1
|
Sargiacomo C, Klepinin A. Density Gradient Centrifugation Is an Effective Tool to Isolate Cancer Stem-like Cells from Hypoxic and Normoxia Triple-Negative Breast Cancer Models. Int J Mol Sci 2024; 25:8958. [PMID: 39201646 PMCID: PMC11354270 DOI: 10.3390/ijms25168958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence has indicated that stemness-related genes are associated with the aggressiveness of triple-negative breast cancer (TNBC). Because no universal markers for breast CSCs are available, we applied the density gradient centrifugation method to enrich breast CSCs. We demonstrated that the density centrifugation method allows for the isolation of cancer stem cells (CSCs) from adherent and non-adherent MCF7 (Luminal A), MDA-MB-231 (TNBC) and MDA-MB-468 (TNBC) breast cancer cells. The current study shows that the CSCs' enriched fraction from Luminal A and TNBC cells have an increased capacity to grow anchorage-independently. CSCs from adherent TNBC are mainly characterized by metabolic plasticity, whereas CSCs from Luminal A have an increased mitochondrial capacity. Moreover, we found that non-adherent growth CSCs isolated from large mammospheres have a higher ability to grow anchorage-independently compared to CSCs isolated from small mammospheres. In CSCs, a metabolic shift towards glycolysis was observed due to the hypoxic environment of the large mammosphere. Using a bioinformatic analysis, we indicate that hypoxia HYOU1 gene overexpression is associated with the aggressiveness, metastasis and poor prognosis of TNBC. An in vitro study demonstrated that HYOU1 overexpression increases breast cancer cells' stemness and hyperactivates their metabolic activity. In conclusion, we show that density gradient centrifugation is a non-marker-based approach to isolate metabolically flexible (normoxia) CSCs and glycolytic (hypoxic) CSCs from aggressive TNBC.
Collapse
Affiliation(s)
- Camillo Sargiacomo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
| | - Aleksandr Klepinin
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK;
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
3
|
Nguyen PN. Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways. BMC Bioinformatics 2024; 25:149. [PMID: 38609844 PMCID: PMC11265126 DOI: 10.1186/s12859-024-05755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
Collapse
Affiliation(s)
- Phuong-Nam Nguyen
- Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.
| |
Collapse
|
4
|
Hoelzel AR, Gkafas GA, Kang H, Sarigol F, Le Boeuf B, Costa DP, Beltran RS, Reiter J, Robinson PW, McInerney N, Seim I, Sun S, Fan G, Li S. Genomics of post-bottleneck recovery in the northern elephant seal. Nat Ecol Evol 2024; 8:686-694. [PMID: 38383849 PMCID: PMC11009102 DOI: 10.1038/s41559-024-02337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems.
Collapse
Affiliation(s)
| | - Georgios A Gkafas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Innovation Research Center for Aquatic Mammals, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Burney Le Boeuf
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Daniel P Costa
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Roxanne S Beltran
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Joanne Reiter
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick W Robinson
- Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Nancy McInerney
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Innovation Research Center for Aquatic Mammals, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
5
|
Zhou S, Sheng L, Zhang L, Zhang J, Wang L. METTL3/IGF2BP3-regulated m6A modification of HYOU1 confers doxorubicin resistance in breast cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130542. [PMID: 38103759 DOI: 10.1016/j.bbagen.2023.130542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chemoresistance is a main reason for therapeutic failure and poor prognosis for breast cancer (BC) patients, especially for triple-negative BC patients. How the molecular mechanisms underlying the chemoresistance to doxorubicin (Dox) in BC is not well understood. Here, we revealed that METTL3/IGF2BP3-regulated m6A modification of HYOU1 increased Dox resistance in BC cells. CCK-8 and Annexin V-FITC/PI staining assays were employed to measure viability and cell death. Western blotting and qRT-PCR assays were applied to assay the expression of genes. Knockdown and rescue experiments were used to assay the role of METTL3, IGF2BP3 and HYOU1 in regulating BC cell responses to Dox. RIP, MeRIP and dual-luciferase activity assays were applied to examine the function of METTL3/IGF2BP3 in the m6A modification of HYOU1 mRNA. It was found that global mRNA m6A methylation levels were upregulated in Dox-resistant BC cell lines. The methyltransferase METTL3 was upregulated in Dox-resistant BC cell lines, and downregulation of METTL3 could overcome this resistance. Furthermore, HYOU1 was identified as a downstream target of METTL3-mediated m6A modification. Downregulation of HYOU1 could overcome Dox resistance, while forced expression of HYOU1 resulted in Dox resistance in BC cells. METTL3 cooperated with IGF2BP3 to modulate the m6A modification of HYOU1 mRNA and increase its stability. Collectively, our findings unveiled the key roles of the METTL3/IGF2BP3/HYOU1 axis in modulating Dox sensitivity in BC cells; thus, targeting this axis might be a potential strategy to increase Dox efficacy in the treatment of BC.
