1
|
Santarosa Vieira AG, da Silva LS, Albino da Silva EC, Laus AC, Faria TMV, van Helvoort Lengert A, Martins GE, de Oliveira MA, Reis RM, Lopes LF, Pinto MT. Comprehensive microRNA expression analysis of pediatric gonadal germ cell tumors: unveiling novel biomarkers and signatures. Mol Oncol 2024; 18:1593-1607. [PMID: 38725152 PMCID: PMC11161733 DOI: 10.1002/1878-0261.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 06/09/2024] Open
Abstract
microRNAs (miRNAs) are small endogenous noncoding RNAs, and alterations in their expression may contribute to oncogenesis. Discovering a unique miRNA pattern holds the potential for early detection and novel treatment possibilities in cancer. This study aimed to evaluate miRNA expression in pediatric patients with gonadal germ cell tumors (GCTs), focusing on characterizing the miRNA profiles of each histological subtype and identifying a distinct histological miRNA signature for a total of 42 samples of pediatric gonadal GCTs. The analysis revealed distinct miRNA expression profiles for all histological types, regardless of the primary site. We identified specific miRNA expression signatures for each histological type, including 34 miRNAs for dysgerminomas, 13 for embryonal carcinomas, 25 for yolk sac tumors, and one for immature teratoma, compared to healthy controls. Furthermore, we identified 26 miRNAs that were commonly expressed in malignant tumors, with six miRNAs (miR-302a-3p, miR-302b-3p, miR-371a-5p, miR-372-3p, miR-373-3p, and miR-367-3p) showing significant overexpression. Notably, miR-302b-3p exhibited a significant association with all the evaluated clinical features. Our findings suggest that miRNAs have the potential to aid in the diagnosis, prognosis, and management of patients with malignant GCTs.
Collapse
Affiliation(s)
- Ana Glenda Santarosa Vieira
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
- Pediatric Cancerology's Department of Santa Casa de Misericórdia de SantosBrazil
| | | | | | | | | | | | - Gisele Eiras Martins
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
- Life and Health Sciences Research Institute (ICVS), Medical SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Luiz Fernando Lopes
- Barretos Children's Cancer Hospital from Hospital de AmorBrazil
- Brazilian Childhood Germ Cell Tumor Study GroupThe Brazilian Pediatric Oncology Society (SOBOPE)São PauloBrazil
| | - Mariana Tomazini Pinto
- Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
- Pediatric Oncology Research Group (GPOPed), Molecular Oncology Research CenterBarretos Cancer HospitalBrazil
| |
Collapse
|
2
|
Pan Y, Zhang YR, Wang LY, Wu LN, Ma YQ, Fang Z, Li SB. Construction of CDKN2A-related competitive endogenous RNA network and identification of GAS5 as a prognostic indicator for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:1514-1531. [PMID: 38660664 PMCID: PMC11037068 DOI: 10.4251/wjgo.v16.i4.1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Competitive endogenous RNA (ceRNA) is an innovative way of gene expression modulation, which plays a crucial part in neoplasia. However, the intricacy and behavioral characteristics of the ceRNA network in hepatocellular carcinoma (HCC) remain dismal. AIM To establish a cyclin dependent kinase inhibitor 2A (CDKN2A)-related ceRNA network and recognize potential prognostic indicators for HCC. METHODS The mutation landscape of CDKN2A in HCC was first explored using the cBioPortal database. Differential expression analysis was implemented between CDKN2Ahigh and CDKN2Alow expression HCC samples. The targeted microRNAs were predicted by lncBasev3.0, and the targeted mRNAs were predicted by miRDB, and Targetscan database. The univariate and multivariate analysis were utilized to identify independent prognostic indicators. RESULTS CDKN2A was frequently mutated and deleted in HCC. The single-cell RNA-sequencing analysis revealed that CDKN2A participated in cell cycle pathways. The CDKN2A-related ceRNA network-growth arrest specific 5 (GAS5)/miR-25-3p/SRY-box transcription factor 11 (SOX11) was successfully established. GAS5 was recognized as an independent prognostic biomarker, whose overexpression was correlated with a poor prognosis in HCC patients. The association between GAS5 expression and methylation, immune infiltration was explored. Besides, traditional Chinese medicine effective components targeting GAS5 were obtained. CONCLUSION This CDKN2A-related ceRNA network provides innovative insights into the molecular mechanism of HCC formation and progression. Moreover, GAS5 might be a significant prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Yong Pan
