1
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
2
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Camero S, Cassandri M, Pomella S, Milazzo L, Vulcano F, Porrazzo A, Barillari G, Marchese C, Codenotti S, Tomaciello M, Rota R, Fanzani A, Megiorni F, Marampon F. Radioresistance in rhabdomyosarcomas: Much more than a question of dose. Front Oncol 2022; 12:1016894. [PMID: 36248991 PMCID: PMC9559533 DOI: 10.3389/fonc.2022.1016894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Recent Advances and Challenges in the Treatment of Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12071758. [PMID: 32630642 PMCID: PMC7409313 DOI: 10.3390/cancers12071758] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma, the most common soft tissue sarcoma noted in childhood, requires multimodality treatment, including chemotherapy, surgical resection, and/or radiation therapy. The majority of the patients with localized rhabdomyosarcoma can be cured; however, the long-term outcomes in patients with metastatic rhabdomyosarcoma remain poor. The standard chemotherapy regimen for patients with rhabdomyosarcoma is the combination of vincristine, actinomycin, and cyclophosphamide/ifosfamide. In recent clinical trials, modifications of the standard chemotherapy protocol have shown improvements in the outcomes in patients with rhabdomyosarcoma. In various type of malignancies, new treatments, such as molecular targeted drugs and immunotherapies, have shown superior clinical outcomes compared to those of standard treatments. Therefore, it is necessary to assess the benefits of these treatments in patients with rhabdomyosarcoma. Moreover, recent basic and clinical studies on rhabdomyosarcoma have reported promising therapeutic targets and novel therapeutic approaches. This article reviews the recent challenges and advances in the management of rhabdomyosarcoma.
Collapse
|
5
|
Wilding CP, Elms ML, Judson I, Tan AC, Jones RL, Huang PH. The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Rev Anticancer Ther 2019; 19:971-991. [PMID: 31665941 PMCID: PMC6882314 DOI: 10.1080/14737140.2019.1686979] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Introduction: Tyrosine kinases are key mediators of intracellular signaling cascades and aberrations in these proteins have been implicated in driving oncogenesis through the dysregulation of fundamental cellular processes including proliferation, migration, and apoptosis. As such, targeting these proteins with small molecule tyrosine kinase inhibitors (TKI) has led to significant advances in the treatment of a number of cancer types.Areas covered: Soft tissue sarcomas (STS) are a heterogeneous and challenging group of rare cancers to treat, but the approval of the TKI pazopanib for the treatment of advanced STS demonstrates that this class of drugs may have broad utility against a range of different sarcoma histological subtypes. Since the approval of pazopanib, a number of other TKIs have entered clinical trials to evaluate whether their activity in STS matches the promising results seen in other solid tumors. In this article, we review the emerging role of TKIs in the evolving landscape of sarcoma treatment.Expert opinion: As our biological understanding of response and resistance of STS to TKIs advances, we anticipate that patient management will move away from a 'one size fits all' paradigm toward personalized, multi-line, and patient-specific treatment regimens where patients are treated according to the underlying biology and genetics of their specific disease.
Collapse
Affiliation(s)
| | - Mark L Elms
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Ian Judson
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Aik-Choon Tan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Robin L Jones
- Department of Medical Oncology, Sarcoma Unit, The Royal Marsden Hospital, London, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Dächert J, Ehrenfeld V, Habermann K, Dolgikh N, Fulda S. Targeting ferroptosis in rhabdomyosarcoma cells. Int J Cancer 2019; 146:510-520. [DOI: 10.1002/ijc.32496] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jasmin Dächert
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Vanessa Ehrenfeld
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Karoline Habermann
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe‐University Frankfurt Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
7
|
Biomechanical regulation of drug sensitivity in an engineered model of human tumor. Biomaterials 2017; 150:150-161. [PMID: 29040875 DOI: 10.1016/j.biomaterials.2017.10.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Abstract
Predictive testing of anticancer drugs remains a challenge. Bioengineered systems, designed to mimic key aspects of the human tumor microenvironment, are now improving our understanding of cancer biology and facilitating clinical translation. We show that mechanical signals have major effects on cancer drug sensitivity, using a bioengineered model of human bone sarcoma. Ewing sarcoma (ES) cells were studied within a three-dimensional (3D) matrix in a bioreactor providing mechanical loadings. Mimicking bone-like mechanical signals within the 3D model, we rescued the ERK1/2-RUNX2 signaling pathways leading to drug resistance. By culturing patient-derived tumor cells in the model, we confirmed the effects of mechanical signals on cancer cell survival and drug sensitivity. Analyzing human microarray datasets, we showed that RUNX2 expression is linked to poor survival in ES patients. Mechanical loadings that activated signal transduction pathways promoted drug resistance, stressing the importance of introducing mechanobiological cues into preclinical tumor models for drug screening.
