1
|
Lin G, Lin L, Chen X, Chen L, Yang J, Chen Y, Qian D, Zeng Y, Xu Y. PPAR-γ/NF-kB/AQP3 axis in M2 macrophage orchestrates lung adenocarcinoma progression by upregulating IL-6. Cell Death Dis 2024; 15:532. [PMID: 39060229 PMCID: PMC11282095 DOI: 10.1038/s41419-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Aquaporin 3 (AQP3), which is mostly expressed in pulmonary epithelial cells, was linked to lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of AQP3 in the tumor microenvironment (TME) of LUAD have not been elucidated. Single-cell RNA sequencing (scRNA-seq) was used to study the composition, lineage, and functional states of TME-infiltrating immune cells and discover AQP3-expressing subpopulations in five LUAD patients. Then the identifications of its function on TME were examined in vitro and in vivo. AQP3 was associated with TNM stages and lymph node metastasis of LUAD patients. We classified inter- and intra-tumor diversity of LUAD into twelve subpopulations using scRNA-seq analyses. The analysis showed AQP3 was mainly enriched in subpopulations of M2 macrophages. Importantly, mechanistic investigations indicated that AQP3 promoted M2 macrophage polarization by the PPAR-γ/NF-κB axis, which affected tumor growth and migration via modulating IL-6 production. Mixed subcutaneous transplanted tumor mice and Aqp3 knockout mice models were further utilized, and revealed that AQP3 played a critical role in mediating M2 macrophage polarization, modulating glucose metabolism in tumors, and regulating both upstream and downstream pathways. Overall, our study demonstrated that AQP3 could regulate the proliferation, migration, and glycometabolism of tumor cells by modulating M2 macrophages polarization through the PPAR-γ/NF-κB axis and IL-6/IL-6R signaling pathway, providing new insight into the early detection and potential therapeutic target of LUAD.
Collapse
Affiliation(s)
- Guofu Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Lanlan Lin
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Xiaohui Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Luyang Chen
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China
| | - Jiansheng Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian province, 362000, China
| | - Yanling Chen
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China
| | - Danwen Qian
- The Tumor Immunogenomics and Immunosurveillance (TIGI) Lab, UCL Cancer Institute, London, UK
| | - Yiming Zeng
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Fujian Provincial Key Laboratory of Lung Stem Cells, Ouanzhou, Fujian Province, 362000, China.
| | - Yuan Xu
- Fujian Provincial Clinical Research Center of Interventional Respirology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
- Clinical Research Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, China.
| |
Collapse
|
2
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
3
|
Ma YT, Zheng L, Zhao CW, Zhang Y, Xu XW, Wang XY, Niu GP, Man ZS, Gu F, Chen YQ. Interferon-α induces differentiation of cancer stem cells and immunosuppression in hepatocellular carcinoma by upregulating CXCL8 secretion. Cytokine 2024; 177:156555. [PMID: 38387232 DOI: 10.1016/j.cyto.2024.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/04/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Interferon-alpha (IFN-α) is widely used in the clinical treatment of patients with chronic hepatitis B and hepatocellular carcinoma (HCC). However, high levels of CXCL8 are associated with resistance to IFN-α therapy and poorer prognosis in advanced cancers. In this study, we investigated whether IFN-α could directly induce the production of CXCL8 in HCC cells and whether CXCL8 could antagonize the antitumor activity of IFN-α. We found that IFN-α not only upregulated the expression of the inducible genes CXCL9, CXCL10, CXCL11 and PD-L1, but also significantly stimulated CXCL8 secretion in HCC cells. Mechanically, IFN-α induces CXCL8 expression by activating the AKT and JNK pathways. In addition, our results demonstrate that IFN-α exposure significantly increases the differentiation of HCC stem cells, but this effect is reversed by the addition of the CXCL8 receptor CXCR1/2 inhibitor Reparixin and STAT3 inhibitor Stattic. Besides, our study reveals that the cytokine CXCL8 secreted by IFN-α-induced HCC cells inhibits T-cell function. Conversely, inhibition of CXCL8 promotes TNF-α and IFN-γ secretion by T cells. Finally, liver cancer patients who received anti-PD-1/PD-L1 immunotherapy with high CXCL8 expression had a lower immunotherapy efficacy. Overall, our findings clarify that IFN-α triggers immunosuppression and cancer stem cell differentiation in hepatocellular carcinoma by upregulating CXCL8 secretion. This discovery provides a novel approach to enhance the effectiveness of HCC treatment in the future.
Collapse
Affiliation(s)
- Yu-Ting Ma
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Lu Zheng
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Cheng-Wen Zhao
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Yue Zhang
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Xin-Wei Xu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Xin-Yu Wang
- Department of Clinical Laboratory, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China
| | - Guo-Ping Niu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Zhong-Song Man
- Department of General Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu Province 221009, China.
| | - Feng Gu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.
| | - Yong-Qiang Chen
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China; Department of Clinical Laboratory, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou 221009, Jiangsu, China.
| |
Collapse
|
4
|
Chen J, Sun S, Li H, Cai X, Wan C. IL-22 signaling promotes sorafenib resistance in hepatocellular carcinoma via STAT3/CD155 signaling axis. Front Immunol 2024; 15:1373321. [PMID: 38596684 PMCID: PMC11003268 DOI: 10.3389/fimmu.2024.1373321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.