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Yi-Ru Zhang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Yun Wang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li-Na Wu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Ying-Qiu Ma
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Zhou Fang
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| | - Shi-Bo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316021, Zhejiang Province, China
| |
Collapse
|
3
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
4
|
Chi C, Liang X, Cui T, Gao X, Liu R, Yin C. SKIL/SnoN attenuates TGF-β1/SMAD signaling-dependent collagen synthesis in hepatic fibrosis. BIOMOLECULES & BIOMEDICINE 2023; 23:1014-1025. [PMID: 37389959 PMCID: PMC10655871 DOI: 10.17305/bb.2023.9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
The ski-related novel gene (SnoN), encoded by the SKIL gene, has been shown to negatively regulated transforming growth factor-β1 (TGF-β1) signaling pathway. However, the roles of SnoN in hepatic stellate cell (HSC) activation and hepatic fibrosis (HF) are still unclear. To evaluate the role of SnoN in HF, we combined bulk RNA sequencing analysis and single-cell RNA sequencing analysis to analyse patients with HF. The role of SKIL/SnoN was verified using liver samples from rat model transfected HSC-T6 and LX-2 cell lines. Immunohistochemistry, immunofluorescence, PCR, and western blotting techniques were used to demonstrate the expression of SnoN and its regulatory effects on TGF-β1 signaling in fibrotic liver tissues and cells. Furthermore, we constructed competitive endogenous RNA regulatory network and potential drug network associated with the SnoN gene. We identified SKIL gene as a differentially expressed gene in hepatic fibrosis. SnoN protein was found to be widely expressed in the cytoplasm of normal hepatic tissues, whereas it was almost absent in HF tissues. In the rat group subjected to bile duct ligation (BDL), SnoN protein expression decreased, while TGF-β1, collagen III, tissue inhibitor of metalloproteinase 1 (TIMP-1), and fibronectin levels increased. We observed the interaction of SnoN with p-SMAD2 and p-SMAD3 in the cytoplasm. Following SnoN overexpression, apoptosis of HSCs was promoted, and the expression of HF-associated proteins, including collagen I, collagen III, and TIMP-1, was reduced. Conversely, downregulation of SnoN inhibited HSC apoptosis, increased collagen III and TIMP-1 levels, and decreased matrix metalloproteinase 13 (MMP-13) expression. In conclusion, SnoN expression is downregulated in fibrotic livers, and could attenuate TGF-β1/SMADs signaling-dependent de-repression of collagen synthesis.
Collapse
Affiliation(s)
- Cheng Chi
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
- School of Nursing, Jining Medical University, Jining, Shandong, China
| | - Xifeng Liang
- School of Nursing, Jining Medical University, Jining, Shandong, China
- School of Nursing, Weifang Medical University, Weifang, Shandong, China
| | - Tianyu Cui
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiao Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
5
|
Lin G, Wu T, Gao X, He Z, Nong W. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors. Front Oncol 2022; 12:846497. [PMID: 35837102 PMCID: PMC9273967 DOI: 10.3389/fonc.2022.846497] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
With completing the whole genome sequencing project, awareness of lncRNA further deepened. The growth arrest-specific transcript 5 (GAS5) was initially identified in growth-inhibiting cells. GAS5 is a lncRNA (long non-coding RNA), and it plays a crucial role in various human cancers. There are small ORFs (open reading frames) in the exons of the GAS5 gene sequence, but they do not encode functional proteins. In addition, GAS5 is also the host gene of several small nucleolar RNAs (snoRNA). These snoRNAs are believed to play a suppressive role during tumor progression by methylating ribosomal RNA (rRNA). As a result, GAS5 expression levels in tumor tissues are significantly reduced, leading to increased malignancy, poor prognosis, and drug resistance. Recent studies have demonstrated that GAS5 can interact with miRNAs by base-pairing and other functional proteins to inhibit their biological functions, impacting signaling pathways and changing the level of intracellular autophagy, oxidative stress, and immune cell function in vivo. In addition, GAS5 participates in regulating proliferation, invasion, and apoptosis through the above molecular mechanisms. This article reviews the recent discoveries on GAS5, including its expression levels in different tumors, its biological behavior, and its molecular regulation mechanism in human cancers. The value of GAS5 as a molecular marker in the prevention and treatment of cancers is also discussed.
