1
|
Ibragimova MK, Tsyganov MM, Litviakov NV. Molecular-Genetic Portrait of Breast Cancer with Triple Negative Phenotype. Cancers (Basel) 2021; 13:cancers13215348. [PMID: 34771512 PMCID: PMC8582512 DOI: 10.3390/cancers13215348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Breast cancer is a genetically heterogeneous disease with different molecular biological and clinical characteristics. The available knowledge about the genetic heterogeneity of the most aggressive molecular subtype of breast cancer—triple-negative—has led to discoveries in drug treatment. Identification of the molecular-genetic phenotype of breast cancer is an important prognostic factor of the disease and allows personalization of the patient’s treatment. Abstract Understanding of the genetic mechanisms and identification of the biological markers of tumor progression that form the individual molecular phenotype of transformed cells can characterize the degree of tumor malignancy, the ability to metastasize, the hormonal sensitivity, and the effectiveness of chemotherapy, etc. Breast cancer (BC) is a genetically heterogeneous disease with different molecular biological and clinical characteristics. The available knowledge about the genetic heterogeneity of the most aggressive molecular subtype of breast cancer—triple-negative (TN)—has led to discoveries in drug treatment, including the use of DNA damaging agents (platinum and PARP inhibitors) for these tumors, as well as the use of immunotherapy. Most importantly, the ability to prescribe optimal drug treatment regimens for patients with TNBC based on knowledge of the molecular-genetic characteristics of this subtype of BC will allow the achievement of high rates of overall and disease-free survival. Thus, identification of the molecular-genetic phenotype of breast cancer is an important prognostic factor of the disease and allows personalization of the patient’s treatment.
Collapse
Affiliation(s)
- Marina K. Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
- National Research Tomsk State University, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey M. Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
| | - Nikolai V. Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634009 Tomsk, Russia; (M.M.T.); (N.V.L.)
| |
Collapse
|
2
|
Sencan S, Tanriover M, Ulasli M, Karakas D, Ozpolat B. UV radiation resistance-associated gene (UVRAG) promotes cell proliferation, migration, invasion by regulating cyclin-dependent kinases (CDK) and integrin-β/Src signaling in breast cancer cells. Mol Cell Biochem 2021; 476:2075-2084. [PMID: 33515382 DOI: 10.1007/s11010-021-04063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.
Collapse
Affiliation(s)
- Sevide Sencan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mine Tanriover
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Mustafa Ulasli
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Didem Karakas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Boussios S, Abson C, Moschetta M, Rassy E, Karathanasi A, Bhat T, Ghumman F, Sheriff M, Pavlidis N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R D 2020; 20:55-73. [PMID: 32215876 PMCID: PMC7221042 DOI: 10.1007/s40268-020-00301-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genetic complexity and DNA damage repair defects are common in different cancer types and can induce tumor-specific vulnerabilities. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality and have emerged as promising anticancer therapies, especially in tumors harboring deleterious germline or somatic breast cancer susceptibility gene (BRCA) mutations. However, the utility of PARP inhibitors could be expanded beyond germline BRCA1/2 mutated cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. US Food and Drug Administration (FDA)-approved PARP inhibitors include olaparib, rucaparib, and niraparib, while veliparib is in the late stage of clinical development. Talazoparib inhibits PARP catalytic activity, trapping PARP1/2 on damaged DNA, and it has been approved by the US FDA for the treatment of metastatic germline BRCA1/2 mutated breast cancers in October 2018. The talazoparib side effect profile more closely resembles traditional chemotherapeutics rather than other clinically approved PARP inhibitors. In this review, we discuss the scientific evidence that has emerged from both experimental and clinical studies in the development of talazoparib. Future directions will include optimizing combination therapy with chemotherapy, immunotherapies and targeted therapies, and in developing and validating biomarkers for patient selection and stratification, particularly in malignancies with ‘BRCAness’.
Collapse
Affiliation(s)
- Stergios Boussios
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK.