Collapse
|
8
|
Fanzani A, Poli M. Iron, Oxidative Damage and Ferroptosis in Rhabdomyosarcoma. Int J Mol Sci 2017; 18:ijms18081718. [PMID: 28783123 PMCID: PMC5578108 DOI: 10.3390/ijms18081718] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Recent data have indicated a fundamental role of iron in mediating a non-apoptotic and non-necrotic oxidative form of programmed cell death termed ferroptosis that requires abundant cytosolic free labile iron to promote membrane lipid peroxidation. Different scavenger molecules and detoxifying enzymes, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), have been shown to overwhelm or exacerbate ferroptosis depending on their expression magnitude. Ferroptosis is emerging as a potential weapon against tumor growth since it has been shown to potentiate cell death in some malignancies. However, this mechanism has been poorly studied in Rhabdomyosarcoma (RMS), a myogenic tumor affecting childhood and adolescence. One of the main drivers of RMS genesis is the Retrovirus Associated DNA Sequences/Extracellular signal Regulated Kinases (RAS/ERK)signaling pathway, the deliberate activation of which correlates with tumor aggressiveness and oxidative stress levels. Since recent studies have indicated that treatment with oxidative inducers can significantly halt RMS tumor progression, in this review we covered different aspects, ranging from iron metabolism in carcinogenesis and tumor growth, to mechanisms of iron-mediated cell death, to highlight the potential role of ferroptosis in counteracting RMS growth.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine (DMMT), University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
9
|
Histology-Specific Uses of Tyrosine Kinase Inhibitors in Non-gastrointestinal Stromal Tumor Sarcomas. Curr Treat Options Oncol 2016; 17:11. [PMID: 26931561 DOI: 10.1007/s11864-015-0382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OPINION STATEMENT Adult sarcomas, especially those with metastatic or unresectable disease, have limited treatment options. Traditional chemotherapeutic options have been limited by poor response rates in patients with advanced sarcomas. The important clinical question is whether the success of targeted therapy in GIST can be extended to other sarcomas and also if preclinical data describing targets across this heterogeneous group of cancers can be translated to clinical efficacy of known and upcoming target specific agents. Multi-targeted tyrosine kinase inhibitors (TKI) such as pazopanib, sorafenib, sunutinib, cediranib have shown benefits across various histologies of soft tissue sarcoma as well as bone sarcomas. The efficacy of imatinib in Dermatofibrosarcoma Protruberans; sunitinib and cediranib in alveolar soft part sarcoma; and sorafenib and imatinib in chordomas have provided a treatment option of these rare tumors where no effective options existed. TKIs are being tested in combination with chemotherapy as well as radiation to improve response. Although traditional RECIST criteria may not adequately reflect response to these targeted agents, the studies have shown promise for the efficacy of TKIs across the spectrum of sarcomas. The integration of biomarker studies with clinical trials may help further identify responders beyond that defined by histology. With the current data, TKIs are being used both as first-line treatment and beyond in non-GIST sarcomas.