Collapse
Affiliation(s)
- Guohong Lin
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
| | - Tianzhun Wu
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Xing Gao
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Ziqin He
- Oncology Medical College, Guangxi Medical University, Nanning, China
| | - Wenwei Nong
- Department of General Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Wenwei Nong,
| |
Collapse
|
6
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
7
|
Gu Y, Wang G, Xu H. Long non-coding RNA ZNFX1 antisense 1 (ZFAS1) suppresses anti-oxidative stress in chondrocytes during osteoarthritis by sponging microRNA-1323. Bioengineered 2022; 13:13188-13200. [PMID: 35635081 PMCID: PMC9276043 DOI: 10.1080/21655979.2022.2074770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
LncRNAs play a regulatory role in osteoarthritis (OA); however, the detailed mechanism remains to be elucidated. This study aimed to investigate the role of lncRNA zinc finger NFX1-type containing 1 (ZNFX1) antisense 1 (ZFAS1) in OA progression and explore its possible mechanismsagainst oxidative stress. Human cartilage specimens were obtained from 10 patients without OA who underwent traumatic amputation and 25 patients with OA who underwent total knee replacement surgery. Chondrocytes were prepared from harvested articular cartilage. ZFAS1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) expression levels were analyzed using quantitative reverse transcription PCR and WB. The chondrocyte growth was indicated by MTT and colony formation assays. Chondrocyte apoptosis, reactive oxygen species generation, and anti-oxidative enzymes activities were also measured. ZFAS1 expression was reduced in OA samples and lipopolysaccharide (LPS)-treated chondrocytes used as an OA cell model mimic. ZFAS1 overexpression facilitated proliferation and repressed oxidative stress, inflammation, and apoptosis in LPS-induced chondrocytes. ZFAS1 also activated the anti-oxidative Nrf2-HO-1 pathway. ZFAS1 directly targeted miR-1323, which partially reversed the effects of ZFAS1 on chondrocyte proliferation, oxidative stress, inflammation, and apoptosis. Furthermore, Nrf2 was negatively regulated by miR-1323. The effect of miR-1323 inhibition was partly abrogated by the administration of brusatol, an Nrf2 inhibitor. Collectively, the results showed that ZFAS1 promoted chondrocyte proliferation and repressed oxidative stress, possibly by regulating the novel miR-1323-Nrf2 axis of the inflammation and apoptosis triggered by LPS, indicating that ZFAS1 is a promising therapeutic target for OA.
Collapse
Affiliation(s)
- Yanglin Gu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Guangchang Wang
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| | - Huazhong Xu
- Department of Orthopedics, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, P.R. China
| |
Collapse
|
8
|
Chen S, Zhang Y, Ding X, Li W. Identification of lncRNA/circRNA-miRNA-mRNA ceRNA Network as Biomarkers for Hepatocellular Carcinoma. Front Genet 2022; 13:838869. [PMID: 35386284 PMCID: PMC8977626 DOI: 10.3389/fgene.2022.838869] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer, with the incidence and mortality rates increasing every year. Despite the improvement of clinical management, substantial challenges remain due to its high recurrence rates and short survival period. This study aimed to identify potential diagnostic and prognostic biomarkers in HCC through bioinformatic analysis. Methods: Datasets from GEO and TCGA databases were used for the bioinformatic analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out by WebGestalt website and clusterProfiler package of R. The STRING database and Cytoscape software were used to establish the protein-protein interaction (PPI) network. The GEPIA website was used to perform expression analyses of the genes. The miRDB, miRWalk, and TargetScan were employed to predict miRNAs and the expression levels of the predicted miRNAs were explored via OncomiR database. LncRNAs were predicted in the StarBase and LncBase while circRNA prediction was performed by the circBank. ROC curve analysis and Kaplan-Meier (KM) survival analysis were performed to evaluate the diagnostic and prognostic value of the gene expression, respectively. Results: A total of 327 upregulated and 422 downregulated overlapping DEGs were identified between HCC tissues and noncancerous liver tissues. The PPI network was constructed with 89 nodes and 178 edges and eight hub genes were selected to predict upstream miRNAs and ceRNAs. A lncRNA/circRNA-miRNA-mRNA network was successfully constructed based on the ceRNA hypothesis, including five lncRNAs (DLGAP1-AS1, GAS5, LINC00665, TYMSOS, and ZFAS1), six circRNAs (hsa_circ_0003209, hsa_circ_0008128, hsa_circ_0020396, hsa_circ_0030051, hsa_circ_0034049, and hsa_circ_0082333), eight miRNAs (hsa-miR-150-5p, hsa-miR-19b-3p, hsa-miR-23b-3p, hsa-miR-26a-5p, hsa-miR-651-5p, hsa-miR-10a-5p, hsa-miR-214-5p and hsa-miR-486-5p), and five mRNAs (CDC6, GINS1, MCM4, MCM6, and MCM7). The ceRNA network can promote HCC progression via cell cycle, DNA replication, and other pathways. Clinical diagnostic and survival analyses demonstrated that the ZFAS1/hsa-miR-150-5p/GINS1 ceRNA regulatory axis had a high diagnostic and prognostic value. Conclusion: These results revealed that cell cycle and DNA replication pathway could be potential pathways to participate in HCC development. The ceRNA network is expected to provide potential biomarkers and therapeutic targets for HCC management, especially the ZFAS1/hsa-miR-150-5p/GINS1 regulatory axis.
