1
|
Li Z, Shu X, Liu X, Li Q, Hu Y, Jia B, Song M. Cellular and Molecular Mechanisms of Chemoresistance for Gastric Cancer. Int J Gen Med 2024; 17:3779-3788. [PMID: 39224691 PMCID: PMC11368108 DOI: 10.2147/ijgm.s473749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive tract, and chemotherapy plays an irreplaceable role in the comprehensive treatment of GC. However, chemoresistance makes it difficult for patients with GC to benefit steadily from chemotherapy in the long term, which ultimately leads to tumor recurrence, metastasis, and patient death. Elucidating the detailed mechanism of chemoresistance in GC and identifying specific therapeutic targets will help to solve the difficult problem of chemoresistance and improve the prognosis of patients with GC. This review summarizes and clarifies the cellular and molecular mechanisms underlying chemoresistance for GC.
Collapse
Affiliation(s)
- Zonglin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xingming Shu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xin Liu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiuyun Li
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yifu Hu
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bingbing Jia
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Chu Z, Zhu M, Luo Y, Hu Y, Feng X, Wang H, Sunagawa M, Liu Y. PTBP1 plays an important role in the development of gastric cancer. Cancer Cell Int 2023; 23:195. [PMID: 37670313 PMCID: PMC10478210 DOI: 10.1186/s12935-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Polypyrimidine tract binding protein 1 (PTBP1) has been found to play an important role in the occurrence and development of various tumors. At present, the role of PTBP1 in gastric cancer (GC) is still unknown and worthy of further investigation. METHODS We used bioinformatics to analyze the expression of PTBP1 in patients with GC. Cell proliferation related experiments were used to detect cell proliferation after PTBP1 knockdown. Skeleton staining, scanning electron microscopy and transmission electron microscopy were used to observe the changes of actin skeleton. Proliferation and actin skeleton remodeling signaling pathways were detected by Western Blots. The relationship between PTBP1 and proliferation of gastric cancer cells was further detected by subcutaneous tumor transplantation. Finally, tissue microarray data from clinical samples were used to further explore the expression of PTBP1 in patients with gastric cancer and its correlation with prognosis. RESULTS Through bioinformatics studies, we found that PTBP1 was highly expressed in GC patients and correlated with poor prognosis. Cell proliferation and cycle analysis showed that PTBP1 down-regulation could significantly inhibit cell proliferation. The results of cell proliferation detection related experiments showed that PTBP1 down-regulation could inhibit the division and proliferation of GC cells. Furthermore, changes in the morphology of the actin skeleton of cells showed that PTBP1 down-regulation inhibited actin skeletal remodeling in GC cells. Western Blots showed that PTBP1 could regulate proliferation and actin skeleton remodeling signaling pathways. In addition, we constructed PTBP1 Cas9-KO mouse model and performed xenograft assays to further confirm that down-regulation of PTBP1 could inhibit the proliferation of GC cells. Finally, tissue microarray was used to further verify the close correlation between PTBP1 and poor prognosis in patients with GC. CONCLUSIONS Our study demonstrates for the first time that PTBP1 may affect the proliferation of GC cells by regulating actin skeleton remodeling. In addition, PTBP1 is closely related to actin skeleton remodeling and proliferation signaling pathways. We suppose that PTBP1 might be a potential target for the treatment of GC.
Collapse
Affiliation(s)
- Zewen Chu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Miao Zhu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yuanyuan Luo
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yaqi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xinyi Feng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Masataka Sunagawa
- Department of physiology, School of Medicine, Showa University, Tokyo, Japan.
| | - Yanqing Liu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
3
|
Zhang Y, Zheng W, Zhang L, Gu Y, Zhu L, Huang Y. LncRNA FBXO18-AS promotes gastric cancer progression by TGF-β1/Smad signaling. Eur J Histochem 2023; 67. [PMID: 37340903 DOI: 10.4081/ejh.2023.3667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
For the digestive system, there exists one common malignant tumor, known as gastric cancer. It is the third most prevalent type of tumor among different tumors worldwide. It has been reported that long noncoding RNAs (lncRNAs), participate in various biological processes of gastric cancer. However, there are still many lncRNAs with unknown functions, and we discovered a novel lncRNA designated as FBXO18-AS. Whether lncRNAFBXO18-AS participates in gastric cancer progression is still unknown. Bioinformatic analysis, immunohistochemistry, Western blotting, and qPCR were carried out to explore FBXO18-AS and TGF-β1 expression. In addition, EdU, MTS, migration and transwell assays were performed to investigate the invasion, proliferation and migration of gastric cancer in vitro. We first discovered that FBXO18-AS expression was upregulated in gastric cancer and linked to poorer outcomes among patients with gastric cancer. Then, we confirmed that FBXO18-AS promoted the proliferation, invasion, migration, and an EMT-like process in gastric cancer in vivo and in vitro. Mechanistically, FBXO18-AS was found to be involved in the progression of gastric cancer by modulating TGF-β1/Smad signaling. Therefore, it might offer a possible biomarker for gastric cancer diagnosis and an effective strategy for clinical treatment.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou.