Collapse
Affiliation(s)
- Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Teodora Maria Toadere
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andra Țichindeleanu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Șerban Ellias Trella
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Zeno Sparchez
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Zanuso V, Rimassa L, Braconi C. The rapidly evolving landscape of HCC: Selecting the optimal systemic therapy. Hepatology 2023:01515467-990000000-00559. [PMID: 37695554 DOI: 10.1097/hep.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Over the past years, there has been a remarkable advance in the systemic treatment options for advanced HCC. The overall survival has gradually increased over time, with larger benefits for patients with sensitive tumors and preserved liver function, the latter being an essential condition for the delivery of sequential lines of treatment and optimization of clinical outcomes. With the approval of new first-line agents and the introduction of immune checkpoint inhibitor-based therapies, the treatment landscape of advanced HCC is becoming wider than ever. Atezolizumab plus bevacizumab and, more recently, durvalumab plus tremelimumab have entered the clinical practice and are the current standard of care for treatment-naïve patients, surpassing sorafenib and lenvatinib monopoly. As no head-to-head comparisons are available among all the first-line treatment options, the recommendation for the most appropriate choice and sequence is patient-driven and integrates efficacy data with clinical comorbidities, background liver disease, and the safety profile of available drugs. In addition, predictive biomarkers for successful patients' stratification are yet to be available and constitute the focus of ongoing research. The treatment algorithm is likely to become even more complex since systemic therapeutic approaches are now being translated into earlier stages of the disease, with an impact on the evolution of the sequential treatment of patients with HCC.
Collapse
Affiliation(s)
- Valentina Zanuso
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
7
|
Tang X, Zhang Y, Dong X, Jiang G, Hong D, Liu X. The Synergy of Gene Targeting Drug Icaritin Soft Capsule with Immunomodulator and TACE Brings New Hope for Drug Combination in Patients with Advanced Liver Cancer: A Case Report and Literature Review. Cancer Manag Res 2023; 15:707-717. [PMID: 37485037 PMCID: PMC10362861 DOI: 10.2147/cmar.s414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023] Open
Abstract
At present, the average five-year survival rate of liver cancer in China is only 12.1%. The reason for this association lies in the diagnosis at its middle or/and advanced stage of liver cancer for lacking special clinical symptoms in almost 70% of patients without the chance of effective surgical resection. Epidemiological studies have shown that there are only 30% of patients with an initial diagnosis of liver cancer have the opportunity to undergo radical surgery. Therefore, systematic and comprehensive treatment would play an important role in liver cancer treatment at its middle or/and advanced stage, and the related therapeutic schedule still needs further improvement and optimization. We applied a gene-targeted drug of Icaritin soft capsule in the treatment of a liver cancer patient at its advanced stage. And the level of AFP was found to decrease to 6.4ng/mL from 10.86ng/mL; meanwhile, MRI showed that the primary tumor significantly reduced in size, with shrinking of the hepatogastric space, hepatic aortic side, and renal artery side lymph nodes. After treatment with TACE and Icaritin, the patient had no discomfort and no longer experienced abdominal pain and bloating and gained three kilograms of weight. The therapeutic effect of Icaritin-targeted drugs was completely demonstrated during the later treatment follow-up. That is to say, the multiple anti-tumor characteristics of Icaritin with good safety were fully displayed in this case, and it can be used in combination with other drugs to treat hepatocellular carcinoma in the clinical setting. The results show that Icaritin can put some effects on the combined treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Xiaoxia Tang
- Operating Room, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yizhuo Zhang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xinyu Dong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guixing Jiang
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Defei Hong
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaolong Liu
- General Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
9
|
He C, Jaffar Ali D, Qi Y, Li Y, Sun B, Liu R, Sun B, Xiao Z. Engineered extracellular vesicles mediated CRISPR-induced deficiency of IQGAP1/FOXM1 reverses sorafenib resistance in HCC by suppressing cancer stem cells. J Nanobiotechnology 2023; 21:154. [PMID: 37202772 DOI: 10.1186/s12951-023-01902-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Sorafenib resistance poses therapeutic challenges in HCC treatment, in which cancer stem cells (CSCs) plays a crucial role. CRISPR/Cas9 can be utilized as a potential technique to overcome the drug resistance. However, a safe, efficient and target specific delivery of this platform remains challenging. Extracellular vesicles (EVs), the active components of cell to cell communication, hold promising benefits as delivery platform. RESULTS Herein we report the normal epithelial cell -derived EVs engineered with HN3(HLC9-EVs) show competing tumor targeting ability. Anchoring HN3 to the membrane of the EVs through LAMP2, drastically increased the specific homing of HLC9-EVs to GPC3+Huh-7 cancer cells rather than co-cultured GPC3-LO2 cells. Combination therapy of HCC with sorafenib and HLC9-EVs containing sgIF to silence IQGAP1 (protein responsible for reactivation of Akt/PI3K signaling in sorafenib resistance) and FOXM1 (self-renewal transcription factor in CSCs attributed to sorafenib resistance), exhibited effective synergistic anti-cancer effect both in vitro and in vivo. Our results also showed that disruption of IQGAP1/FOXM1 resulted in the reduction of CD133+ population that contribute to the stemness of liver cancer cells. CONCLUSION By reversing sorafenib resistance using combination therapeutic approach with engineered EVs encapsulated CRISPR/Cas9 and sorafenib, our study foreshadows a path for a better, accurate, reliable and successful anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Yuhua Qi
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, China
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, 445-743, Republic of Korea
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
10
|