Collapse
Affiliation(s)
- Shanshan Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Exosome-Mediated Transfer of miR-1323 from Cancer-Associated Fibroblasts Confers Radioresistance of C33A Cells by Targeting PABPN1 and Activating Wnt/β-Catenin Signaling Pathway in Cervical Cancer. Reprod Sci 2022; 29:1809-1821. [PMID: 35334101 DOI: 10.1007/s43032-021-00820-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
Plenty of pieces of evidence suggest that the resistance to radiotherapy greatly influences the therapeutic effect in cervical cancer (CCa). MicroRNAs (miRNAs) have been reported to regulate cellular processes by acting as tumor suppressors or promoters, thereby driving radioresistance or radiosensitivity. Meanwhile, it has been reported that microRNA-1323 (miR-1323) widely participates in cancer progression and radiotherapy effects. However, the role of miR-1323 is still not clear in CCa. Hence, in this study, we are going to investigate the molecular mechanism of miR-1323 in CCa cells. In the beginning, miR-1323 was found aberrantly upregulated in CCa cells via RT-qPCR assay. Functional assays indicated that miR-1323 was transferred by cancer-associated fibroblasts-secreted (CAFs-secreted) exosomes and miR-1323 downregulation suppressed cell proliferation, migration, invasion, and increased cell radiosensitivity in CCa. Mechanism assays demonstrated that miR-1323 targeted poly(A)-binding protein nuclear 1 (PABPN1). Besides, PABPN1 recruited insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) to regulate glycogen synthase kinase 3 beta (GSK-3β) and influenced Wnt/β-catenin signaling pathway. Therefore, rescue experiments were implemented to validate that PABPN1 overexpression rescued the inhibited cancer development and radioresistance induced by the miR-1323 inhibitor. In conclusion, miR-1323 was involved in CCa progression and radioresistance which might provide a novel insight for CCa treatment.
Collapse
|
10
|
Zhang WY, Zhan HL, Li MK, Wu GD, Liu Z, Wu LF. Long noncoding RNA Gas5 induces cell apoptosis and inhibits tumor growth via activating the CHOP-dependent endoplasmic reticulum stress pathway in human hepatoblastoma HepG2 cells. J Cell Biochem 2022; 123:231-247. [PMID: 34636091 DOI: 10.1002/jcb.30159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
In recent years, long noncoding RNAs (lncRNAs) have been demonstrated to be important tumor-associated regulatory factors. LncRNA growth arrest-specific transcript 5 (Gas5) acts as an anti-oncogene in most cancers. Whether Gas5 acts as an oncogene or anti-oncogene in hepatocellular carcinoma (HCC) remains unclear. In the present study, the expression and role of Gas5 in HCC were investigated in vitro and in vivo. Lower expression levels of Gas5 were determined in HCC tissues and cells by quantitative reverse transcription-polymerase chain reaction. Overexpressed Gas 5 lentiviral vectors were constructed to analyze their influence on cell viability, migration, invasion, and apoptosis. Fluorescence in situ hybridization was used to identify the subcellular localization of Gas5. Protein complexes that bound to Gas5 were isolated from HepG2 cells through pull-down experiments and analyzed by mass spectrometry. A series of novel Gas5-interacting proteins were identified and bioinformatics analysis was carried out. These included ribosomal proteins, proteins involved in protein folding, sorting, and transportation in the ER, some nucleases and protein enzymes involved in gene transcription, translation, and other proteins with various functions.78 kDa glucose-regulated protein (GRP78) was identified as a direct target of Gas5 by Rip-qPCR and Western blot analysis assay. Gas5 inhibited HepG2 cell growth and induced cell apoptosis via upregulating CHOP to activate the ER stress signaling pathway. Further studies indicated that the knockdown of CHOP by shRNA partially reversed Gas5-mediated apoptosis in HepG2 cells. Magnetic resonance imaging showed that the ectopic expression of Gas5 inhibited the growth of HCC in nude mice. These findings suggest that Gas5 functions as a tumor suppressor and induces apoptosis through activation of ER stress by targeting the CHOP signal pathway in HCC.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hao-Lian Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Ming-Kai Li