Collapse
Affiliation(s)
- Shaocheng Zhou
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Lijuan Sheng
- Gulou Street Community Health Service Center, Haishu District, Ningbo, Zhejiang, China
| | - Lin Zhang
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Jianan Zhang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Lei Wang
- Department of Thyroid and Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Guise AJ, Misal SA, Carson R, Chu JH, Boekweg H, Van Der Watt D, Welsh NC, Truong T, Liang Y, Xu S, Benedetto G, Gagnon J, Payne SH, Plowey ED, Kelly RT. TDP-43-stratified single-cell proteomics of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. Cell Rep 2024; 43:113636. [PMID: 38183652 PMCID: PMC10926001 DOI: 10.1016/j.celrep.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.
Collapse
Affiliation(s)
| | - Santosh A Misal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | - Hannah Boekweg
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | | | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
7
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Fuller SA, Abernathy JW, Sankappa NM, Beck BH, Rawles SD, Green BW, Rosentrater KA, McEntire ME, Huskey G, Webster CD. Hepatic transcriptome analyses of juvenile white bass ( Morone chrysops) when fed diets where fish meal is partially or totally replaced by alternative protein sources. Front Physiol 2024; 14:1308690. [PMID: 38288350 PMCID: PMC10822904 DOI: 10.3389/fphys.2023.1308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
White bass (Morone chrysops) are a popular sportfish throughout the southern United States, and one parent of the commercially-successful hybrid striped bass (M. chrysops ♂ x M. saxatilis ♀). Currently, white bass are cultured using diets formulated for other carnivorous fish, such as largemouth bass (Micropterus salmoides) or hybrid striped bass and contain a significant percentage of marine fish meal. Since there are no studies regarding the utilization of alternative proteins in this species, we evaluated the global gene expression of white bass fed diets in which fish meal was partially or totally replaced by various combinations of soybean meal, poultry by-product meal, canola meal, soy protein concentrate, wheat gluten, or a commercial protein blend (Pro-Cision™). Six isonitrogenous (40% protein), isolipidic (11%), and isocaloric (17.1 kJ/g) diets were formulated to meet the known nutrient and energy requirements of largemouth bass and hybrid striped bass using nutrient availability data for most of the dietary ingredients. One of the test diets consisted exclusively of plant protein sources. Juvenile white bass (40.2 g initial weight) were stocked into a flow-through aquaculture system (three tanks/diet; 10 fish/tank) and fed the test diets twice daily to satiation for 60 days. RNA sequencing and bioinformatic analyses revealed significant differentially expressed genes between all test diets when compared to fish meal control. A total of 1,260 differentially expressed genes were identified, with major ontology relating to cell cycle and metabolic processes as well as immune gene functions. This data will be useful as a resource for future refinements to moronid diet formulation, as marine fish meal becomes limiting and plant ingredients are increasingly added as a reliable protein source.
Collapse
Affiliation(s)
- S. Adam Fuller
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Jason W. Abernathy
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Nithin Muliya Sankappa
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Benjamin H. Beck
- USDA-ARS Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Steven D. Rawles
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Bartholomew W. Green
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Kurt A. Rosentrater
- Iowa State University, Agricultural and Biosystems Engineering, Ames, IA, United States
| | - Matthew E. McEntire
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - George Huskey
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| | - Carl D. Webster
- USDA-ARS Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, United States
| |
Collapse
|
9
|
Porter A, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium partially restores salt and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575426. [PMID: 38260467 PMCID: PMC10802592 DOI: 10.1101/2024.01.13.575426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.
Collapse
Affiliation(s)
- Aidan Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Arohan R. Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Fu W, Song Y, Zhao R, Zhao J, Yue Y, Zhang R. Proteomics analysis of serum and urine identifies VCP and CTSA as potential biomarkers associated with multiple myeloma. Clin Chim Acta 2024; 552:117701. [PMID: 38081446 DOI: 10.1016/j.cca.2023.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
AIMS We analyzed the differentially expressed proteins (DEPs) in serum and urine in order to provide new potential biomarkers for MM. METHODS Data-Independent Acquisition-based proteomics of serum and urine was performed to identify potential biomarkers for MM patients. Then we performed Western Blotting (WB), ELISA along with their ROC curve analysis to confirm DEPs. RESULTS A total of 1653 proteins in serum and 4519 proteins in urine were identified using Data-Dependent Acquisition method. VCP was the only protein that showed significant differences in different comparison groups in both serum and urine. Pathway analysis revealed that protein processing in the endoplasmic reticulum was the most relevant pathway associated with MM. Furthermore, the increased expression of HSP90B1, VCP, CTSA, HYOU1, PDIA4, and RAB7A was detected by WB. The results of ELISA indicated that a combination of VCP and CTSA provided a high area under curve (AUC) value of 0.883 (95 % CI, 0.769-0.997, p < 0.001) to diagnose NDMM. The combination of VCP, CTSA, ALB, and HGB exhibited better performance (AUC = 0.981), with 100 % specificity and 86.7 % sensitivity. CONCLUSION These findings suggest VCP and CTSA exhibit potential as biomarkers for MM, which may be helpful in the molecular mechanisms and pathogenesis upon further investigation.