| | - Wanqiong Zheng
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou.
| | - Liang Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou.
| | - Yechun Gu
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou.
| | - Lihe Zhu
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou.
| | - Yingpeng Huang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou.
| |
Collapse
|
4
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
5
|
Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, Pan Y, Cen J, Liang Y, Shu G, Ye S, Lu X, Zhang J. Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 Signaling Pathway for the Synergistic Reversal of 5-FU Resistance in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105077. [PMID: 35717675 PMCID: PMC9353463 DOI: 10.1002/advs.202105077] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/31/2022] [Indexed: 05/16/2023]
Abstract
Chemoresistance is one of the leading causes of therapeutic failure in gastric cancer (GC) treatment. Recent studies have shown lncRNAs play pivotal roles in regulating GC chemoresistance. Nanocarriers delivery of small interfering RNAs (siRNAs) to silence cancer-related genes has become a novel approach to cancer treatment research. However, finding target genes and developing nanosystems capable of selectively delivering siRNAs for disease treatment remains a challenge. In this study, a novel lncRNA TMEM44-AS1 that is related to 5-FU resistance is identified. TMEM44-AS1 has the ability to bind to and sponge miR-2355-5p, resulting in the upregulated PPP1R13L expression and P53 pathway inhibition. Next, a new nanocarrier called chitosan-gelatin-EGCG (CGE) is developed, which has a higher gene silencing efficiency than lipo2000, to aid in the delivery of a si-TMEM44-AS1 can efficiently silence TMEM44-AS1 expression to synergistically reverse 5-FU resistance in GC, leading to a markedly enhanced 5-FU therapeutic effect in a xenograft mouse model of GC. These findings indicate that TMEM44-AS1 may estimate 5-FU therapy outcome among GC cases, and that systemic si-TMEM44-AS1 delivery combined with 5-FU therapy is significant in the treatment of patients with recurrent GC.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Catechin/therapeutic use
- Cell Line, Tumor
- Chitosan/pharmacology
- Chitosan/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Gelatin/pharmacology
- Gelatin/therapeutic use
- Gene Expression Regulation, Neoplastic
- Gene Silencing/drug effects
- Gene Silencing/physiology
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- MicroRNAs/genetics
- Nanoparticles/therapeutic use
- RNA/genetics
- RNA/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/genetics
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Mi Zhou
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Jiaqi Dong
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula‐Pattern of Traditional Chinese MedicineFormula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510632P. R. China
| | - Wen Ye
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Zhousan Zheng
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Kangbo Huang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Yihui Pan
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Junjie Cen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Yanping Liang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Guannan Shu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Sheng Ye
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| | - Xuanxuan Lu
- Department of Food Science and EngineeringJinan UniversityGuangzhou510632P. R. China
| | - Jiaxing Zhang
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityNo. 58, Zhongshan road IIGuangzhou510080P. R. China
| |
Collapse
|
6
|