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guan-Di Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Zhe Liu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
11
|
Fang Y, Yang Y, Li N, Zhang XL, Huang HF. Emerging role of long noncoding RNAs in recurrent hepatocellular carcinoma. World J Clin Cases 2021; 9:9699-9710. [PMID: 34877309 PMCID: PMC8610931 DOI: 10.12998/wjcc.v9.i32.9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most frequent types of liver cancer and is characterized by a high recurrence rate. Recent studies have proposed that long non-coding RNAs (lncRNAs) are potential biomarkers in several recurrent tumor types. It is now well understood that invasion, migration, and metastasis are important factors for tumor recurrence. Moreover, some of the known risk factors for HCC may affect the expression levels of several types of lncRNAs and thus affect the recurrence of liver cancer through lncRNA regulation. In this paper, we review the biological functions, molecular mechanisms, and roles of lncRNAs in HCC and summarize current knowledge about lncRNAs as potential biomarkers in recurrent HCC.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Yang Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Na Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Han-Fei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
12
|
Huang K, Lu Z, Li L, Peng G, Zhou W, Ye Q. Construction of a ceRNA network and a genomic-clinicopathologic nomogram to predict survival for HBV-related HCC. Hum Cell 2021; 34:1830-1842. [PMID: 34487338 DOI: 10.1007/s13577-021-00607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 12/09/2022]
Abstract
Some lncRNA-associated competing endogenous RNAs (ceRNAs) are considered as potential biomarkers for targeted therapies and prognosis in human cancer. In our present study, we aimed to construct a ceRNA network and establish a genomic-clinicopathologic nomogram to provide insights into the molecular mechanisms and predict survival for HBV-related HCC. The Cancer Genome Atlas (TCGA) database was applied to collect the data of LIHC RNA-seq dataset and miRNA-seq dataset as well as the clinicopathological information. Identification of differentially expressed RNAs (mRNAs, lncRNAs, and miRNAs) between HBV-related HCC samples and normal samples was conducted using Limma package in R. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for performing the functional enrichment analysis of differentially expressed mRNAs. The ceRNA network was carried out using Cytoscape. The LASSO-penalized Cox regression analysis was implemented to identify HCC-related lncRNAs, and the multivariate Cox regression analysis was conducted for the establishment of a genomic-clinicopathology nomogram. A total of 1859 DEmRNAs, 113 DElncRNAs, and 89 DEmiRNAs were screened out etween HBV-related HCC samples and normal samples. A ceRNA network including 44 DEmRNAs, 7 DElncRNAs, and 20 DEmiRNAs was constructed. 7 DElncRNAs (PVT1, LINC01138, LINC02499, AL355488.2, FGF14-AS2, MAFG-AS1 and LINC00261) were finally identified as prognostic indicators. The area under the curve reached 0.8169 for the 7-lncRNA signature. The predictive accuracy and clinical application value were remarkably high for the genomic-clinicopathologic nomogram integrating the histological grade and the 7-gene-based prognostic index. Taken together, we have established a ceRNA network with HBV-related HCC-specific DElncRNAs, DEmiRNAs, and DEmRNAs. Furthermore, the genome-wide data of lncRNA expression were analyzed using the TCGA database, and a 7-lncRNA signature was identified as a potential prognostic predictor for HBV-related HCC patients. Novel functional studies were provided by our current findings for elucidating the molecular mechanism of lncRNA in HBV-related HCC.