Collapse
Affiliation(s)
- Wenxuan Fu
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yichuan Song
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yuhong Yue
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Yadav SK, Jauhari A, Singh N, Pandey A, Sarkar S, Pandey S, Garg RK, Parmar D, Yadav S. Transcriptomics and Proteomics Approach for the Identification of Altered Blood microRNAs and Plasma Proteins in Parkinson's Disease. Cell Mol Neurobiol 2023; 43:3527-3553. [PMID: 37219663 DOI: 10.1007/s10571-023-01362-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the selective destruction of dopaminergic neurons (DA-nergic). Clinically, PD is diagnosed based on developing signs and symptoms. A neurological and physical examination and sometimes medical and family history also help in the diagnosis of PD. However, most of these features are visible when more than 80% of the dopaminergic neurons have degenerated. An understanding of the selective degeneration process at the cellular and molecular level and the development of new biomarkers are required for effective PD management. Several studies have been carried out using a selected set of miRNAs/ mRNAs and proteins to develop biomarkers of PD; however, an unbiased and combined miRNA-protein profiling study was required to identify the markers of progressive and selected degeneration of dopaminergic neurons in PD patients. In the present study, we have carried out global protein profiling through LC-MS/MS and miRNA profiling by using a "brain-specific" miRNA array panel of 112 miRNAs in PD patients and healthy controls to find the unprejudiced group of proteins and miRNAs that are deregulating in PD. In the whole blood samples of PD patients compared to healthy controls, the expression of 23 miRNAs and 289 proteins was significantly increased, whereas the expression of 4 miRNAs and 132 proteins was considerably downregulated. Network analysis, functional enrichment, annotation, and analysis of miRNA-protein interactions were also performed as part of the bioinformatics investigation of the discovered miRNAs and proteins revealing several pathways that lead to PD development and pathogenesis. Based on the analysis of miRNA and protein profiling, we have identified four miRNAs (hsa-miR-186-5p, miR-29b, miR-139 & has-miR-150-5p) and four proteins (YWHAZ, PSMA4, HYOU1, & SERPINA1), which can be targeted for the development of new biomarkers of PD. In vitro studies have identified the role of miR-186-5p in regulating the levels of the YWHAZ/YWHAB & CALM2 gene, which has shown maximum downregulation in PD patients and is known for its role in neuroprotection from apoptotic cell death & calcium regulation. In conclusion, our research has identified a group of miRNA-proteins that can be developed as PD biomarkers; however, future studies on the release of these miRNAs and proteins in extracellular vesicles circulating in the blood of PD patients can further validate these as specific biomarkers of PD.
Collapse
Affiliation(s)
- Sanjeev Kumar Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Department of Neuroscience, UConn Health, Farmington, CT, 06032, USA
| | - Abhishek Jauhari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nishant Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Molecular Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Anuj Pandey
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Sana Sarkar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Shweta Pandey
- Department of Neurology, King George's Medical University, Lucknow, 226003, UP, India
| | - Ravindra K Garg
- Department of Neurology, King George's Medical University, Lucknow, 226003, UP, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Sanjay Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Department of Biochemistry, All India Institute of Medical Sciences, Munshiganj, Raebareli, 229405, Uttar Pradesh, India.
| |
Collapse
|
12
|
Hou X, Ke J, Chen X, Ai T, Liu X, Qian L, Xiang W, Wang J, Wang C. Changes in the liver of Tinca tinca under successive domestication using an integrated multi-omics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101107. [PMID: 37354750 DOI: 10.1016/j.cbd.2023.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
Domestication is the process of modifying the phenotype of a population through anthropic selection from human perspectives. Successive generations of domestication have influenced the physiological characteristics of tench Tinca tinca. In current study, we investigated gene and protein expression alterations in the liver of fifth-generation (F5). A total of 420 genes were found to be upregulated and 351 genes were downregulated, while 410 proteins were upregulated and 279 proteins were downregulated in domesticated T. tinca (DT). The integrated analysis of omics data revealed a total of 55 genes/proteins exhibiting consistent upregulation and 12 genes/proteins displaying consistent downregulation in DT. The upregulated genes/proteins in DT, such as SSR1, DERLIN2, OS9, DNAJB11, and HYOU1, exhibit enrichment in the protein processing in the endoplasmic reticulum pathway. Additionally, upregulated genes/proteins such as IL2RB, F13B, and IRF3 are associated with immune response. Conversely, downregulated genes/proteins in DT, including HSD11B1, CYP24A1, and COMT, play roles in hormone metabolism. These findings indicate that domestication can have a substantial impact on the physiological modifications related to protein processing, immune response, and hormone metabolism in DT. These adaptations potentially enhance their ability to thrive in artificial aquaculture environments, leading to improved growth and development. The exploration of genetic changes in DT will not only improve aquaculture practices but also provide significant insights into the broader process of domestication and its effects on physiological functions.
