-Ischemic Encephalopathy, Huntington's disease, and ischemic stroke. In addition to these conditions, miR-124 contributes to the pathogenesis of cardiovascular disorders, hypertension, and atherosclerosis. Besides, it has been shown to be down-regulated in a wide range of human cancers such as colorectal cancer, breast cancer, gastric cancer, glioma, pancreatic cancer, and other types of cancer. Yet, few studies have reported upregulation of miR-124 in some cancer types. In the current study, we describe the role of miR-124 in these malignant and non-malignant conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Deng X, Chen Y, Liu Z, Xu J. MiR-124-3p.1 Sensitizes Ovarian Cancer Cells to Mitochondrial Apoptosis Induced by Carboplatin. Onco Targets Ther 2020; 13:5375-5386. [PMID: 32606755 PMCID: PMC7294572 DOI: 10.2147/ott.s242342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Carboplatin is a platinum-based chemotherapeutic drug that is commonly used as a treatment for ovarian cancer. However, high doses and repeated use of carboplatin usually reduce the sensitivity of cancer cells to the drug. There is an urgent need to develop strategies to increase the sensitivity of ovarian cancer cells to carboplatin. Materials and Methods Quantitative reverse-transcriptase real-time PCR was used to detect miR-124-3p.1 levels in ovarian cancer tissues and cell lines. Transfection with miR-124-3p.1 and caveolin-1 (CAV1) was used for gain-of-function experiments. Western blot and immunoprecipitation assays were performed to evaluate the expression and function of CAV1, AKT, Bad, and Bcl-xl. Flow cytometry analysis was used to measure the apoptosis rates of SKOV3 and A2780 cells. Results Expression levels of miR-124-3p.1 were decreased in ovarian cancer tissues and cell lines. Furthermore, overexpression of miR-124-3p.1 enhanced carboplatin-induced apoptotic cell death of ovarian cancer cell lines. Regarding the mechanism of this effect, we showed that CAV1 was the target of miR-124-3p.1 in ovarian cancer. Overexpression of miR-124-3p.1 suppressed the expression of CAV1, thereby reducing the activation of AKT and phosphorylation of Bad. As a result, the function of Bcl-xl was inhibited and carboplatin-induced mitochondrial apoptosis was enhanced. Conclusion miR-124-3p.1 sensitizes carboplatin-induced mitochondrial apoptosis through suppression of CAV1 in ovarian cancer. Increasing miR-124-3p.1 expression may represent a novel strategy to improve carboplatin sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Xiaohong Deng
- Department of Gynecology, Northwest Women and Children's Hospital, Xi'an City, Shanxi Province 710061, People's Republic of China
| | - Yi Chen
- Department of Surgery, Affiliated Hospital of Xi'an Jiao Tong University, Chang'an District Hospital, Xi'an City, Shanxi Province 710119, People's Republic of China
| | - Zhao Liu
- Department of Surgery, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an City, Shanxi Province 710100, People's Republic of China
| | - Jingning Xu
- Department of Obstetrics and Gynecology, Northwest Women and Children's Hospital, Xi'an City, Shanxi Province 710061, People's Republic of China
| |
Collapse
|
10
|
Evaluation of the Role of hsa-mir-124 in Predicting Clinical Outcome in Breast Invasive Carcinoma Based on Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1839205. [PMID: 32190652 PMCID: PMC7073497 DOI: 10.1155/2020/1839205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 01/05/2023]
Abstract
Purpose Breast invasive carcinoma (BRCA) is the most common malignant tumor. MiR-124 plays a tumor-suppressive role in human cancer. However, the clinical significance of miR-124 in BRCA remains unclear. The aim of this study was to evaluate the association of hsa-mir-124 expression and the clinicopathological characteristics in BRCA using database analysis. Methods The clinical data and expression profiles of hsa-mir-124 were obtained from the cancer genome atlas for BRCA (TCGA_BRCA). Then, the prognostic value of hsa-mir-124 in BRCA was investigated using the Cox Regression test, and the association of hsa-mir-124 and pathology TNM stages and pathologic stages were measured by the Kruskal–Wallis test and Wilcox. test. In addition, the association of hsa-mir-124 and tumor molecular phenotypes was performed using the Chi-Square test. Results We found that the overall survival of patients with high expression of hsa-mir-124-1 and hsa-mir-124-2 was better than that of patients with low expression of hsa-mir-124-1 and hsa-mir-124-2. And the expression of hsa-mir-124-1, hsa-mir-124-2, and hsa-mir-124-3 was mainly enriched in T1/T2 stages, NO/N1 stages, and M0 stages. Then, the expression of hsa-mir-124-1, hsa-mir-124-2, and hsa-mir-124-3 was negatively associated with tumor lymph node metastasis. Moreover, the expression of hsa-mir-124 was associated with tumor molecular phenotype in breast invasive carcinoma. Conclusion Our findings indicated that hsa-mir-124 expressions were associated with overall survival, TNM stages, pathologic characteristics, and tumor molecular phenotype in BRCA via TCGA_BRCA database, providing a new biomarker and a potential therapeutic target for BRCA patients.
Collapse
|
11
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y, Liu X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front Immunol 2020; 11:235. [PMID: 32153570 PMCID: PMC7050625 DOI: 10.3389/fimmu.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological investigations have shown that smoking ameliorates ulcerative colitis (UC) but exacerbates Crohn's disease (CD), diseases that feature a Th2-mediated and Th1-mediated response, respectively. Cigarette extracts, especially nicotine, affect the Th1/Th2 balance. We previously reported that nicotine protects against mouse DSS colitis (similar to UC) by enhancing microRNA-124 (miR-124) expression. Intriguingly, elevation of miR-124 in CD is reported to aggravate the disease. Here we investigate the dual regulation of miR-124 in inflammatory bowel diseases (IBDs), which may explain the similar bidirectional regulation of tobacco. We found that overexpressed miR-124 protected against mouse DSS-induced colitis with a Th1 polarization in peripheral blood lymphocytes and colon tissues, which was also found in human peripheral blood lymphocytes. Conversely, miR-124 knockdown worsened DSS murine colitis with a Th2 polarization. Moreover, knockdown of miR-124 could eliminate the polarization toward Th1 after nicotine treatment, suggesting that miR-124 mediates the effect of nicotine on the Th1/Th2 balance. In addition, interference of IL-6R, which is a downstream target of miR-124, could remarkably weaken the Th1 polarization induced by miR-124. Taken together, these results suggest that nicotine shifts the balance of Th1/Th2 toward Th1 via a miR-124-mediated IL-6R pathway, which might explain its dual role in IBDs.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jie Wei
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
Abstract
Colorectal cancer is considered the third most frequent malignant neoplasm occurring in both men and women worldwide. Most approaches that have been used to fight and treat this type of malignancy are either invasive or nonselective. Noninvasive therapy using oral route can increase patient compliance and reduce treatment costs. Innovative measures such as use of nanotechnology and theranostic systems have been initiated in the oral therapy, which has been proven to be greatly advantageous in decreasing side effects, improving detection and diagnoses. This manuscript investigates recent innovative and novel therapeutic approaches through oral route and potential targets in the treatment of colorectal cancer.
Collapse
|