Collapse
Affiliation(s)
- Kang Huang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Ling Li
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Guizhu Peng
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Wei Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China. .,The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
The critical function of miR-1323/Il6 axis in children with Mycoplasma pneumoniae pneumonia. J Pediatr (Rio J) 2021; 97:552-558. [PMID: 33347836 PMCID: PMC9432136 DOI: 10.1016/j.jped.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Mycoplasma pneumoniae pneumonia (MPP) is a common respiratory infection in children. Tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), and IL-6 have correlation with Mycoplasma pneumoniae lung infection and MPP pathogenesis. METHOD miRNAs participate in the pathogenesis of various diseases by regulating the development and differentiation of the immune cell. Blood was collected and total RNA was isolated. miRNA microarrays were performed to identify differentially expressed miRNAs in MPP patients. The levels of relative miRNAs and mRNAs were evaluated by qRT-PCR. RESULTS There are 23 differentially expressed miRNAs in MPP children's plasma, 15 miRNAs had enhanced expression and 8 had depressed expression. MPP patients showed lower mir-1323 level in blood samples than healthy controls. MPP patients with pleural effusion had much higher Il6 and Il17a mRNA levels than those without pleural effusion. The expression level of Il6 had a negative correlation with miR-1323 level. In the human THP-1 cell line, the level of miR-1323 was significantly reduced through lipopolysaccharides treatment. In THP-1 cells, overexpression or silencing of miR-1323 significantly reduced or promoted Il6 expression. CONCLUSION In conclusion, miR-1323 targets the mRNA of Il6 and inhibits the expression of Il6. The pathogenesis of MPP inhibits the expression of miR-1323 in macrophages, triggers the overexpression of Il6, and enhances inflammation response.
Collapse
|
14
|
Xu D, Wang L, Pang S, Cao M, Wang W, Yu X, Xu Z, Xu J, Wang H, Lu J, Li K. The Functional Characterization of Epigenetically Related lncRNAs Involved in Dysregulated CeRNA-CeRNA Networks Across Eight Cancer Types. Front Cell Dev Biol 2021; 9:649755. [PMID: 34222227 PMCID: PMC8247484 DOI: 10.3389/fcell.2021.649755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have demonstrated that lncRNAs could compete with other RNAs to bind miRNAs, as competing endogenous RNAs (ceRNAs), to regulate each other. On the other hand, ceRNAs were found to be recurrently dysregulated in cancer status. However, limited studies considered the upstream epigenetic regulatory factors that disrupted the normal competing mechanism. In the present study, we constructed the lncRNA-associated dysregulated ceRNA networks across eight cancer types. lncRNAs in the individual dysregulated network and pan-cancer core dysregulated ceRNA subnetwork were found to play more important roles than mRNAs. Integrating lncRNA methylation profiles, we identified 49 epigenetically related (ER) lncRNAs involved in the dysregulated ceRNA networks, including 18 epigenetically activated (EA) lncRNAs, 18 epigenetically silenced (ES) lncRNAs, and 13 rewired ER lncRNAs across eight cancer types. Furthermore, we evaluated the epigenetic regulating patterns of these lncRNAs and screened nine pan-cancer ER lncRNAs (six EA and three ES lncRNAs). The nine lncRNAs were found to regulate the cancer hallmarks by competing with mRNAs. Moreover, we found that integrating the expression and methylation profiles of the nine lncRNAs could predict cancer incidence in eight cancer types robustly and the cancer outcome of several cancer types. These results provide an improved understanding of methylation regulation to ceRNA and offer novel potential molecular therapeutic targets for the diagnosis and prognosis across different cancer types.
Collapse
Affiliation(s)
- Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Liqiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sainan Pang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Jianping Lu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Liu W, Zhan J, Zhong R, Li R, Sheng X, Xu M, Lu Z, Zhang S. Upregulation of Long Noncoding RNA_GAS5 Suppresses Cell Proliferation and Metastasis in Laryngeal Cancer via Regulating PI3K/AKT/mTOR Signaling Pathway. Technol Cancer Res Treat 2021; 20:1533033821990074. [PMID: 33641529 PMCID: PMC7923983 DOI: 10.1177/1533033821990074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Laryngeal cancer is one of the most common malignant tumors among head and neck cancers. Accumulating studies have indicated that long noncoding RNAs (lncRNAs) play an important role in laryngeal cancer occurrence and progression, however, the functional roles and relative