Lu L, Liang Q, Zhang X, Xu Y, Meng D, Liang Z. Autophagy Related Noncoding RNAs: Emerging Regulatory Factors of Gastric Cancer. Cancer Manag Res 2022; 14:2215-2224. [PMID: 35898946 PMCID: PMC9309173 DOI: 10.2147/cmar.s364761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant cancers that seriously affect human health. Autophagy is a highly conserved self-defense mechanism found to plays an important role in the occurrence, progression, drug resistance, and prognosis of GC. Noncoding RNAs (ncRNAs) play a critical role in the occurrence and development of a variety of diseases including GC. In recent years, increasing attention has been given to research on autophagy-related ncRNAs, such as miRNA, lncRNA, and circRNA in GC. Herein, we briefly summarize the roles, functions, and the research progress of autophagy and autophagy-related ncRNAs in GC with a focus on the potential application in GC tumorigenesis, development, prognosis, and drug resistance. We also discussed prospects of clinical application, future research direction, and challenges in future research of autophagy-related ncRNAs.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Qiaoyan Liang
- Health Care Department, People's Liberation Army Navy No. 971 Hospital, Qingdao, People's Republic of China
| | - Xinyi Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yumeng Xu
- School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| | - Dehua Meng
- Department of Allergy, Dongtai People's Hospital, Yancheng, People's Republic of China
| | - Zhaofeng Liang
- School of Medicine, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
7
|
Wei Y, Yang J, Feng X, Akhavan-Sigari R. Cellular and Molecular Mechanism of Cell Proliferation in Human Gastric Cancer Drug-Resistant Cells After Hyperthermia and Cisplatin: Role of mRNAs and Long-Non-coding RNAs. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:377-386. [PMID: 35678795 PMCID: PMC11158417 DOI: 10.5152/tjg.2022.20845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/27/2021] [Indexed: 06/15/2023]
Abstract
BACKGROUND Since thermo-chemotherapy was suggested as an effective treatment for gastric cancer, we aimed to evaluate the effects of hyperthermia combined with cisplatin (DDP) on the inhibition of human gastric cancer drug-resistant cells in vitro and explore its possible mechanisms. METHODS SGC-7901/DDP cells were cultured and divided into control, cisplatin, hyperthermia, and hyperthermia combined with cispla- tin groups. Hyperthermia was done at 42°C, 44°C, 46°C, 48°C, and 50°C for 12 h, 24 h, 36 h; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- 2H-tetrazolium bromide (MTT) assay detected the proliferation of SGC-7901/DDP at different time and temperature, and the apoptotic rate of SGC-7901/DDP cells was evaluated by using Annexin staining assay. High-throughput Chromatin immunoprecipitation (ChIP)- seq was applied to test long non-coding RNA expression in SGC-7901/DDP cells. Then, real-time fluorescence quantitative polymerase chain reaction was used to verify the expression of long non-coding RNA in all groups. RESULTS Double staining showed that hyperthermia combined with cisplatin increased the rate of early apoptosis of SGC-7901/DDP cells. Long non-coding RNA high-throughput ChIP-seq showed a significantly larger amount of long non-coding RNAs and mRNAs in the cells treated with hyperthermia combined cisplatin group in comparison with the control group. We observed that the upregulated mRNAs and long non-coding RNAs were highly related to immune system response and CD95 signaling pathway in nucleus, and down- regulated mRNAs and long non-coding RNA were highly related to Mammalian target of rapamycin (mTOR) and Tumor necrosis factor (TNF) receptor signaling pathway in cytoplasm. CONCLUSION Hyperthermia combined with cisplatin reversed the expression of a large number of mRNAs and long non-coding RNAs in human gastric cancer drug-resistant cells. The molecular mechanism of inhibiting the proliferation of human gastric cancer drug- resistant cells may be related to the upregulation of long non-coding RNAs and mRNAs contributed in CD95, mTOR, and TNF receptor signaling pathway.