Mandlik DS, Mandlik SK, Choudhary HB. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2023; 29:1054-1075. [PMID: 36844141 PMCID: PMC9950866 DOI: 10.3748/wjg.v29.i6.1054] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the world’s deadliest and fastest-growing tumors, with a poor prognosis. HCC develops in the context of chronic liver disease. Curative resection, surgery (liver transplantation), trans-arterial chemoembolization, radioembolization, radiofrequency ablation and chemotherapy are common treatment options for HCC, however, they will only assist a limited percentage of patients. Current treatments for advanced HCC are ineffective and aggravate the underlying liver condition. Despite promising preclinical and early-phase clinical trials for some drugs, existing systemic therapeutic methods for advanced tumor stages remain limited, underlining an unmet clinical need. In current years, cancer immunotherapy has made significant progress, opening up new treatment options for HCC. HCC, on the other hand, has a variety of causes and can affects the body’s immune system via a variety of mechanisms. With the speedy advancement of synthetic biology and genetic engineering, a range of innovative immunotherapies, such as immune checkpoint inhibitors [anti-programmed cell death-1 (PD-1), anti-cytotoxic T lymphocyte antigen-4, and anti-PD ligand 1 cell death antibodies], therapeutic cancer vaccines, engineered cytokines, and adoptive cell therapy have all been used for the treatment of advanced HCC. In this review, we summarize the present clinical and preclinical landscape of immunotherapies in HCC, critically discuss recent clinical trial outcomes, and address future perspectives in the field of liver cancer.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
11
|
Ying F, Chan MSM, Lee TKW. Cancer-Associated Fibroblasts in Hepatocellular Carcinoma and Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2023; 15:985-999. [PMID: 36708970 PMCID: PMC10040968 DOI: 10.1016/j.jcmgh.2023.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Primary liver cancer (PLC) includes hepatocellular carcinoma and intrahepatic cholangiocarcinoma and is the sixth most common cancer worldwide with poor prognosis. PLC is characterized by an abundant stromal reaction in which cancer-associated fibroblasts (CAFs) are one of the major stromal components. Solid evidence has demonstrated the crucial role of CAFs in tumor progression, and CAF abundance is often correlated with poor clinical outcomes. Although CAFs are regarded as an attractive and promising target for PLC treatment, a poor understanding of CAF origins and heterogeneity and a lack of specific CAF markers are the major hurdles to efficient CAF-specific therapy. In this review, we examine recent advances in the understanding of CAF diversity in the context of biomarkers, subtypes, and functions in PLC. The regulatory roles of CAFs in extracellular matrix remodeling, metastasis, cancer stemness, and therapeutic resistance are summarized. With an increasing link between CAF abundance and reduced antitumor immune responses, we provide updated knowledge on the crosstalk between CAFs and immune cells within the tumor microenvironment, which leads to immune resistance. In addition, we present current CAF-targeted therapies and describe some future perspectives. A better understanding of CAF biology will shed light on a novel therapeutic strategy against PLC.
Collapse
Affiliation(s)
- Fan Ying
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Mandy Sze Man Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
12
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
13
|
He P, Wan H, Wan J, Jiang H, Yang Y, Xie K, Wu H. Systemic therapies in hepatocellular carcinoma: Existing and emerging biomarkers for treatment response. Front Oncol 2022; 12:1015527. [PMID: 36483039 PMCID: PMC9723250 DOI: 10.3389/fonc.2022.1015527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 07/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third most common cause of cancer-related death worldwide. Due to asymptomatic patients in the early stage, most patients are diagnosed at an advanced stage and lose the opportunity for radical resection. In addition, for patients who underwent procedures with curative intent for early-stage HCC, up to 70% of patients may have disease recurrence within 5 years. With the advent of an increasing number of systemic therapy medications, we now have more options for the treatment of HCC. However, data from clinical studies show that with different combinations of regimens, the objective response rate is approximately 40%, and most patients will not respond to treatment. In this setting, biomarkers for predicting treatment response are of great significance for precise treatment, reducing drug side effects and saving medical resources. In this review, we summarized the existing and emerging biomarkers in the literature, with special emphasis on the pathways and mechanism underlying the prediction value of those biomarkers for systemic treatment response.
Collapse
Affiliation(s)
- Penghui He
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haifeng Wan
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Wan
- Department of Pancreatitis Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Department of Abdominal Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Kunlin Xie
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Wu
- Department of Liver Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Tian X, Yan T, Liu F, Liu Q, Zhao J, Xiong H, Jiang S. Link of sorafenib resistance with the tumor microenvironment in hepatocellular carcinoma: Mechanistic insights. Front Pharmacol 2022; 13:991052. [PMID: 36071839 PMCID: PMC9441942 DOI: 10.3389/fphar.2022.991052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Sorafenib, a multi-kinase inhibitor with antiangiogenic, antiproliferative, and proapoptotic properties, is the first-line treatment for patients with late-stage hepatocellular carcinoma (HCC). However, the therapeutic effect remains limited due to sorafenib resistance. Only about 30% of HCC patients respond well to the treatment, and the resistance almost inevitably happens within 6 months. Thus, it is critical to elucidate the underlying mechanisms and identify effective approaches to improve the therapeutic outcome. According to recent studies, tumor microenvironment (TME) and immune escape play critical roles in tumor occurrence, metastasis and anti-cancer drug resistance. The relevant mechanisms were focusing on hypoxia, tumor-associated immune-suppressive cells, and immunosuppressive molecules. In this review, we focus on sorafenib resistance and its relationship with liver cancer immune microenvironment, highlighting the importance of breaking sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Xinchen Tian
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Jing Zhao
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| | - Shulong Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Shulong Jiang,
| |
Collapse
|
15
|
Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022; 547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
Collapse
|
16
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Sorafenib Chemosensitization by Caryophyllane Sesquiterpenes in Liver, Biliary, and Pancreatic Cancer Cells: The Role of STAT3/ABC Transporter Axis. Pharmaceutics 2022; 14:pharmaceutics14061264. [PMID: 35745837 PMCID: PMC9231089 DOI: 10.3390/pharmaceutics14061264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies.