Collapse
Affiliation(s)
- Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Tao Ai
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Xiaochen Liu
- Agricultural Technology Extension Station of the 10th Division, Xinjiang Production and Construction Corps, Beitun, Xinjiang, China
| | - Long Qian
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Wei Xiang
- Fisheries Technology Extension Station, Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/National Demonstration Center for Experimental Fisheries Science Education/Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
13
|
Xu T, Zhao J, Xiong M. Graphical Learning and Causal Inference for Drug Repurposing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.29.23293346. [PMID: 37577650 PMCID: PMC10418581 DOI: 10.1101/2023.07.29.23293346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gene expression profiles that connect drug perturbations, disease gene expression signatures, and clinical data are important for discovering potential drug repurposing indications. However, the current approach to gene expression reversal has several limitations. First, most methods focus on validating the reversal expression of individual genes. Second, there is a lack of causal approaches for identifying drug repurposing candidates. Third, few methods for passing and summarizing information on a graph have been used for drug repurposing analysis, with classical network propagation and gene set enrichment analysis being the most common. Fourth, there is a lack of graph-valued association analysis, with current approaches using real-valued association analysis one gene at a time to reverse abnormal gene expressions to normal gene expressions. To overcome these limitations, we propose a novel causal inference and graph neural network (GNN)-based framework for identifying drug repurposing candidates. We formulated a causal network as a continuous constrained optimization problem and developed a new algorithm for reconstructing large-scale causal networks of up to 1,000 nodes. We conducted large-scale simulations that demonstrated good false positive and false negative rates. To aggregate and summarize information on both nodes and structure from the spatial domain of the causal network, we used directed acyclic graph neural networks (DAGNN). We also developed a new method for graph regression in which both dependent and independent variables are graphs. We used graph regression to measure the degree to which drugs reverse altered gene expressions of disease to normal levels and to select potential drug repurposing candidates. To illustrate the application of our proposed methods for drug repurposing, we applied them to phase I and II L1000 connectivity map perturbational profiles from the Broad Institute LINCS, which consist of gene-expression profiles for thousands of perturbagens at a variety of time points, doses, and cell lines, as well as disease gene expression data under-expressed and over-expressed in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Tao Xu
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Wu X, Wabitsch M, Yang J, Sakharkar MK. Effects of adipocyte-conditioned cell culture media on S1P treatment of human triple-negative breast cancer cells. PLoS One 2023; 18:e0286111. [PMID: 37220155 DOI: 10.1371/journal.pone.0286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent sphingolipid metabolite that regulates a wide range of biological functions such as cell proliferation, cell apoptosis and angiogenesis. Its cellular level is elevated in breast cancer, which, in turn, would promote cancer cell proliferation, survival, growth and metastasis. However, the cellular concentration of S1P is normally in the low nanomolar range, and our previous studies showed that S1P selectively induced apoptosis of breast cancer cells at high concentrations (high nanomolar to low micromolar). Thus, local administration of high-concentration S1P alone or in combination of chemotherapy agents could be used to treat breast cancer. The breast mainly consists of mammary gland and connective tissue stroma (adipose), which are dynamically interacting each other. Thus, in the current study, we evaluated how normal adipocyte-conditioned cell culture media (AD-CM) and cancer-associated adipocyte-conditioned cell culture media (CAA-CM) would affect high-concentration S1P treatment of triple-negative breast cancer (TNBC) cells. Both AD-CM and CAA-CM may suppress the anti-proliferative effect and reduce nuclear alteration/apoptosis caused by high-concentration S1P. This implicates that adipose tissue is likely to be detrimental to local high-concentration S1P treatment of TNBC. Because the interstitial concentration of S1P is about 10 times higher than its cellular level, we undertook a secretome analysis to understand how S1P would affect the secreted protein profile of differentiated SGBS adipocytes. At 100 nM S1P treatment, we identified 36 upregulated and 21 downregulated secretome genes. Most of these genes are involved in multiple biological processes. Further studies are warranted to identify the most important secretome targets of S1P in adipocytes and illustrate the mechanism on how these target proteins affect S1P treatment of TNBC.
Collapse
Affiliation(s)
- Xiyuan Wu
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Jian Yang
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
15
|
Gao Y, Ma Y, Pan L, Li W, Peng X, Zhang M, Dong L, Wang J, Gu R. Comparative analysis of whey proteins in yak milk from different breeds in China using a data-independent acquisition proteomics method. J Dairy Sci 2023; 106:3791-3806. [PMID: 37164856 DOI: 10.3168/jds.2022-22525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/08/2023] [Indexed: 05/12/2023]
Abstract
Yak milk is rich in essential milk proteins of nutritional and therapeutic value. In this study, whey proteins of milk from 3 yak breeds (Gannan, GN; Huanhu, HH; Maiwa, MW) in China were comprehensively identified and compared using a data-independent acquisition quantitative proteomics approach. A total of 632 proteins were identified in yak milk whey samples, in which immune-related proteins were abundant. Compared with other milks, more proteins were involved in oxidation-reduction process and with ATP binding. In addition, we identified 96, 155, and 164 differentially expressed proteins (DEP) for GN versus HH, GN versus MW, and HH versus MW, respectively. "Phagosome" and "complement and coagulation cascades" were the most significant pathways for DEP of GN versus HH and GN or HH versus MW yak milk based on the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Protein-protein interaction network analysis showed that DEP for the 3 comparisons had significant biological interactions but were associated with different functions. The results provide useful information on yak milk from different breeds in China, and elucidate the biological functions of yak milk proteins.
Collapse
Affiliation(s)
- Yu Gao
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lina Pan
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Wei Li
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Xiaoyu Peng
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Min Zhang
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Ling Dong
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China
| | - Jiaqi Wang
- Ausnutira Dairy (China) Co. Ltd., Changsha, Hunan, 410200, China; Hunan Ausnutria Institute of Food and Nutrition, Changsha, Hunan, 410200, China.