regulatory mechanisms of lncRNA growth arrest-specific transcript 5 (GAS5) in laryngeal cancer progression remain unclear. METHODS The expression of lncRNA GAS5 in both laryngeal cancer tissues and cell lines was evaluated using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. The relationships between lncRNA GAS5 expression and clinical parameters were also analyzed. To determine the biological function of lncRNA GAS5, a lncRNA GAS5-specific plasmid was first transfected into laryngeal cancer cells using lentiviral technology. Cell counting kit-8 assay, flow cytometry, and Transwell assays were used to detect in vitro cell proliferation, apoptosis, cycle distribution, and metastasis abilities, respectively. Furthermore, in vivo cell growth experiments were also performed using nude mice. Additionally, western blotting was performed to identify the underlying regulatory mechanism. RESULTS In the current study, lncRNA GAS5 was downregulated in laryngeal cancer tissues and its low expression was closely associated with poor tumor differentiation, advanced TNM stage, lymph node metastasis, and shorter overall survival time. In addition, lncRNA GAS5 upregulation significantly inhibited laryngeal cancer cell proliferation both in vitro and in vivo. Moreover, in response to lncRNA GAS5 overexpression, more laryngeal cancer cells were arrested at the G2/M stage, accompanied by increased cell apoptosis rates and suppressed migration and invasion capacities. Mechanistically, our data showed that the overexpression of lncRNA GAS5 significantly regulated the PI3K/AKT/mTOR signaling pathway. CONCLUSION LncRNA GAS5 might act as a suppressor gene during laryngeal cancer development, as it suppressed cell proliferation and metastasis by regulating the PI3K/AKT/mTOR signaling pathway; thus, lncRNA GAS5 is a promising therapeutic biomarker for the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Wenlin Liu
- The Second School of Clinical Medicine, Southern Medical University Guangzhou, Guangdong, Baiyun, China.,Department of Otorhinolaryngology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Jiandong Zhan
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Rong Zhong
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Rui Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoli Sheng
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mimi Xu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhongming Lu
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Siyi Zhang
- The Second School of Clinical Medicine, Southern Medical University Guangzhou, Guangdong, Baiyun, China.,Department of Otorhinolaryngology, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Wang D, Han L. Downregulation of miR-1184 serves as a diagnostic biomarker in neonatal sepsis and regulates LPS-induced inflammatory response by inhibiting IL-16 in monocytes. Exp Ther Med 2021; 21:350. [PMID: 33732323 PMCID: PMC7903473 DOI: 10.3892/etm.2021.9781] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal sepsis (NS) remains a global problem. In the present study, abnormal expression of microRNA-1184 (miR-1184) was detected in neonates with NS and it was endeavored to investigate the diagnostic value of miR-1184, as well as its regulatory role in lipopolysaccharide (LPS)-induced inflammatory response in vitro. Furthermore, the correlation between interleukin-16 (IL-16) and miR-1184 was investigated to elucidate the pathological mechanisms of NS development. Reverse transcription-quantitative PCR was used to detect the expression of miR-1184. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic value of miR-1184 in NS. Furthermore, a sepsis cell model was established by using LPS-induced monocytes to explore the effect of miR-1184 on the inflammatory response. The levels of inflammatory cytokines were determined by ELISA. A luciferase reporter assay was used to investigate the direct targeting interaction between miR-1184 and IL-16. The results indicated that the serum levels of miR-1184 in neonates with sepsis were decreased and miR-1184 had a high diagnostic value when differentiating NS from respiratory conditions in neonates. In vitro, the expression of miR-1184 in monocytes was inhibited by LPS and overexpression of miR-1184 reversed the effect of LPS to stimulate the inflammatory response. IL-16 was demonstrated to be a target of miR-1184 and a negative correlation between them was identified in patients with NS. The inflammatory response inhibited by miR-1184 mimics was enhanced by overexpression of IL-16 in LPS-induced monocytes. In conclusion, decreased levels of serum miR-1184 may be a potential diagnostic biomarker for NS. In addition, miR-1184 inhibited the LPS-induced inflammatory response by targeting IL-16 in monocytes, suggesting that the miR-1184/IL-16 axis may be a potential therapeutic target for NS.