Collapse
|
18
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
19
|
Öcal O, Schütte K, Kupčinskas J, Morkunas E, Jurkeviciute G, de Toni EN, Ben Khaled N, Berg T, Malfertheiner P, Klümpen HJ, Sengel C, Basu B, Valle JW, Benckert J, Gasbarrini A, Palmer D, Seidensticker R, Wildgruber M, Sangro B, Pech M, Ricke J, Seidensticker M. Baseline Interleukin-6 and -8 predict response and survival in patients with advanced hepatocellular carcinoma treated with sorafenib monotherapy: an exploratory post hoc analysis of the SORAMIC trial. J Cancer Res Clin Oncol 2022; 148:475-485. [PMID: 33855585 PMCID: PMC8800931 DOI: 10.1007/s00432-021-03627-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/30/2021] [Indexed: 11/14/2022]
Abstract
PURPOSE To explore the potential correlation between baseline interleukin (IL) values and overall survival or objective response in patients with hepatocellular carcinoma (HCC) receiving sorafenib. METHODS A subset of patients with HCC undergoing sorafenib monotherapy within a prospective multicenter phase II trial (SORAMIC, sorafenib treatment alone vs. combined with Y90 radioembolization) underwent baseline IL-6 and IL-8 assessment before treatment initiation. In this exploratory post hoc analysis, the best cut-off points for baseline IL-6 and IL-8 values predicting overall survival (OS) were evaluated, as well as correlation with the objective response. RESULTS Forty-seven patients (43 male) with a median OS of 13.8 months were analyzed. Cut-off values of 8.58 and 57.9 pg/mL most effectively predicted overall survival for IL-6 and IL-8, respectively. Patients with high IL-6 (HR, 4.1 [1.9-8.9], p < 0.001) and IL-8 (HR, 2.4 [1.2-4.7], p = 0.009) had significantly shorter overall survival than patients with low IL values. Multivariate analysis confirmed IL-6 (HR, 2.99 [1.22-7.3], p = 0.017) and IL-8 (HR, 2.19 [1.02-4.7], p = 0.044) as independent predictors of OS. Baseline IL-6 and IL-8 with respective cut-off values predicted objective response rates according to mRECIST in a subset of 42 patients with follow-up imaging available (IL-6, 46.6% vs. 19.2%, p = 0.007; IL-8, 50.0% vs. 17.4%, p = 0.011). CONCLUSION IL-6 and IL-8 baseline values predicted outcomes of sorafenib-treated patients in this well-characterized prospective cohort of the SORAMIC trial. We suggest that the respective cut-off values might serve for validation in larger cohorts, potentially offering guidance for improved patient selection.
Collapse
Affiliation(s)
- Osman Öcal
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Juozas Kupčinskas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egidijus Morkunas
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabija Jurkeviciute
- Institute for Digestive Research and Department of Gastroenterology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Enrico N de Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Berg
- Klinik Und Poliklinik Für Gastroenterologie, Sektion Hepatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Heinz Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Juan W Valle
- Division of Cancer Sciences and Department of Medical Oncology, The Christie NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Julia Benckert
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Roma, Italy
| | - Daniel Palmer
- Molecular and Clinical Cancer Medicine, University Hospitals and Clatterbridge, University of Liverpool, Liverpool, UK
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
20
|
Fu Y, Ci H, Du W, Dong Q, Jia H. CHRNA5 Contributes to Hepatocellular Carcinoma Progression by Regulating YAP Activity. Pharmaceutics 2022; 14:pharmaceutics14020275. [PMID: 35214008 PMCID: PMC8877699 DOI: 10.3390/pharmaceutics14020275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide. A better understanding of the mechanisms underlying the malignant phenotype is necessary for developing novel therapeutic strategies for HCC. Signaling pathways initiated by neurotransmitter receptors, such as α5-nicotinic acetylcholine receptor (CHRNA5), have been reported to be implicated in tumor progression. However, the functional mechanism of CHRNA5 in HCC remains unclear. In this study, we explored the role of CHRNA5 in HCC and found that CHRNA5 expression was increased in human HCC tissues and positively correlated with the T stage (p < 0.05) and AJCC phase (p < 0.05). The KM plotter database showed that the high expression level of CHRNA5 was strongly associated with worse survival in HCC patients. Both in vitro and in vivo assays showed that CHRNA5 regulates the proliferation ability of HCC by regulating YAP activity. In addition, CHRNA5 promotes the stemness of HCC by regulating stemness-associated genes, such as Nanog, Sox2 and OCT4. Cell migration and invasion assays demonstrated that CHRNA5 significantly enhanced the metastasis of HCC by regulating epithelial–mesenchymal transition (EMT)-associated genes. Furthermore, we found that CHRNA5 regulates the sensitivity of sorafenib in HCC. Our findings suggest that CHRNA5 plays a key role in the progression and drug resistance of HCC, and targeting CHRNA5 may be a strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Hongfei Ci
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Wei Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 200437, China
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; (Y.F.); (H.C.); (W.D.)