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China.
| |
Collapse
|
16
|
Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Mol Cell Proteomics 2023; 22:100540. [PMID: 37019382 PMCID: PMC10176071 DOI: 10.1016/j.mcpro.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune disease characterized by synovial inflammation, synovial tissue hyperplasia, and destruction of bone and cartilage. Protein glycosylation plays key roles in the pathogenesis of RA but in-depth glycoproteomics analysis of synovial tissues is still lacking. Here, by using a strategy to quantify intact N-glycopeptides, we identified 1260 intact N-glycopeptides from 481 N-glycosites on 334 glycoproteins in RA synovium. Bioinformatics analysis revealed that the hyper-glycosylated proteins in RA were closely linked to immune responses. By using DNASTAR software, we identified 20 N-glycopeptides whose prototype peptides were highly immunogenic. We next calculated the enrichment scores of nine types of immune cells using specific gene sets from public single-cell transcriptomics data of RA and revealed that the N-glycosylation levels at some sites, such as IGSF10_N2147, MOXD2P_N404, and PTCH2_N812, were significantly correlated with the enrichment scores of certain immune cell types. Furthermore, we showed that aberrant N-glycosylation in the RA synovium was related to increased expression of glycosylation enzymes. Collectively, this work presents, for the first time, the N-glycoproteome of RA synovium and describes immune-associated glycosylation, providing novel insights into RA pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
17
|
Zhang J, Xue Z, Zhao Q, Zhang K, Zhou A, Shi L, Liu Y. RNA-Sequencing Characterization of lncRNA and mRNA Functions in Septic Pig Liver Injury. Genes (Basel) 2023; 14:genes14040945. [PMID: 37107704 PMCID: PMC10137529 DOI: 10.3390/genes14040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
We assessed differentially expressed (DE) mRNAs and lncRNAs in the liver of septic pigs to explore the key factors regulating lipopolysaccharide (LPS)-induced liver injury. We identified 543 DE lncRNAs and 3642 DE mRNAs responsive to LPS. Functional enrichment analysis revealed the DE mRNAs were involved in liver metabolism and other pathways related to inflammation and apoptosis. We also found significantly upregulated endoplasmic reticulum stress (ERS)-associated genes, including the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), the eukaryotic translation initiation factor 2α (EIF2S1), the transcription factor C/EBP homologous protein (CHOP), and activating transcription factor 4 (ATF4). In addition, we predicted 247 differentially expressed target genes (DETG) of DE lncRNAs. The analysis of protein-protein interactions (PPI) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway detected key DETGs that are involved in metabolic pathways, such as N-Acetylgalactosaminyltransferase 2 (GALNT2), argininosuccinate synthetase 1 (ASS1), and fructose 1,6-bisphosphatase 1 (FBP1). LNC_003307 was the most abundant DE lncRNA in the pig liver, with a marked upregulation of >10-fold after LPS stimulation. We identified three transcripts for this gene using the rapid amplification of the cDNA ends (RACE) technique and obtained the shortest transcript sequence. This gene likely derives from the nicotinamide N-methyltransferase (NNMT) gene in pigs. According to the identified DETGs of LNC_003307, we hypothesize that this gene regulates inflammation and endoplasmic reticulum stress in LPS-induced liver damage in pigs. This study provides a transcriptomic reference for further understanding of the regulatory mechanisms underlying septic hepatic injury.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Keke Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
18
|
Chen M, Assis DM, Benet M, McClung CM, Gordon EA, Ghose S, Dupard SJ, Willetts M, Taron CH, Samuelson JC. Comparative site-specific N-glycoproteome analysis reveals aberrant N-glycosylation and gives insights into mannose-6-phosphate pathway in cancer. Commun Biol 2023; 6:48. [PMID: 36639722 PMCID: PMC9839730 DOI: 10.1038/s42003-023-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
N-glycosylation is implicated in cancers and aberrant N-glycosylation is recognized as a hallmark of cancer. Here, we mapped and compared the site-specific N-glycoproteomes of colon cancer HCT116 cells and isogenic non-tumorigenic DNMT1/3b double knockout (DKO1) cells using Fbs1-GYR N-glycopeptide enrichment technology and trapped ion mobility spectrometry. Many significant changes in site-specific N-glycosylation were revealed, providing a molecular basis for further elucidation of the role of N-glycosylation in protein function. HCT116 cells display hypersialylation especially in cell surface membrane proteins. Both HCT116 and DKO1 show an abundance of paucimannose and 80% of paucimannose-rich proteins are annotated to reside in exosomes. The most striking N-glycosylation alteration was the degree of mannose-6-phosphate (M6P) modification. N-glycoproteomic analyses revealed that HCT116 displays hyper-M6P modification, which was orthogonally validated by M6P immunodetection. Significant observed differences in N-glycosylation patterns of the major M6P receptor, CI-MPR in HCT116 and DKO1 may contribute to the hyper-M6P phenotype of HCT116 cells. This comparative site-specific N-glycoproteome analysis provides a pool of potential N-glycosylation-related cancer biomarkers, but also gives insights into the M6P pathway in cancer.