Collapse
|
10
|
Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways. Anticancer Drugs 2016; 27:192-203. [PMID: 26629768 DOI: 10.1097/cad.0000000000000316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increasing hepatic stellate cell (HSC) death is an attractive approach for limiting liver fibrosis. We investigated the molecular mechanisms underlying the effects of sorafenib on HSCs. LX2 cells were incubated with sorafenib and a variety of inhibitors of apoptosis, autophagy, and necrosis. Electron microscopy was used to observe autophagosomes. Inhibitors and siRNA were used to examine the role of the Akt/mTOR/p70S6K and JNK pathways. Ultrastructural analysis revealed that rat HSCs treated with 5 μmol/l sorafenib accumulated residual digested material and empty or autophagic vacuoles. Incubating LX2 cells with lysosomal protease inhibitors increased the accumulation of LC3-II, indicating that sorafenib enhances autophagic flux in HSCs. Autophagy may precede apoptosis. Lower concentrations of sorafenib and a shorter treatment time resulted in the dominance of autophagic cell death over apoptosis. Further analysis showed that Beclin 1 is inactivated by the caspases induced by sorafenib during apoptosis. Inhibition of autophagy in LX2 cells using 3-methyladenine treatment or siRNA-mediated knockdown of Atg5 resulted in a marked increase in apoptosis. Finally, sorafenib induced programmed cell death by attenuation and activation of Akt/mTOR/p70S6K and JNK signaling. Sorafenib-induced cell death is mediated by both autophagy and apoptosis. Elucidation of the signaling pathways activated by sorafenib could potentially lead to novel antifibrosis therapies for chronic liver diseases.
Collapse
|
11
|
Ferguson M, Hingorani P, Gupta AA. Emerging molecular-targeted therapies in early-phase clinical trials and preclinical models. Am Soc Clin Oncol Educ Book 2015:420-4. [PMID: 23714564 DOI: 10.14694/edbook_am.2013.33.420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Within the context of modern cooperative group trials, modification of standard cytotoxic chemotherapy has not improved survival in patients with rhabdomyosarcoma (RMS) over the last 30 years. There is need and interest to incorporate novel targeted anticancer agents into the treatment plans for children and adolescents with newly diagnosed RMS; however, targets directly driven by FOXO1 translocation remain elusive, and molecular events driving translocation negative tumors similarly remain ill-defined. Thus, alternate pathways driving the tumors require identification and targeting. Herein, we describe targeted therapies that could be of interest in RMS, but whose inclusion in clinical trials is thus far limited by scientific and regulatory criteria. Sorafenib, pazopanib, crizotinib, TH-302, aurora-kinase inhibitors, and anaplastic lymphoma kinase (ALK)/c-MET inhibitors will be discussed. The current preclinical and clinical data available, as well as limitations and challenges for each, will be outlined.
Collapse
Affiliation(s)
- Michael Ferguson
- From the Department of Hematology/Oncology, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN; Division of Hematology Oncology, Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ; Division of Hematology/Oncology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
12
|
Lippolis C, Refolo MG, D'Alessandro R, Carella N, Messa C, Cavallini A, Carr BI. Resistance to multikinase inhibitor actions mediated by insulin like growth factor-1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:90. [PMID: 26329608 PMCID: PMC4557596 DOI: 10.1186/s13046-015-0210-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Background Blood platelet numbers are correlated with growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) both stimulated HCC cell growth and migration, and antagonized the growth-inhibitory and apoptotic effects of Regorafenib, multikinase growth inhibitor, on HCC cell lines. We evaluated the effects of human insulin-like growth factor-1 (IGF1), a mitogen contained in platelets, on the Regorafenib-mediated growth inhibition. Methods An Elisa kit was used to evaluate hPL IGF1 concentrations. The effects of IGF1 on cell proliferation were assessed with MTT assay and analysis of cell cycle progression. Apoptosis assays, scratch assay and Transwell assay were performed to measure apoptosis, cell migration and invasion respectively. Western blots were performed by standard protocols. Results IGF1 antagonized growth inhibition exerted by Regorafenib on HCC cell lines. Moreover the mitogen blocked Regorafenib-induced apoptosis and decreased the rate of cell migration and invasion. The IGF1 effects were in turn antagonized by actions of a potent IGF1 receptor inhibitor, GSK1838705A, showing that the IGF1 receptor was involved in the mechanisms of IGF1-mediated blocking of Regorafenib action. GSK1838705A also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that IGF1 was an important component of hPL actions. Conclusions These results show that IGF1 antagonized Regorafenib-mediated growth, migration and invasion inhibition, as well as the drug-mediated induction of apoptosis in HCC cells and reinforce the idea that microenvironmental factors can influence cancer drug actions.