Collapse
Affiliation(s)
- Dan Wang
- Neonatology Department, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lina Han
- Neonatology Department, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
17
|
Liu L, Zhang J, Liu Y. MicroRNA-1323 serves as a biomarker in gestational diabetes mellitus and aggravates high glucose-induced inhibition of trophoblast cell viability by suppressing TP53INP1. Exp Ther Med 2021; 21:230. [PMID: 33603839 PMCID: PMC7851622 DOI: 10.3892/etm.2021.9661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes, and microRNAs (miRNAs/miRs) have been suggested to be associated with GDM, but the pathological mechanisms remain unclear. The present study aimed to investigate the diagnostic value of miR-1323 in GDM patients and its effects on trophoblast cell viability. Additionally, the present study investigated the correlation between miR-1323 and TP53INP1 to understand the pathological mechanism of GDM progression. Reverse transcription-quantitative polymerase chain reaction was used to detect the miR-1323 expression and TP53INP1 mRNA expression. The diagnostic value of serum miR-1323 was evaluated by receiver operating characteristic analysis. HTR-8/SVneo and BeWo cells were treated with high glucose (HG) to construct cell models of GDM, and trophoblast cell viability was assessed using an MTT assay. The protein expression of TP53INP1 was detected by western blot analysis. The correlation between miR-1323 and TP53INP1 was investigated by luciferase reporter assay. The miR-1323 expression was increased in patients with GDM, which had relatively high diagnostic accuracy for GDM screening and was positively correlated with fasting blood glucose in patients GDM. HG upregulated the miR-1323 expression and inhibited trophoblast cell viability. Overexpression of miR-1323 significantly inhibited the viability of HG-induced trophoblast cells. TP53INP1, a target gene of miR-1323, was negatively correlated with miR-1323. TP53INP1 overexpression reversed the inhibitory effect of miR-1323 overexpression on the viability of HG-treated trophoblast cells. Increased levels of serum miR-1323 may be a diagnostic biomarker for GDM. Additionally, miR-1323 may inhibit trophoblast cell viability by inhibiting TP53INP1, suggesting that it may be a potential therapeutic target for GDM.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Jun Zhang
- Department of Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Yujuan Liu
- Department of Central Supply Room, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| |
Collapse
|
18
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
19
|
Ruan X, Zheng J, Liu X, Liu Y, Liu L, Ma J, He Q, Yang C, Wang D, Cai H, Li Z, Liu J, Xue Y. lncRNA LINC00665 Stabilized by TAF15 Impeded the Malignant Biological Behaviors of Glioma Cells via STAU1-Mediated mRNA Degradation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:823-840. [PMID: 32464546 PMCID: PMC7256440 DOI: 10.1016/j.omtn.2020.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Glioma is a brain cancer characterized by strong invasiveness with limited treatment options and poor prognosis. Recently, dysregulation of long non-coding RNAs (lncRNAs) has emerged as an important component in cellular processes and tumorigenesis. In this study, we demonstrated that TATA-box binding protein associated factor 15 (TAF15) and long intergenic non-protein coding RNA 665 (LINC00665) were both downregulated in glioma tissues and cells. TAF15 overexpression enhanced the stability of LINC00665, inhibiting malignant biological behaviors of glioma cells. Both metal regulatory transcription factor 1 (MTF1) and YY2 transcription factor (YY2) showed high expression levels in glioma tissues and cells, and their knockdown inhibited malignant progression. Mechanistically, overexpression of LINC00665 was confirmed to destabilize MTF1 and YY2 mRNA by interacting with STAU1, and knockdown of STAU1 could rescue the MTF1 and YY2 mRNA degradation caused by LINC00665 overexpression. G2 and S-phase expressed 1 (GTSE1) was identified as an oncogene in glioma, and knockdown of MTF1 or YY2 decreased the mRNA and protein expression levels of GTSE1 through direct binding to the GTSE1 promoter region. Our study highlights a key role of the TAF15/LINC00665/MTF1(YY2)/GTSE1 axis in modulating the malignant biological behaviors of glioma cells, suggesting novel mechanisms by which lncRNAs affect STAU1-mediated mRNA stability, which can inform new molecular therapies for glioma.
Collapse
Affiliation(s)
- Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Jun Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qianru He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang 110004, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang 110122, China; Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China.
| |
Collapse
|
20
|
Downregulation of LncRNA GAS5 promotes liver cancer proliferation and drug resistance by decreasing PTEN expression. Mol Genet Genomics 2019; 295:251-260. [PMID: 31705194 DOI: 10.1007/s00438-019-01620-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating evidence has shown that the long noncoding RNAs (lncRNAs) play a crucial role in the regulation of hepatocellular carcinoma (HCC) progression and drug resistance. In this study, we aimed to investigate the biological function roles of lncRNAs growth arrest-specific 5 (GAS5) and its underlying molecular mechanism in the development of HCC. qRT-PCR was used to detect GAS5, miR-21, and PTEN levels. MTT, cell counting assays, and xenograft mouse model were applied to measure cell proliferation rate in vitro and in vivo. The luciferase reporter assay and RNA immune-precipitation assay were introduced to evaluate the relationship between GAS5 and miR-21. We found that GAS5 was downregulated in HCC cell lines and tumor tissues. Knockdown of GAS5 enhanced HCC cell proliferation in vitro and in vivo and increased HCC cell resistance to doxorubicin. GAS5 acted as a sponge for miR-21 silencing and consequently led to the elevation of PTEN expression. Our data demonstrated that GAS5 functioned as a tumor suppressor role in HCC through regulation of miR-21-PTEN singling pathways, suggesting a potential application of GAS5 in HCC therapy.
Collapse
|