- Correspondence: (Q.D.); (H.J.); Tel./Fax: +86-21-5423-7960 (Q.D.); +86-21-5288-7175 (H.J.)
| |
Collapse
|
21
|
Carabias P, Espelt MV, Bacigalupo ML, Rojas P, Sarrias L, Rubin A, Saffioti NA, Elola MT, Rossi JP, Wolfenstein-Todel C, Rabinovich GA, Troncoso MF. Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death Dis 2022; 13:79. [PMID: 35075112 PMCID: PMC8786848 DOI: 10.1038/s41419-022-04520-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022]
Abstract
Galectin-1 (GAL1), a β-galactoside-binding protein abundantly expressed in the tumor microenvironment, has emerged as a key mechanism of chemoresistance developed by different tumors. Although increased expression of GAL1 is a hallmark of hepatocellular carcinoma (HCC) progression, aggressiveness and metastasis, limited information is available on the role of this endogenous lectin in HCC resistance to chemotherapy. Moreover, the precise mechanisms underlying this effect are uncertain. HCC has evolved different mechanisms of resistance to chemotherapy including those involving the P-glycoprotein (P-gp), an ATP-dependent drug efflux pump, which controls intracellular drug concentration. Here, we investigated the molecular mechanism underlying GAL1-mediated chemoresistance in HCC cells, particularly the involvement of P-gp in this effect. Our results show that GAL1 protected HepG2 cells from doxorubicin (DOX)- and sorafenib-induced cell death in vitro. Accordingly, GAL1-overexpressing HepG2 cells generated DOX-resistant tumors in vivo. High expression of GAL1 in HepG2 cells reduced intracellular accumulation of DOX likely by increasing P-gp protein expression rather than altering its membrane localization. GAL1-mediated increase of P-gp expression involved activation of the phosphatidylinositol-3 kinase (PI3K) signaling pathway. Moreover, 'loss-of-function' experiments revealed that P-gp mediates GAL1-driven resistance to DOX, but not to sorafenib, in HepG2 cells. Conversely, in PLC/PRF/5 cells, P-gp protein expression was undetectable and GAL1 did not control resistance to DOX or sorafenib, supporting the critical role of P-gp in mediating GAL1 effects. Collectively, our findings suggest that GAL1 confers chemoresistance in HCC through mechanisms involving modulation of P-gp, thus emphasizing the role of this lectin as a potential therapeutic target in HCC.
Collapse
Grants
- PICT-2014-3216 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- PICT V 2014-3687 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- PICT-2016-1139 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- 20020150100005BA Universidad de Buenos Aires (University of Buenos Aires)
- PIP-11220150100647 Consejo Nacional de Investigaciones Científicas y Técnicas (National Scientific and Technical Research Council)
- Sales, Bunge & Born and Lounsbery Foundations. Donations from the Ferioli, Ostry and Caraballo families.
Collapse
Affiliation(s)
- Pablo Carabias
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María V Espelt
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María L Bacigalupo
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paola Rojas
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Sarrias
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ayelén Rubin
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás A Saffioti
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Juan P Rossi
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Carlota Wolfenstein-Todel
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
22
|
EMT and Inflammation: Crossroads in HCC. J Gastrointest Cancer 2022; 54:204-212. [PMID: 35020133 DOI: 10.1007/s12029-021-00801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
23
|
Dai Z, Wang X, Peng R, Zhang B, Han Q, Lin J, Wang J, Lin J, Jiang M, Liu H, Lee TH, Lu KP, Zheng M. Induction of IL-6Rα by ATF3 enhances IL-6 mediated sorafenib and regorafenib resistance in hepatocellular carcinoma. Cancer Lett 2022; 524:161-171. [PMID: 34687791 DOI: 10.1016/j.canlet.2021.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022]
Abstract
Sorafenib and its derivative regorafenib are the first- and second-line targeted drugs for advanced HCC, respectively. Although both drugs improve overall survival, drug resistance remains the major barrier to their full efficacy. Thus, strategies to enhance sorafenib and regorafenib efficacy against HCC are solely needed. Interleukin-6 receptor alpha (IL-6Rα) is the receptor of IL-6, a multi-functional cytokine, which plays key roles in liver-regeneration, inflammation and development of hepatocellular carcinoma (HCC). Here we show the expression of IL-6Rα was induced in response to sorafenib. Depletion of IL-6Rα abolished IL-6 induced STAT3 phosphorylation at 705th tyrosine and tumor growth of HCC cells under sorafenib treatment. Mechanistically, activating transcription factor 3 (ATF3) was induced in response to sorafenib and subsequently bound to the promoter of IL-6Rα, leading to its transcriptional activation. Depletion of ATF3 or its upstream transcription factor, ATF4, attenuated IL-6Rα induction and IL-6 mediated sorafenib resistance. The ATF4-ATF3-IL-6Rα cascade is also activated by regorafenib. Furthermore, blockade of IL-6Rα with the FDA approved IL-6Rα antibody drug, Sarilumab, drastically attenuated both sorafenib and regorafenib resistance in patient-derived xenograft (PDX) tumors, where human IL-6 could be detected by a novel in situ hybridization technique, named RNAscope. Together, our data reveal that ATF3-mediated IL-6Rα up-regulation promotes both sorafenib and regorafenib resistance in HCC, and targeting IL-6Rα represents a novel therapeutic strategy to enhance sorafenib/regorafenib efficacy for advanced HCC treatment.