Collapse
Affiliation(s)
- Catia Lippolis
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Maria Grazia Refolo
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Rosalba D'Alessandro
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Nicola Carella
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Caterina Messa
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Aldo Cavallini
- Department Clinical Pathology, Laboratory of Cellular and Molecular Biology, National Institute for Digestive Diseases, IRCCS "Saverio de Bellis", Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| | - Brian Irving Carr
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey.
| |
Collapse
|
13
|
Kim A, Widemann BC, Krailo M, Jayaprakash N, Fox E, Weigel B, Blaney SM. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: A report from the Children's Oncology Group. Pediatr Blood Cancer 2015; 62. [PMID: 26207356 PMCID: PMC4515771 DOI: 10.1002/pbc.25548] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sorafenib is an oral small molecule inhibitor of multiple kinases controlling tumor growth and angiogenesis. The purpose of the phase 2 study was to determine the response rate of sorafenib and gain further information on the associated toxicities, pharmacokinetics, and pharmacodynamics of sorafenib in children and young adults with relapsed or refractory tumors including rhabdomyosarcoma, Wilms tumor, hepatocellular carcinoma (HCC), and papillary thyroid carcinoma (PTC). PROCEDURE Sorafenib, 200 mg/m(2) /dose, was administered every 12 hr continuously for 28 day cycles using a two-stage design in two primary strata (rhabdomyosarcoma and Wilms tumor) and two secondary strata (HCC and PTC). Correlative studies in consenting patients included determination of sorafenib steady state trough concentrations and assessments of VEGF and sVEGFR2. RESULTS Twenty patients (median age of 11 years; range, 5-21) enrolled. No objective responses (RECIST) were observed in the 10 evaluable patients enrolled in each of the two primary disease strata of rhabdomyosarcoma and Wilms tumor. No patients with HCC or PTC were enrolled. Sorafenib was not associated with an excessive rate of dose-limiting toxicity (DLT). The mean ± SD steady state concentration during cycle 1 day 15 was 6.5 ± 3.9 μg/ml (n = 10). CONCLUSIONS Sorafenib was well tolerated in children at 200 mg/m(2) /dose twice daily on a continuous regimen with toxicity profile and steady state drug concentrations similar to those previously reported. Single agent sorafenib was inactive in children with recurrent or refractory rhabdomyosarcoma or Wilms tumor.
Collapse
Affiliation(s)
- AeRang Kim
- Children’s National Medical Center, Washington, DC
| | | | - Mark Krailo
- Children’s Oncology Group Statistics, Monrovia, CA
| | | | - Elizabeth Fox
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Brenda Weigel
- University of Minnesota Medical Center, Minneapolis, MN
| | | |
Collapse
|
14
|
Palmerini E, Paioli A, Ferrari S. Emerging therapeutic targets for synovial sarcoma. Expert Rev Anticancer Ther 2014; 14:791-806. [DOI: 10.1586/14737140.2014.901155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Fleuren EDG, Versleijen-Jonkers YMH, Boerman OC, van der Graaf WTA. Targeting receptor tyrosine kinases in osteosarcoma and Ewing sarcoma: current hurdles and future perspectives. Biochim Biophys Acta Rev Cancer 2014; 1845:266-76. [PMID: 24582852 DOI: 10.1016/j.bbcan.2014.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 12/26/2022]
Abstract
Osteosarcoma (OS) and Ewing sarcoma (ES) are the two most common types of primary bone cancer, which mainly affect children and young adults. Despite intensive multi-modal treatment, the survival of both OS and ES has not improved much during the last decades and new therapeutic options are awaited. One promising approach is the specific targeting of transmembrane receptor tyrosine kinases (RTKs) implicated in these types of bone cancer. However, despite encouraging in vitro and in vivo results, apart from intriguing results of Insulin-like Growth Factor-1 Receptor (IGF-1R) antibodies in ES, clinical studies are limited or disappointing. Primary resistance to RTK inhibitors is frequently observed in OS and ES patients, and even patients that initially respond well eventually develop acquired resistance. There are, however, a few remarks to make concerning the current set-up of clinical trials and about strategies to improve RTK-based treatments in OS and ES. This review provides an overview concerning current RTK-mediated therapies in OS and ES and discusses the problems observed in the clinic. More importantly, we describe several strategies to overcome resistance to RTK inhibitors which may significantly improve outcome of OS and ES patients.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | - Otto C Boerman
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
16
|