Collapse
Affiliation(s)
- Ying Wei
- Department of Internal Medicine, Mashhad University of Medical Sciences Faculty of Medicine, Mashhad, Iran
- Department of Gastroenterology, Shangrao People’s Hospital, Jiangxi Province, China
| | - Jing Yang
- Department of Pathology, Shangrao People’s Hospital, Jiangxi Province, China
- Department of Gastroenterology, Shangrao People’s Hospital, Jiangxi Province, China
| | - Xiaoke Feng
- Department of Gastroenterology, Shangrao People’s Hospital, Jiangxi Province, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, China
| | - Reza Akhavan-Sigari
- Department of Pathology, Shangrao People’s Hospital, Jiangxi Province, China
| |
Collapse
|
8
|
Chen X, Hu L, Mao X, Chen H, She Y, Chi H, Zeng H, Guo L, Han Y. Upregulated LINC00922 Promotes Epithelial-Mesenchymal Transition and Indicates a Dismal Prognosis in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1608936. [PMID: 35444700 PMCID: PMC9015875 DOI: 10.1155/2022/1608936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND LINC00922 has been found to promote epithelial-mesenchymal transition (EMT) in a variety of tumors. But its functions in gastric cancer (GC) remain unclear. We attempt to investigate the correlation between LINC00922 and GC via bioinformatics analysis, in vitro and in vivo experiments. METHODS TCGA and GTEx databases were utilized to obtain the RNAseq and clinical data of GC, and then, identified the correlation of LINC00922 with patients' clinicopathological characteristics and prognosis. GSEA and GO/KEGG enrichment analyses were performed to explore the potential functions or signaling pathways that LINC00922 participated in GC. Infiltration levels of immune cells were employed by ssGSEA algorithm, and then Wilcoxon rank sum test was applied to analyze their correlations with LINC00922. Scratch and transwell assays were conducted to detect the invasion and migration abilities of GC cells. Western blot was performed to explore the expression level of EMT-related proteins. Furthermore, we constructed the xenograft tumor model and metastatic tumor model in nude mice to explore the effect of LINC00922 downregulating on metastasis of GC cells in vivo. RESULTS Compared with normal tissues, LINC00922 was highly expressed in GC tissues and positively correlated with poor prognosis. The correlation existed between LINC00922 and immune infiltration in GC. Downregulation of LINC00922 inhibited the EMT process of GC cells. In addition, both in vitro and in vivo experiments showed that LINC00922 affects the invasion and migration abilities of GC. CONCLUSIONS LINC00922 promotes the migration, invasion, and EMT in GC and has the potential to be used as a prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanxin Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xinrui Mao
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Haoran Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuchen She
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Wang X, Chen W, Lao W, Chen Y. Silencing LncRNA PVT1 Reverses High Glucose-Induced Regulation of the High Expression of PVT1 in HRMECs by Targeting miR-128-3p. Horm Metab Res 2022; 54:119-125. [PMID: 35130573 DOI: 10.1055/a-1730-5091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This paper aims to discuss the possibility of lncRNA PVT1 as a diagnostic biomarker for diabetic retinopathy (DR) and explore the underlying mechanism. Real-time quantitative polymerase chain reaction (RT-qPCR) was selected to determine the expression level of lncRNA PVT1 in the serum of all subjects. The receiver operating characteristic (ROC) curve reflected the diagnostic significance of PVT1 for DR patients. The Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the effect of PVT1 expression on the proliferation and migration of human retinal microvascular endothelial cells (HRMECs). The luciferase reporter gene was selected to verify the interaction between PVT1 and miR-128-3p. The relative expression level of PVT1 in serum was higher in both the DB and DR group than in the healthy controls group (HC), and it was highest in the DR group. ROC curve indicated that serum PVT1 could distinguish between HC and DB patients, DB patients and DR patients, respectively. In vitro, high glucose induction significantly increased the proliferation and migration capabilities of HRMECs, but silencing PVT1 (si-PVT1) downregulated the proliferation and migration capabilities of HRMECs. The detection of luciferase reporter gene showed that lncRNA PVT1 targeted miR-128-3p, and there was a negative correlation in the serum of DR patients. In conclusion, this study confirmed that lncRNA PVT1 might regulate the process of DR by targeting miR-128-3p, and has the potential as a biomarker for the diagnosis of DR.