- AELIA Organization, 9th Km Thessaloniki - Thermi, 57001, Thessaloniki, Greece.
| | - Charlotte Abson
- Kent Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Hermitage Lane, Maidstone, Kent, ME16 9QQ, UK
| | - Michele Moschetta
- Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, Villejuif, France
- Department of Hematology-Oncology, Hotel Dieu de France University Hospital, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tahir Bhat
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Faisal Ghumman
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Matin Sheriff
- Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Nicholas Pavlidis
- Medical School, University of Ioannina, Stavros Niarchou Avenue, 45110, Ioannina, Greece
| |
Collapse
|
4
|
Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol 2020; 34:101564. [PMID: 32403079 PMCID: PMC7218030 DOI: 10.1016/j.redox.2020.101564] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is considered as a novel second-messenger molecule associated with the modulation of various physiological and pathological processes. In the field of antitumor research, endogenous H2S induces angiogenesis, accelerates the cell cycle and inhibits apoptosis, which results in promoting oncogenesis eventually. Interestingly, high concentrations of exogenous H2S liberated from donors suppress the growth of various tumors via inducing cellular acidification and modulating several signaling pathways involved in cell cycle regulation, proliferation, apoptosis and metastasis. The selective release of certain concentrations of H2S from H2S donors in the target has been considered as an alternative tumor therapy strategy. Triple-negative breast cancer (TNBC), an aggressive subtype with less than one year median survival time, is known to account for approximately 15–20% of all breast cancers. Due to the lack of approved targeted therapy, the clinical treatment of TNBC is still hindered by metastasis as well as recurrence. Significant efforts have been spent on developing novel treatments of TNBC, and remarkable progress in the control of TNBC by H2S donors and their derivatives have been made in recent years. This review summarizes various pathways involved in antitumor and anti-metastasis effects of H2S donors and their derivatives on TNBC, which provides novel insights for TNBC treatment.
Collapse
Affiliation(s)
- Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Gang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Building 75, Charlestown, MA, 02129, United States
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
5
|
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38:430. [PMID: 31661003 PMCID: PMC6819447 DOI: 10.1186/s13046-019-1443-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, 160012 India
| | - Rajaletchumy Veloo Kutty
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology,University Malaysia Pahang, Tun Razak Highway, 26300 Kuantan, Pahang Malaysia
- Center of Excellence for Advanced Research in Fluid Flow, University Malaysia Pahang, 26300, Kuantan, Pahang Malaysia
| |
Collapse
|
6
|
Systemic Treatment of HER2-Negative Metastatic Breast Cancer. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wöckel A, Festl J, Stüber T, Brust K, Stangl S, Heuschmann PU, Albert US, Budach W, Follmann M, Janni W, Kopp I, Kreienberg R, Kühn T, Langer T, Nothacker M, Scharl A, Schreer I, Link H, Engel J, Fehm T, Weis J, Welt A, Steckelberg A, Feyer P, König K, Hahne A, Kreipe HH, Knoefel WT, Denkinger M, Brucker S, Lüftner D, Kubisch C, Gerlach C, Lebeau A, Siedentopf F, Petersen C, Bartsch HH, Schulz-Wendtland R, Hahn M, Hanf V, Müller-Schimpfle M, Henscher U, Roncarati R, Katalinic A, Heitmann C, Honegger C, Paradies K, Bjelic-Radisic V, Degenhardt F, Wenz F, Rick O, Hölzel D, Zaiss M, Kemper G, Budach V, Denkert C, Gerber B, Tesch H, Hirsmüller S, Sinn HP, Dunst J, Münstedt K, Bick U, Fallenberg E, Tholen R, Hung R, Baumann F, Beckmann MW, Blohmer J, Fasching PA, Lux MP, Harbeck N, Hadji P, Hauner H, Heywang-Köbrunner S, Huober J, Hübner J, Jackisch C, Loibl S, Lück HJ, von Minckwitz G, Möbus V, Müller V, Nöthlings U, Schmidt M, Schmutzler R, Schneeweiss A, Schütz F, Stickeler E, Thomssen C, Untch M, Wesselmann S, Bücker A, Krockenberger M. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd 2018; 78:927-948. [PMID: 30369626 PMCID: PMC6202580 DOI: 10.1055/a-0646-4522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer. Methods The process of updating the S3 guideline dating from 2012 was based on the adaptation of identified source guidelines which were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and the results of a systematic search of literature databases and the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point to develop recommendations and statements which were modified and graded in a structured consensus procedure. Recommendations Part 1 of this short version of the guideline presents recommendations for the screening, diagnosis and follow-up care of breast cancer. The importance of mammography for screening is confirmed in this updated version of the guideline and forms the basis for all screening. In addition to the conventional methods used to diagnose breast cancer, computed tomography (CT) is recommended for staging in women with a higher risk of recurrence. The follow-up concept includes suggested intervals between physical, ultrasound and mammography examinations, additional high-tech diagnostic procedures, and the determination of tumor markers for the evaluation of metastatic disease.