Collapse
Affiliation(s)
- Minyong Chen
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Diego M. Assis
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Matthieu Benet
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Colleen M. McClung
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Elizabeth A. Gordon
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Shourjo Ghose
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Steven J. Dupard
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - Matthew Willetts
- grid.423270.00000 0004 0491 2576Bruker, 40 Manning Road, Billerica, MA 01821 USA
| | - Christopher H. Taron
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| | - James C. Samuelson
- grid.273406.40000 0004 0376 1796New England Biolabs, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
19
|
Duncan RS, Keightley A, Lopez AA, Hall CW, Koulen P. Proteome changes in a human retinal pigment epithelial cell line during oxidative stress and following antioxidant treatment. Front Immunol 2023; 14:1138519. [PMID: 37153596 PMCID: PMC10154683 DOI: 10.3389/fimmu.2023.1138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common cause of blindness in the elderly. Oxidative stress contributes to retinal pigment epithelium (RPE) dysfunction and cell death thereby leading to AMD. Using improved RPE cell model systems, such as human telomerase transcriptase-overexpressing (hTERT) RPE cells (hTERT-RPE), pathophysiological changes in RPE during oxidative stress can be better understood. Using this model system, we identified changes in the expression of proteins involved in the cellular antioxidant responses after induction of oxidative stress. Some antioxidants such as vitamin E (tocopherols and tocotrienols) are powerful antioxidants that can reduce oxidative damage in cells. Alpha-tocopherol (α-Toc or αT) and gamma-tocopherol (γ-Toc or γT) are well-studied tocopherols, but signaling mechanisms underlying their respective cytoprotective properties may be distinct. Here, we determined what effect oxidative stress, induced by extracellularly applied tBHP in the presence and absence of αT and/or γT, has on the expression of antioxidant proteins and related signaling networks. Using proteomics approaches, we identified differential protein expression in cellular antioxidant response pathways during oxidative stress and after tocopherol treatment. We identified three groups of proteins based on biochemical function: glutathione metabolism/transfer, peroxidases and redox-sensitive proteins involved in cytoprotective signaling. We found that oxidative stress and tocopherol treatment resulted in unique changes in these three groups of antioxidant proteins indicate that αT and γT independently and by themselves can induce the expression of antioxidant proteins in RPE cells. These results provide novel rationales for potential therapeutic strategies to protect RPE cells from oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Andrew Keightley
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Adam A. Lopez
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Conner W. Hall
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- Department of Biomedical Sciences, University of Missouri – Kansas City, School of Medicine, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
20
|
Wang W, Jiang X, Xia F, Chen X, Li G, Liu L, Xu Q, Zhu M, Chen C. HYOU1 promotes cell proliferation, migration, and invasion via the PI3K/AKT/FOXO1 feedback loop in bladder cancer. Mol Biol Rep 2023; 50:453-464. [PMID: 36348197 DOI: 10.1007/s11033-022-07978-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxia up-regulated 1 (HYOU1) was identified as a proto-oncogene and involved in tumorigenesis and progression in several cancer. Nonetheless, the biological function and mechanism of HYOU1 in bladder cancer (BCa) remian unclear. METHODS The HYOU1 level in BCa tissues and cells was examined using RT-qPCR and western blot methods. The relationship between HYOU1 expression and clinicopathologic characteristics of BCa was analyzed. The biological role of HYOU1 on BCa cell proliferation, apoptosis, migration and invasion were analyzed via counting kit-8 (CCK-8), flow cytometry, wound healing and Transwell assays, respectively. The association between HYOU1 and the PI3K/AKT/Forkhead box O1 (FOXO1) signalling was assessed via western blot assay, meanwhile the the association of FOXO1 with HYOU1 was also investigated. RESULTS HYOU1 was up-regulated in BCa tissues and cell lines, and the high level of HYOU1 was associated with bladder cancer histological grade and pathologic stage. Moreover, patients with high expression of HYOU1 showed poor overall survival from Kaplan-Meier Plotter. HYOU1 depletion impeded cell proliferation, migration and invasion, and induced cell apoptosis, while HYOU1 overexpression promoted cell proliferation, migration and invasion. Mechanically, our results showed that HYOU1 knockdown repressed PI3K/AKT/FOXO1 pathway and HYOU1 was negative regulated by FOXO1 in BCa. Significantly, we confirmed that the HYOU1/PI3K-AKT/FOXO1 negative feedback loop was involved in BCa cell proliferation, migration and invasion. CONCLUSION These findings revealed that HYOU1 acted as a pro-oncogene on BCa progression, and it will be a possible target for BCa treatment.