Collapse
Affiliation(s)
- Xuyang Wang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wangling Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Wei Lao
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| | - Yunxin Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China
| |
Collapse
|
10
|
Liu Y, Ao X, Wang Y, Li X, Wang J. Long Non-Coding RNA in Gastric Cancer: Mechanisms and Clinical Implications for Drug Resistance. Front Oncol 2022; 12:841411. [PMID: 35155266 PMCID: PMC8831387 DOI: 10.3389/fonc.2022.841411] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with high recurrence and mortality rate. Chemotherapy, including 5-fluorouracil (5-FU), adriamycin (ADR), vincristine (VCR), paclitaxel (PTX), and platinum drugs, remains one of the fundamental methods of GC treatment and has efficiently improved patients’ prognosis. However, most patients eventually develop resistance to chemotherapeutic agents, leading to the failure of clinical treatment and patients’ death. Recent studies suggest that long non-coding RNAs (lncRNAs) are involved in the drug resistance of GC by modulating the expression of drug resistance-related genes via sponging microRNAs (miRNAs). Moreover, lncRNAs also play crucial roles in GC drug resistance via a variety of mechanisms, such as the regulation of the oncogenic signaling pathways, inhibition of apoptosis, induction of autophagy, modulation of cancer stem cells (CSCs), and promotion of the epithelial-to-mesenchymal transition (EMT) process. Some of lncRNAs exhibit great potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for GC patients. Therefore, understanding the role of lncRNAs and their mechanisms in GC drug resistance may provide us with novel insights for developing strategies for individual diagnosis and therapy. In this review, we summarize the recent findings on the mechanisms underlying GC drug resistance regulated by lncRNAs. We also discuss the potential clinical applications of lncRNAs as biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Ying Liu,
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Yi C, Zhang X, Chen X, Huang B, Song J, Ma M, Yuan X, Zhang C. A novel 8-genome instability-associated lncRNAs signature predicting prognosis and drug sensitivity in gastric cancer. Int J Immunopathol Pharmacol 2022; 36:1-15. [PMID: 35696730 PMCID: PMC9203952 DOI: 10.1177/03946320221103195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome instability lncRNA (GILnc) is prevalently related with gastric cancer (GC) pathophysiology. However, the study on the relationship GILnc and prognosis and drug sensitivity of GC remains scarce. METHOD We extracted expression data of 375 GC patients from TCGA cohort and 205 GC patients from GSE26942 cohort. Then, lncRNA was separated from expression data, and systematically characterized the 8 marker lncRNAs using the LASSO method. Next, we constructed a GILnc model (GILnc score) to quantify the GILnc index of each GC patient. Finally, we analyzed the relationship between GILnc score and clinical traits including survival outcomes, TP53, and drug sensitivity of GC. RESULTS Based on a computational frame, 205 GILncs in GC has been identified. Then, a 8 GILncs was successfully established to predict overall survival in GC patients based on LASSO analysis, divided GC samples into high GILnc score and low GILnc score groups with significantly different outcome and was validated in multiple independent patient cohorts. Furthermore, GILnc model is better than the prediction performance of two recently published lncRNA signatures, and the high GILnc score group was more sensitive to mitomycin. Besides, the GILnc score has greater prognostic significance than TP53 mutation status alone and is capable of identifying intermediate subtype group existing with partial TP53 functionality in TP53 wild-type patients. Finally, GILnc signature as verified in GSE26942. CONCLUSION We applied bioinformatics approaches to suggest that a 8 GILnc signature could serve as prognostic biomarkers, and provide a novel direction to explore the pathogenesis of GC.
Collapse
Affiliation(s)
- Changhong Yi
- Department of Interventional, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiulan Zhang
- Department of Nuclear Medicine, The First People’s Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xia Chen
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, China
| | - Birun Huang
- Department of Vascular Surgery, The First People’s Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jing Song
- Department of Nursing, Hubei College of Chinese Medicine, Jingzhou, People's Republic of China
| | - Minghui Ma
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Xiaolu Yuan
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| | - Chaohao Zhang
- Department of Gastrointestinal Surgery, Maoming People’s Hospital, Maoming, China
| |
Collapse
|
12
|
Lee AM, Ferdjallah A, Moore E, Kim DC, Nath A, Greengard E, Huang RS. Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. Int J Mol Sci 2021; 22:ijms222011168. [PMID: 34681828 PMCID: PMC8538287 DOI: 10.3390/ijms222011168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Osteosarcoma has a poor prognosis due to chemo-resistance and/or metastases. Increasing evidence shows that long non-coding RNAs (lncRNAs) can play an important role in drug sensitivity and cancer metastasis. Using osteosarcoma cell lines, we identified a positive correlation between the expression of a lncRNA and ANRIL, and resistance to two of the three standard-of-care agents for treating osteosarcoma-cisplatin and doxorubicin. To confirm the potential role of ANRIL in chemosensitivity, we independently inhibited and over-expressed ANRIL in osteosarcoma cell lines followed by treatment with either cisplatin or doxorubicin. Knocking-down ANRIL in SAOS2 resulted in a significant increase in cellular sensitivity to both cisplatin and doxorubicin, while the over-expression of ANRIL in both HOS and U2OS cells led to an increased resistance to both agents. To investigate the clinical significance of ANRIL in osteosarcoma, we assessed ANRIL expression in relation to clinical phenotypes using the osteosarcoma data from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset. Higher ANRIL expression was significantly associated with increased rates of metastases at diagnosis and death and was a significant predictor of reduced overall survival rate. Collectively, our results suggest that the lncRNA ANRIL can be a chemosensitivity and prognosis biomarker in osteosarcoma. Furthermore, reducing ANRIL expression may be a therapeutic strategy to overcome current standard-of-care treatment resistance.