Collapse
Affiliation(s)
- Achim Wöckel
- Universitätsfrauenklinik Würzburg, Universität Würzburg, Würzburg, Germany
| | - Jasmin Festl
- Universitätsfrauenklinik Würzburg, Universität Würzburg, Würzburg, Germany
| | - Tanja Stüber
- Universitätsfrauenklinik Würzburg, Universität Würzburg, Würzburg, Germany
| | - Katharina Brust
- Universitätsfrauenklinik Würzburg, Universität Würzburg, Würzburg, Germany
| | - Stephanie Stangl
- Institut für Klinische Epidemiologie und Biometrie (IKE-B), Universität Würzburg, Würzburg, Germany
| | - Peter U. Heuschmann
- Institut für Klinische Epidemiologie und Biometrie (IKE-B), Universität Würzburg, Würzburg, Germany
| | | | - Wilfried Budach
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | | | - Ina Kopp
- AWMF-Institut für Medizinisches Wissensmanagement, Marburg, Germany
| | | | - Thorsten Kühn
- Frauenklinik, Klinikum Esslingen, Esslingen, Germany
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Berlin, Germany
| | - Monika Nothacker
- AWMF-Institut für Medizinisches Wissensmanagement, Marburg, Germany
| | - Anton Scharl
- Frauenklinik, Klinikum St. Marien Amberg, Amberg, Germany
| | | | - Hartmut Link
- Praxis für Hämatologie und Onkologie, Kaiserslautern, Germany
| | - Jutta Engel
- Tumorregister München, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Tanja Fehm
- Universitätsfrauenklinik Düsseldorf, Düsseldorf, Germany
| | - Joachim Weis
- Stiftungsprofessur Selbsthilfeforschung, Tumorzentrum/CCC Freiburg, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Anja Welt
- Innere Klinik (Tumorforschung), Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Essen, Germany
| | | | - Petra Feyer
- Klinik für Strahlentherapie und Radioonkologie, Vivantes Klinikum, Neukölln Berlin, Germany
| | - Klaus König
- Berufsverband der Frauenärzte, Steinbach, Germany
| | | | - Hans H. Kreipe
- Institut für Pathologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfram Trudo Knoefel
- Klinik für Allgemein-, Viszeral- und Kinderchirurgie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Michael Denkinger
- AGAPLESION Bethesda Klinik, Geriatrie der Universität Ulm, Ulm, Germany
| | - Sara Brucker
- Universitätsfrauenklinik Tübingen, Tübingen, Germany
| | - Diana Lüftner
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Campus Benjamin Franklin, Universitätsklinikum Charité, Berlin, Germany
| | - Christian Kubisch
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Gerlach
- III. Medizinische Klinik und Poliklinik, uct, Interdisziplinäre Abteilung für Palliativmedizin, Universitätsmedizin der Johannes Gutenberg Universität, Mainz, Germany
| | - Annette Lebeau
- Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Cordula Petersen
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Markus Hahn
- Universitätsfrauenklinik Tübingen, Tübingen, Germany
| | - Volker Hanf
- Frauenklinik Nathanstift, Klinikum Fürth, Fürth, Germany
| | | | | | - Renza Roncarati
- Frauenselbsthilfe nach Krebs – Bundesverband e. V., Bonn, Germany
| | - Alexander Katalinic
- Institut für Sozialmedizin und Epidemiologie, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Christoph Heitmann
- Ästhetisch plastische und rekonstruktive Chirurgie, Camparihaus München, München, Germany
| | | | - Kerstin Paradies
- Konferenz Onkologischer Kranken- und Kinderkrankenpflege, Hamburg, Germany
| | - Vesna Bjelic-Radisic
- Universitätsfrauenklinik, Abteilung für Gynäkologie, Medizinische Universität Graz, Graz, Austria
| | - Friedrich Degenhardt
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| | - Frederik Wenz
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Oliver Rick
- Klinik Reinhardshöhe Bad Wildungen, Bad Wildungen, Germany
| | - Dieter Hölzel
- Tumorregister München, Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Matthias Zaiss
- Praxis für interdisziplinäre Onkologie & Hämatologie, Freiburg, Germany
| | | | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Denkert
- Institut für Pathologie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Gerber
- Universitätsfrauenklinik am Klinikum Südstadt, Rostock, Germany
| | - Hans Tesch
- Centrum für Hämatologie und Onkologie Bethanien, Frankfurt, Germany
| | | | - Hans-Peter Sinn
- Pathologisches Institut, Universität Heidelberg, Heidelberg, Germany
| | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Karsten Münstedt
- Frauenklinik Offenburg, Ortenau Klinikum Offenburg-Gengenbach, Offenburg, Germany