Collapse
Affiliation(s)
- Zichan Dai
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Xiaohan Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Rangxin Peng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Binghui Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Qi Han
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Jie Lin
- Shengli Clinical Medical College, Fujian Medical University & Department of Pathology, Fujian Provincial Hospital, Fujian, PR China
| | - Jichuang Wang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Junjin Lin
- Public Technology Service Center, Fujian Medical University, Fujian, PR China
| | - Mingting Jiang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Kun Ping Lu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China
| | - Min Zheng
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China; Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, Fujian, PR China.
| |
Collapse
|
24
|
Xu J, Lin H, Wu G, Zhu M, Li M. IL-6/STAT3 Is a Promising Therapeutic Target for Hepatocellular Carcinoma. Front Oncol 2021; 11:760971. [PMID: 34976809 PMCID: PMC8714735 DOI: 10.3389/fonc.2021.760971] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor of which the occurrence and development, the tumorigenicity of HCC is involving in multistep and multifactor interactions. Interleukin-6 (IL-6), a multifunctional inflammatory cytokine, has increased expression in HCC patients and is closely related to the occurrence of HCC and prognosis. IL-6 plays a role by binding to the IL-6 receptor (IL-6R) and then triggering the Janus kinase (JAK) associated with the receptor, stimulating phosphorylation and activating signal transducer and activator of transcription 3 (STAT3) to initiate downstream signals, participating in the processes of anti-apoptosis, angiogenesis, proliferation, invasion, metastasis, and drug resistance of cancer cells. IL-6/STAT3 signal axes elicit an immunosuppressive in tumor microenvironment, it is important to therapy HCC by blocking the IL-6/STAT3 signaling pathway. Recent, some inhibitors of IL-6/STAT3 have been development, such as S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb), Madindoline A (Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes), C188-9 and Curcumin (Inhibits STAT3 phosphorylation), etc. for treatment of cancers. Overall, consideration of the IL-6/STAT3 signaling pathway, and its role in the carcinogenesis and progression of HCC will contribute to the development of potential drugs for targeting treatment of liver cancer.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Haifeng Lin
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
| | - Gang Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou, China
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical College, Haikou, China
- Institution of Tumour, Hainan Medical College, Haikou, China
| |
Collapse
|
25
|
Cetin-Atalay R, Kahraman DC, Nalbat E, Rifaioglu AS, Atakan A, Donmez A, Atas H, Atalay MV, Acar AC, Doğan T. Data Centric Molecular Analysis and Evaluation of Hepatocellular Carcinoma Therapeutics Using Machine Intelligence-Based Tools. J Gastrointest Cancer 2021; 52:1266-1276. [PMID: 34910274 DOI: 10.1007/s12029-021-00768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine. METHODS In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system. RESULTS Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCC-associated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs. CONCLUSIONS We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, 60637, USA.
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey.
| | - Esra Nalbat
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey
| | - Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Iskenderun Technical University, Iskenderun, Hatay, 31200, Turkey.,Department of Computer Engineering, METU, Ankara, 06800, Turkey
| | - Ahmet Atakan
- Department of Computer Engineering, METU, Ankara, 06800, Turkey.,Department of Computer Engineering, EBYU, Ankara, 24002, Turkey
| | - Ataberk Donmez
- Department of Computer Engineering, METU, Ankara, 06800, Turkey.,Department of Computer Science, University of Maryland, College Park, MD, 20742, USA
| | - Heval Atas
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey
| | - M Volkan Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey.,Department of Computer Engineering, METU, Ankara, 06800, Turkey
| | - Aybar C Acar
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey
| | - Tunca Doğan
- Cancer Systems Biology Laboratory, Graduate School of Informatics, METU, Ankara, 06800, Turkey. .,Department of Computer Engineering, Hacettepe University, Ankara, 06800, Turkey.
| |
Collapse
|
26
|
The Relevance of SOCS1 Methylation and Epigenetic Therapy in Diverse Cell Populations of Hepatocellular Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11101825. [PMID: 34679523 PMCID: PMC8534387 DOI: 10.3390/diagnostics11101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
The suppressor of cytokine signaling 1 (SOCS1) is a tumor suppressor gene found to be hypermethylated in cancers. It is involved in the oncogenic transformation of cirrhotic liver tissues. Here, we investigated the clinical relevance of SOCS1 methylation and modulation upon epigenetic therapy in diverse cellular populations of hepatocellular carcinoma (HCC). HCC clinical specimens were evaluated for SOCS1 methylation and mRNA expression. The effect of 5-Azacytidine (5-AZA), a demethylation agent, was assessed in different subtypes of HCC cells. We demonstrated that the presence of SOCS1 methylation was significantly higher in HCC compared to peri-HCC and non-tumoral tissues (52% vs. 13% vs. 14%, respectively, p < 0.001). In vitro treatment with a non-toxic concentration of 5-AZA significantly reduced DNMT1 protein expression for stromal subtype lines (83%, 73%, and 79%, for HLE, HLF, and JHH6, respectively, p < 0.01) compared to cancer stem cell (CSC) lines (17% and 10%, for HepG2 and Huh7, respectively), with the strongest reduction in non-tumoral IHH cells (93%, p < 0.001). 5-AZA modulated the SOCS1 expression in different extents among the cells. It was restored in CSC HCC HepG2 and Huh7 more efficiently than sorafenib. This study indicated the relevance of SOCS1 methylation in HCC and how cellular heterogeneity influences the response to epigenetic therapy.