Martin-Liberal J, Judson I, Benson C. Antiangiogenic approach in soft-tissue sarcomas. Expert Rev Anticancer Ther 2014; 13:975-82. [DOI: 10.1586/14737140.2013.820579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Phase I trial of sorafenib in combination with ifosfamide in patients with advanced sarcoma: a Spanish group for research on sarcomas (GEIS) study. Invest New Drugs 2013; 32:287-94. [PMID: 23801301 DOI: 10.1007/s10637-013-9989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND This phase I trial assessed safety, pharmacokinetics (PK), dose limiting toxicity (DLT), maximum tolerated dose and recommended dose (RD) of the combination of sorafenib plus ifosfamide in patients with advanced sarcoma. METHODS Twelve sarcoma patients (9 soft-tissue, 3 bone sarcoma) were treated with sorafenib plus ifosfamide (starting doses 200 mg bid and 6 g/m(2) respectively). A 3 + 3 dose escalation design with cohorts of 3-6 patients was used. A study to assess the in vitro efficacy of the combination was also conducted. RESULTS Three DLTs were observed: fatigue grade 4 with sorafenib 400 mg bid plus ifosfamide 6 g/m(2) and encephalopathy and emesis grade 3 with sorafenib 400 mg bid plus ifosfamide 7.5 g/m(2). Other toxicities included diarrhea, hand-foot syndrome, mucositis, neutropenia, skin rash and thrombocytopenia. There were no relevant effects on PK of sorafenib but an increase in ifosfamide active metabolite 4-hydroxy-ifosfamide was observed. Eight patients achieved stable disease lasting more than 12 weeks. An additive effect was observed in vitro. CONCLUSIONS RD was sorafenib 400 mg bid plus ifosfamide 6 g/m(2), allowing administration of active doses of both agents. Limited preliminary antitumor activity was also observed. A phase II study is currently ongoing.
Collapse
|
18
|
Le Jeune S, Des Guetz G, Bihan H, Cohen R, Coindre JM, Mourad JJ. Refractory hypoglycemia controlled by sorafenib in solitary fibrous tumor. J Clin Oncol 2013; 31:e118-21. [PMID: 23341512 DOI: 10.1200/jco.2011.40.7999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sylvain Le Jeune
- Service de Médecine Interne, Avicenne University Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France.
| | | | | | | | | | | |
Collapse
|
19
|
Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Östman A, Eriksson U. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res 2013; 73:2139-49. [PMID: 23338608 DOI: 10.1158/0008-5472.can-12-1646] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFR) α and β have been suggested as potential targets for treatment of rhabdomyosarcoma, the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes, with PDGF-D as the solely overexpressed PDGFRβ ligand. By immunohistochemistry, PDGF-CC, PDGF-DD, and PDGFRα were found in tumor cells, whereas PDGFRβ was primarily detected in vascular stroma. These results are concordant with the biologic processes and pathways identified by data mining. While PDGF-CC/PDGFRα signaling associated with genes involved in the reactivation of developmental programs, PDGF-DD/PDGFRβ signaling related to wound healing and leukocyte differentiation. Clinicopathologic correlations further identified associations between PDGFRβ in vascular stroma and the alveolar subtype and with presence of metastases. Functional validation of our findings was carried out in molecularly distinct model systems, where therapeutic targeting reduced tumor burden in a PDGFR-dependent manner with effects on cell proliferation, vessel density, and macrophage infiltration. The PDGFR-selective inhibitor CP-673,451 regulated cell proliferation through mechanisms involving reduced phosphorylation of GSK-3α and GSK-3β. Additional tissue culture studies showed a PDGFR-dependent regulation of rhabdosphere formation/cancer cell stemness, differentiation, senescence, and apoptosis. In summary, the study shows a clinically relevant distinction in PDGF signaling in human rhabdomyosarcoma and also suggests continued exploration of the influence of stromal PDGFRs on sarcoma progression.
Collapse
Affiliation(s)
- Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vincenzi B, Silletta M, Schiavon G, Frezza AM, Del Vescovo R, Zobel BB, Santini D, Dei Tos AP, Tonini G. Sorafenib and dacarbazine in soft tissue sarcoma: a single institution experience. Expert Opin Investig Drugs 2012; 22:1-7. [DOI: 10.1517/13543784.2013.742886] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Martín Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012; 2012:626094. [PMID: 22701332 PMCID: PMC3372278 DOI: 10.1155/2012/626094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.
Collapse
Affiliation(s)
- Juan Martín Liberal
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Laura Lagares-Tena
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Xavier García del Muro
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Oscar M. Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|