Collapse
Affiliation(s)
- Adam M. Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Asmaa Ferdjallah
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - Elise Moore
- Department of Natural Sciences, Zanvyl Krieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Daniel C. Kim
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Center, Monrovia, CA 91007, USA;
| | - Emily Greengard
- Department of Pediatrics, Hematology & Oncology, University of Minnesota, Minneapolis, MN 55455, USA; (A.F.); (E.G.)
| | - R. Stephanie Huang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (A.M.L.); (D.C.K.)
- Correspondence: ; Tel.: +1-612-625-1372
| |
Collapse
|
13
|
Liu F, Shi Y, Liu Z, Li Z, Xu W. The emerging role of miR-10 family in gastric cancer. Cell Cycle 2021; 20:1468-1476. [PMID: 34229543 PMCID: PMC8354661 DOI: 10.1080/15384101.2021.1949840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence has demonstrated that miRNAs play an irreplaceable role in tumorigenesis and progression of a broad range of cancers, including gastric cancer. Among these miRNAs, miR-10a and miR-10b have been identified to critically participate in gastric carcinogenesis and malignant progression. In this review, we briefly describe the role of miR-10a and miR-10b in gastric cancer, especially in the regulation of cell proliferation, apoptosis, cell cycle, migration, invasion and metastasis, drug resistance, and cancer stem cells. Furthermore, we highlight several compounds that target the miR-10 family and exhibit antitumor activity in cancer cells. Moreover, we conclude that targeting the miR-10 family might be a promising approach for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zuolong Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Xu
- Department of the Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
14
|
Zhou L, Chen Z, Wu Y, Lu H, Xin L. Prognostic signature composed of transcription factors accurately predicts the prognosis of gastric cancer patients. Cancer Cell Int 2021; 21:357. [PMID: 34233659 PMCID: PMC8261954 DOI: 10.1186/s12935-021-02008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) are involved in important molecular biological processes of tumor cells and play an essential role in the occurrence and development of gastric cancer (GC). METHODS Combined The Cancer Genome Atlas Program and Genotype-Tissue Expression database to extract the expression of TFs in GC, analyzed the differences, and weighted gene co-expression network analysis to extract TFs related to GC. The cohort including the training and validation cohort. Univariate Cox, least absolute contraction and selection operator (LASSO) regression, and multivariate Cox analysis was used for screening hub TFs to construct the prognostic signature in the training cohort. The Kaplan-Meier (K-M) and the receiver operating characteristic curve (ROC) was drawn to evaluate the predictive ability of the prognostic signature. A nomogram combining clinical information and prognostic signatures of TFs was constructed and its prediction accuracy was evaluated through various methods. The target genes of the hub TFs was predicted and enrichment analysis was performed to understand its molecular biological mechanism. Clinical samples and public data of GC was collected to verify its expression and prognosis. 5-Ethynyl-2'-deoxyuridine and Acridine Orange/Ethidium Bromide staining, flow cytometry and Western-Blot detection were used to analyze the effects of hub-TF ELK3 on the proliferation and apoptosis of gastric cancer in vitro. RESULTS A total of 511 misaligned TFs were obtained and 200 GC-related TFs were exposed from them. After systematic analysis, a prognostic signature composed of 4 TFs (ZNF300, ELK3, SP6, MEF2B) were constructed. The KM and ROC curves demonstrated the good predictive ability in training, verification, and complete cohort. The areas under the ROC curve are respectively 0.737, 0.705, 0.700. The calibration chart verified that the predictive ability of the nomogram constructed by combining the prognostic signature of TFs and clinical information was accurate, with a C-index of 0.714. Enriching the target genes of hub TFs showed that it plays an vital role in tumor progression, and its expression and prognostic verification were consistent with the previous analysis. Among them, ELK3 was proved in vitro, and downregulation of its expression inhibited the proliferation of gastric cancer cells, induced proliferation, and exerted anti-tumor effects. CONCLUSIONS The 4-TFs prognostic signature accurately predicted the overall survival of GC, and ELK3 may be potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhiqing Chen
- Molecular Medicine Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
15
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
16
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|