Collapse
|
27
|
Rico Montanari N, Anugwom CM, Boonstra A, Debes JD. The Role of Cytokines in the Different Stages of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13194876. [PMID: 34638361 PMCID: PMC8508513 DOI: 10.3390/cancers13194876] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Non-homeostatic cytokine expression during hepatocellular carcinogenesis, together with simple and inexpensive cytokine detection techniques, has opened up its use as potential biomarkers, from cancer detection to prognosis. However, carcinogenic programs during cancer progression are not linear. Therefore, cytokines with prognostic potential in one stage may not be relevant in another. Here, we reviewed cytokines with clinical potential in different settings during hepatocellular carcinoma progression. Abstract Hepatocellular carcinoma (HCC) is the primary form of liver cancer and a leading cause of cancer-related death worldwide. Early detection remains the most effective strategy in HCC management. However, the spectrum of underlying liver diseases preceding HCC, its genetic complexity, and the lack of symptomatology in early stages challenge early detection. Regardless of underlying etiology, unresolved chronic inflammation is a common denominator in HCC. Hence, many inflammatory molecules, including cytokines, have been investigated as potential biomarkers to predict different stages of HCC. Soluble cytokines carry cell-signaling functions and are easy to detect in the bloodstream. However, its biomarkers’ role remains limited due to the dysregulation of immune parameters related to the primary liver process and their ability to differentiate carcinogenesis from the underlying disease. In this review, we discuss and provide insight on cytokines with clinical relevance for HCC differentiating those implicated in tumor formation, early detection, advanced disease, and response to therapy.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Chimaobi M. Anugwom
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Health Partners Digestive Care, Saint Paul, MN 55130, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
| | - Jose D. Debes
- Department of Medicine, Division of Gastroenterology & Division of Infectious Disease, University of Minnesota, Minneapolis, MN 55455, USA; (N.R.M.); (C.M.A.)
- Department of Gastroenterology and Hepatology, Erasmus MC, 3015 CE Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
28
|
Chen YJ, Wu JY, Deng YY, Wu Y, Wang XQ, Li ASM, Wong LY, Fu XQ, Yu ZL, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. J Ginseng Res 2021; 46:418-425. [PMID: 35600776 PMCID: PMC9120623 DOI: 10.1016/j.jgr.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, over-activation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.
Collapse
|
29
|
Shrestha R, Bridle KR, Cao L, Crawford DHG, Jayachandran A. Dual Targeting of Sorafenib-Resistant HCC-Derived Cancer Stem Cells. ACTA ACUST UNITED AC 2021; 28:2150-2172. [PMID: 34208001 PMCID: PMC8293268 DOI: 10.3390/curroncol28030200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Sorafenib, an oral multi-tyrosine kinase inhibitor, has been the first-line therapy for the treatment of patients with advanced HCC, providing a survival benefit of only three months in approximately 30% of patients. Cancer stem cells (CSCs) are a rare tumour subpopulation with self-renewal and differentiation capabilities, and have been implicated in tumour growth, recurrence and drug resistance. The process of epithelial-to-mesenchymal transition (EMT) contributes to the generation and maintenance of the CSC population, resulting in immune evasion and therapy resistance in several cancers, including HCC. The aim of this study is to target the chemoresistant CSC population in HCC by assessing the effectiveness of a combination treatment approach with Sorafenib, an EMT inhibitor and an immune checkpoint inhibitor (ICI). A stem-cell-conditioned serum-free medium was utilised to enrich the CSC population from the human HCC cell lines Hep3B, PLC/PRF/5 and HepG2. The anchorage independent spheres were characterised for CSC features. The human HCC-derived spheres were assessed for EMT status and expression of immune checkpoint molecules. The effect of combination treatment with SB431542, an EMT inhibitor, and siRNA-mediated knockdown of programmed cell death protein ligand-1 (PD-L1) or CD73 along with Sorafenib on human HCC-derived CSCs was examined with cell viability and apoptosis assays. The three-dimensional spheres enriched from human HCC cell lines demonstrated CSC-like features. The human HCC-derived CSCs also exhibited the EMT phenotype along with the upregulation of immune checkpoint molecules. The combined treatment with SB431542 and siRNA-mediated PD-L1 or CD73 knockdown effectively enhanced the cytotoxicity of Sorafenib against the CSC population compared to Sorafenib alone, as evidenced by the reduced size and proliferation of spheres. Furthermore, the combination treatment of Sorafenib with SB431542 and PD-L1 or CD73 siRNA resulted in an increased proportion of an apoptotic population, as evidenced by flow cytometry analysis. In conclusion, the combined targeting of EMT and immune checkpoint molecules with Sorafenib can effectively target the CSC tumour subpopulation.
Collapse
Affiliation(s)
- Ritu Shrestha
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Kim R. Bridle
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Darrell H. G. Crawford
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Aparna Jayachandran
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4120, Australia; (R.S.); (K.R.B.); (L.C.); (D.H.G.C.)
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Correspondence: ; Tel.: +61-4-2424-8058
| |
Collapse
|
30
|
Kim J, Park JH, Park SK, Hoe HS. Sorafenib Modulates the LPS- and Aβ-Induced Neuroinflammatory Response in Cells, Wild-Type Mice, and 5xFAD Mice. Front Immunol 2021; 12:684344. [PMID: 34122447 PMCID: PMC8190398 DOI: 10.3389/fimmu.2021.684344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Sorafenib is FDA-approved for the treatment of primary kidney or liver cancer, but its ability to inhibit many types of kinases suggests it may have potential for treating other diseases. Here, the effects of sorafenib on neuroinflammatory responses in vitro and in vivo and the underlying mechanisms were assessed. Sorafenib reduced the induction of mRNA levels of the proinflammatory cytokines COX-2 and IL-1β by LPS in BV2 microglial cells, but in primary astrocytes, only COX-2 mRNA levels were altered by sorafenib. Interestingly, sorafenib altered the LPS-mediated neuroinflammatory response in BV2 microglial cells by modulating AKT/P38-linked STAT3/NF-kB signaling pathways. In LPS-stimulated wild-type mice, sorafenib administration suppressed microglial/astroglial kinetics and morphological changes and COX-2 mRNA levels by decreasing AKT phosphorylation in the brain. In 5xFAD mice (an Alzheimer’s disease model), sorafenib treatment daily for 3 days significantly reduced astrogliosis but not microgliosis. Thus, sorafenib may have therapeutic potential for suppressing neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Seon Kyeong Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
31
|
Debes JD, Romagnoli PA, Prieto J, Arrese M, Mattos AZ, Boonstra A. Serum Biomarkers for the Prediction of Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13071681. [PMID: 33918270 PMCID: PMC8038187 DOI: 10.3390/cancers13071681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Major etiologies of HCC relate to chronic viral infections as well as metabolic conditions. The survival rate of people with HCC is very low and has been attributed to late diagnosis with limited treatment options. Combining ultrasound and the biomarker alpha-fetoprotein (AFP) is currently one of the most widely used screening combinations for HCC. However, the clinical utility of AFP is controversial, and the frequency and operator-dependence of ultrasound lead to a variable degree of sensitivity and specificity across the globe. In this review, we summarize recent developments in the search for non-invasive serum biomarkers for early detection of HCC to improve prognosis and outcome for patients. We focus on tumor-associated protein markers, immune mediators (cytokines and chemokines), and micro-RNAs in serum or circulating extracellular vesicles and examine their potential for clinical application.