Collapse
Affiliation(s)
- Weiguo Wang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xinjie Jiang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Fei Xia
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xudong Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Guojun Li
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Lizhuan Liu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Qiang Xu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Min Zhu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Cheng Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China.
| |
Collapse
|
21
|
Kumar S, Tripathi J, Maurya DK, Nuwad J, Gautam S. Anti-proliferative effect and underlying mechanism of ethoxy-substituted phylloquinone (vitamin K1 derivative) from Spinacia oleracea leaf and enhancement of its extractability using radiation technology. 3 Biotech 2022; 12:265. [PMID: 36091087 PMCID: PMC9452621 DOI: 10.1007/s13205-022-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022] Open
Abstract
In our previous studies, a novel antimutagenic compound, 2-ethoxy-3-(3,7,11,15-tetramethylhexadec-2-ethyl) naphthaquinone-1,4-dione (ethoxy-substituted phylloquinone; ESP) from spinach was characterized and mechanism contributing to its antimutagenicity was deduced. In the current study, anti-proliferative activity of ESP was assessed in lung cancer (A549) cells using MTT [3-(4,5-dimethylthiazole-2yl)-2,5-diphenyl tetrazolium bromide], clonogenic assays and cell cycle analysis. ESP treatment showed selective cytotoxicity against lung cancer cells and no cytotoxicity in normal lung (WI38) cells. Cell cycle analysis revealed that ESP treatment arrests A549 cell population in G2-M phase. In-silico analysis indicated positive drug-likeness features of ESP. Molecular docking showed H-bonding and hydrophobic interactions between ESP and B-DNA dodecamer residues at minor groove. SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) based proteomic analysis indicated down-regulation of proteins involved in EGFR signaling, NEDDylation and other metabolic pathways and up-regulation of tumor suppressor (STAT1 and NDRG1) proteins. Treatment of spinach powder with gamma radiation (5-20 kGy) from cobalt (Co-60) enhanced the extractability of ESP up to 4.4-fold at the highest dose of 20 kGy. Scanning electron microscopy of spinach powder displayed decrease in smoothness and compactness with increase in radiation dose attributing to its enhanced extractability. Increase in the extractability of ESP with increasing radiation doses as measured by fluorescence intensity and dry weight basis was strongly correlated. Nonetheless, radiation treatment did not affect the functionality of ESP in terms of anti-proliferative and antimutagenic activities. Current findings thus highlight broad spectrum bioactivity of ESP from spinach, its underlying mechanism and applicability of radiation technology in enhancing extractability. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03264-6.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Jyoti Tripathi
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Dharmendra K. Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| | - Jitendra Nuwad
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400 085 India
- Homi Bhabha National Institute, Mumbai, 400 094 India
| |
Collapse
|
22
|
Wang Y, Wang X. A Pan-Cancer Analysis of Heat-Shock Protein 90 Beta1(HSP90B1) in Human Tumours. Biomolecules 2022; 12:1377. [PMID: 36291587 PMCID: PMC9599833 DOI: 10.3390/biom12101377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND HSP90B1, a member of the heat-shock protein 90 family, plays a vital role as a molecular chaperone for oncogenes and stimulates tumour growth. However, its role in various cancers remains unexplored. METHODS Using the cancer genome atlas, gene expression omnibus the Human Protein Atlas databases and various other bioinformatic tools, this study investigated the involvement of HSP90B1 in 33 different tumour types. RESULTS The over-expression of HSP90B1 generally predicted poor overall survival and disease-free survival for patients with tumours, such as adrenocortical carcinoma, bladder urothelial carcinoma, kidney renal papillary cell carcinoma, and lung adenocarcinoma. In this study, HSP90B1 was highly expressed in the majority of tumours. A comparison was made between the phosphorylation of HSP90B1 in normal and primary tumour tissues, and putative functional mechanisms in HSP90B1-mediated oncogenesis were investigated. Additionally, the mutation burden of HSP90B1 in cancer was evaluated along with the survival rate of patients with cancer patients. CONCLUSION This first pan-cancer investigation reveals the oncogenic functions of HSP90B1 in various cancers.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Medicine, Nantong University, Nantong 226000, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), Nantong 226361, China
| |
Collapse
|
23
|
Plasmodium falciparum and TNF-α Differentially Regulate Inflammatory and Barrier Integrity Pathways in Human Brain Endothelial Cells. mBio 2022; 13:e0174622. [PMID: 36036514 PMCID: PMC9601155 DOI: 10.1128/mbio.01746-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection characterized by the loss of blood-brain barrier (BBB) integrity, which is associated with brain swelling and mortality in patients. P. falciparum-infected red blood cells and inflammatory cytokines, like tumor necrosis factor alpha (TNF-α), have been implicated in the development of cerebral malaria, but it is still unclear how they contribute to the loss of BBB integrity. Here, a combination of transcriptomic analysis and cellular assays detecting changes in barrier integrity and endothelial activation were used to distinguish between the effects of P. falciparum and TNF-α on a human brain microvascular endothelial cell (HBMEC) line and in primary human brain microvascular endothelial cells. We observed that while TNF-α induced high levels of endothelial activation, it only caused a small increase in HBMEC permeability. Conversely, P. falciparum-infected red blood cells (iRBCs) led to a strong increase in HBMEC permeability that was not mediated by cell death. Distinct transcriptomic profiles of TNF-α and P. falciparum in HBMECs confirm the differential effects of these stimuli, with the parasite preferentially inducing an endoplasmic reticulum stress response. Our results establish that there are fundamental differences in the responses induced by TNF-α and P. falciparum on brain endothelial cells and suggest that parasite-induced signaling is a major component driving the disruption of the BBB during cerebral malaria, proposing a potential target for much needed therapeutics.