Collapse
Affiliation(s)
- José D. Debes
- Department of Gastroenterology and Hepatology, Erasmus MC Rotterdam, 3015 CE Rotterdam, The Netherlands
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: (J.D.D.); (A.B.)
| | - Pablo A. Romagnoli
- Centro de Investigaciones en Medicina Translacional “Severo Amuchastegui” (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina;
| | - Jhon Prieto
- Centro de Enfermedades Hepaticas y Digestivas, Bogota CS412, Colombia;
| | - Marco Arrese
- Department of Gastroenterology, Escuela de Medicina, & Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | - Angelo Z. Mattos
- Graduate Program in Medicine: Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porte Alegre 90050-170, Brazil;
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC Rotterdam, 3015 CE Rotterdam, The Netherlands
- Correspondence: (J.D.D.); (A.B.)
| | | |
Collapse
|
32
|
Santoni M, Miccini F, Cimadamore A, Piva F, Massari F, Cheng L, Lopez-Beltran A, Montironi R, Battelli N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin Investig Drugs 2021; 30:245-251. [PMID: 33599169 DOI: 10.1080/13543784.2021.1891222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) is involved in cancer initiation and resistance to chemo-radiation therapies and targeted agents. The role of STAT3 in inflammation and immunity together with its involvement in a variety of diseases including genitourinary, gastrointestinal, lung, ovarian and brain tumors makes STAT3 an ideal candidate for therapeutic strategies. AREAS COVERED The authors provided an overview on STAT3 inhibitors and examined the most recent results obtained by these agents in cancer patients. The authors discussed the results published since 2015 and the ongoing clinical trials on anti-STAT3 agents in cancer patients. The authors also provide our opinion on the future perspectives of this therapeutic approach in this context. The manuscript includes information from trial databases and scientific literature. EXPERT OPINION Future challenges include the development of non-peptide small-molecule inhibitors of STAT3 designed to directly inhibit STAT3 activity. In addition, inhibitors of STAT3/STAT3 nuclear translocation or DNA binding activity are also emerging as novel promising therapeutic approaches A better comprehension of the role of STAT3 in modulating immune response together with advances in understanding the mechanisms of STAT3-induced chemo and/or radio-resistance will also help the design of combined strategies in cancer patients.
Collapse
Affiliation(s)
- Matteo Santoni
- U.O.C Medical Oncology, Macerata Hospital, Macerata, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain.,Anatomic Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
33
|
Guo J, Guo M, Zheng J. Inhibition of Bone Morphogenetic Protein 2 Suppresses the Stemness Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma via the MAPK/ERK Pathway. Cancer Manag Res 2021; 13:773-785. [PMID: 33536785 PMCID: PMC7850411 DOI: 10.2147/cmar.s281969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains a life-threatening malignant tumor. Cancer stem cells (CSCs) harbor tumor-initiating capacity and can be used as a therapeutic target for human malignancies. Bone morphogenetic proteins (BMPs) play a regulatory role in CSCs. This study investigated the role and mechanism of BMP2 in CSCs in HCC. Methods BMP2 expression in HCC tissues and cells, and CSCs from HepG2 cells and SMMC7721 cells (HepG2-CSCs and SMMC7721-CSCs) was measured. The association between BMP2 expression and prognosis of HCC patients was analyzed. CSCs were interfered with BMP2 to evaluate the abilities of colony and tumor sphere formation, levels of stemness-related markers, epithelial-mesenchymal transition (EMT), and invasion and migration. Levels of MAPK/ERK pathway-related proteins in HepG2-CSCs were detected after BMP2 knockdown. The effect of the activated MAPK/ERK pathway on HepG2-CSCs was assessed. Finally, the effect of BMP2 inhibition on CSCs in HCC was verified in vivo. Results BMP2 showed obvious upregulation in HCC tissues and cells and was further upregulated in CSCs in HCC, with its higher expression indicative of worse prognosis. Silencing BMP2 inhibited colony and tumor sphere formation, levels of stemness-related markers, as well as EMT, invasion and migration of HepG2-CSCs and SMMC7721-CSCs. The MAPK/ERK pathway was suppressed after BMP2 knockdown, and its activation reversed the inhibitory effect of shBMP2 on hepatic CSCs. BMP2 accelerated tumor growth and EMT of CSCs in HCC in vivo. Conclusion We concluded that BMP2 knockdown inhibited the EMT, proliferation and invasion of CSCs in HCC, thereby hindering the stemness maintenance via suppressing the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| | - Min Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311 Hainan, People's Republic of China
| |
Collapse
|