Collapse
|
24
|
Jafari Khamirani H, Dianatpour M, Zoghi S, Mohammadi S, Habib A, Dastgheib SA, Tabei SMB, Molayemat M, Shirazi Yeganeh B. Recurrent Infections and Immunodeficiency Caused by Severe Pancytopenia Associated with a Novel Life-Threatening Mutation in Hypoxia-Upregulated Protein 1. Immunol Invest 2022; 51:1883-1894. [PMID: 35549617 DOI: 10.1080/08820139.2022.2072736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HYOU1 encodes a protein from the endoplasmic reticulum chaperone proteins, expressed to protect cellular mechanisms from stress such as hypoxia, insufficient energy and excessive or insufficient substances, and to restore cell homeostasis. In this study, we report a novel pathogenic variant in HYOU1. The proband, the second patient with pathogenic variant in HYOU1, was a female born to consanguineous parents. A novel homozygous pathogenic variant in HYOU1 (NM_001130991.3: c.1456C>T; p.Arg486Cys) was identified, causing anemia, thrombocytopenia and severe panleukopenia and immunodeficiency in the second month of age, leading to consistent high-grade fever, regression of brain functions and recurrent infections; ultimately resulting in the patient expiring at three and half months of age. Both parents are heterozygous for this variant and have no issues related to this study.
Collapse
Affiliation(s)
- Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Mohammadi
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Habib
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicine Research Center, Shiraz University of Medical SciencesMaternal-fetal, Shiraz, Iran
| | - Mohadeseh Molayemat
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
25
|
Damiani V, Cufaro MC, Fucito M, Dufrusine B, Rossi C, Del Boccio P, Federici L, Turco MC, Sallese M, Pieragostino D, De Laurenzi V. Proteomics Approach Highlights Early Changes in Human Fibroblasts-Pancreatic Ductal Adenocarcinoma Cells Crosstalk. Cells 2022; 11:1160. [PMID: 35406724 PMCID: PMC8997741 DOI: 10.3390/cells11071160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.
Collapse
Affiliation(s)
- Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy;
- R&D Division, BIOUNIVERSA s.r.l., 84081 Baronissi, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| |
Collapse
|
26
|
Thakur AK, Luthra-Guptasarma M. Differences in Cellular Clearing Mechanisms of Aggregates of Two Subtypes of HLA-B27. Front Immunol 2022; 12:795053. [PMID: 35082784 PMCID: PMC8785436 DOI: 10.3389/fimmu.2021.795053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ankylosing spondylitis (AS) belongs to a group of diseases, called spondyloarthropathies (SpA), that are strongly associated with the genetic marker HLA-B27. AS is characterized by inflammation of joints and primarily affects the spine. Over 160 subtypes of HLA-B27 are known, owing to high polymorphism. Some are strongly associated with disease (e.g., B*2704), whereas others are not (e.g., B*2709). Misfolding of HLA-B27 molecules [as dimers, or as high-molecular-weight (HMW) oligomers] is one of several hypotheses proposed to explain the link between HLA-B27 and AS. Our group has previously established the existence of HMW species of HLA-B27 in AS patients. Still, very little is known about the mechanisms underlying differences in pathogenic outcomes of different HLA-B27 subtypes. We conducted a proteomics-based evaluation of the differential disease association of HLA B*2704 and B*2709, using stable transfectants of genes encoding the two proteins. A clear difference was observed in protein clearance mechanisms: whereas unfolded protein response (UPR), autophagy, and aggresomes were involved in the degradation of B*2704, the endosome–lysosome machinery was primarily involved in B*2709 degradation. These differences offer insights into the differential disease association of B*2704 and B*2709.
Collapse
Affiliation(s)
- Amit Kumar Thakur
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
27
|
An M, Zang X, Wang J, Kang J, Tan X, Fu B. Comprehensive analysis of differentially expressed long noncoding RNAs, miRNAs and mRNAs in breast cancer brain metastasis. Epigenomics 2021; 13:1113-1128. [PMID: 34148372 DOI: 10.2217/epi-2021-0152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To delineate the transcriptomic landscape and potential molecular mechanisms of breast cancer brain metastasis (BCBM). Materials & methods: Whole-transcriptome sequencing was performed to identify long noncoding RNA (lncRNA), miRNA and mRNA expression profiles associated with BCBM. Results: A total of 739 differentially expressed lncRNAs, 115 differentially expressed miRNAs and 5749 differentially expressed mRNAs were identified in 231-BR cells compared with MDA-MB-231 cells. Real-time quantitative PCR results revealed the expression levels of candidate molecules were consistent with their correspondence RNA-seq data. Protein-protein interaction analysis identified some hub genes associated with BCBM, such as PTBP1, NUP98 and HYOU1. LncRNA-miRNA-mRNA network highlighted a potential mechanism of BCBM in which lncRNA FIRRE and RP11-169F17.1 sponging hsa-miR-501-5p to regulate the expression of MMS19, PTBP1 and NUP98. Conclusion: This study provides a framework for better understanding molecular mechanisms of BCBM.
Collapse
Affiliation(s)
- Meng An
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Xiaowen Zang
- Department of Neurology First Ward, Liaocheng Veterans Hospital, Liaocheng, PR China
| | - Jimin Wang
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Jie Kang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, PR China
| | - Xiaoyu Tan
- Department of Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, PR China
| | - Bo Fu
- Department of Central Laboratory, Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, PR China
| |
Collapse
|