| | - Ulrich Bick
- Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Fallenberg
- Klinik für Radiologie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Reina Tholen
- Deutscher Verband für Physiotherapie, Referat Bildung und Wissenschaft, Köln, Germany
| | - Roswita Hung
- Frauenselbsthilfe nach Krebs, Wolfsburg, Germany
| | - Freerk Baumann
- Centrum für Integrierte Onkologie Köln, Uniklinik Köln, Köln, Germany
| | - Matthias W. Beckmann
- Frauenklinik, Universitätsklinikum Erlangen, CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Blohmer
- Klinik für Gynäkologie incl. Brustzentrum, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Peter A. Fasching
- Frauenklinik, Universitätsklinikum Erlangen, CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael P. Lux
- Frauenklinik, Universitätsklinikum Erlangen, CCC Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nadia Harbeck
- Brustzentrum, Frauenklinik, Universität München (LMU), München, Germany
| | - Peyman Hadji
- Klinik für Gynäkologie und Geburtshilfe, Krankenhaus Nordwest, Frankfurt, Germany
| | - Hans Hauner
- Lehrstuhl für Ernährungsmedizin, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | | | - Jutta Hübner
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Christian Jackisch
- Klinik für Gynäkologie und Geburtshilfe, Sana Klinikum Offenbach, Offenbach, Germany
| | | | | | | | - Volker Möbus
- Klinik für Gynäkologie und Geburtshilfe, Klinikum Frankfurt Höchst, Frankfurt, Germany
| | - Volkmar Müller
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Nöthlings
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Marcus Schmidt
- Klinik und Poliklinik für Geburtshilfe und Frauengesundheit, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Rita Schmutzler
- Zentrum Familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Köln, Germany
| | - Andreas Schneeweiss
- Nationales Centrum für Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Florian Schütz
- Nationales Centrum für Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Michael Untch
- Klinik für Geburtshilfe und Gynäkologie, Helios Klinikum Berlin-Buch, Berlin, Germany
| | | | - Arno Bücker
- Klinik für Diagnostische und Interventionelle Radiologie am UKS, Universität des Saarlandes, Homburg, Germany
| | | |
Collapse
|
8
|
Synthetically Lethal BMN 673 (Talazoparib) Loaded Solid Lipid Nanoparticles for BRCA1 Mutant Triple Negative Breast Cancer. Pharm Res 2018; 35:218. [DOI: 10.1007/s11095-018-2502-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/15/2018] [Indexed: 11/24/2022]
|
9
|
Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci Rep 2017; 7:17831. [PMID: 29259228 PMCID: PMC5736621 DOI: 10.1038/s41598-017-17897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/01/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary breast and ovarian cancer syndrome (HBOC) is partly due to the presence of mutations in the BRCA genes. Triple-negative (TN) breast cancer (BC) shares histological characteristics with germline BRCA1 mutation-associated tumours. We have investigated the metabolic profiles of human breast cancer (BC) cell lines carrying BRCA1 pathogenic mutations by non-targeted liquid chromatography coupled to mass spectrometry technology. Based on our in vitro results, we performed a targeted metabolomic analysis of plasma samples from TN HBOC patients taking into account their BRCA1 genotype. BRCA1 promoter hypermethylation and the BRCAness phenotype of BC cell lines were also studied. The purpose of this study was to determine the metabolic signature of HBOC syndrome and TNBC patients and to evaluate the potential contribution of the metabolites identified to the genetic diagnosis of breast cancer. The present results show the existence of a differential metabolic signature for BC cells based on the BRCA1 functionality. None of the studied BC cell lines presented hypermethylation of the BRCA1 promoter region. We provide evidence of the existence of free methylated nucleotides capable of distinguishing plasma samples from HBOC patients as BRCA1-mutated and BRCA1 non-mutated, suggesting that they might be considered as BRCA1-like biomarkers for TNBC and HBOC syndrome.
Collapse
|
10
|
Wathieu H, Issa NT, Fernandez AI, Mohandoss M, Tiek DM, Franke JL, Byers SW, Riggins RB, Dakshanamurthy S. Differential prioritization of therapies to subtypes of triple negative breast cancer using a systems medicine method. Oncotarget 2017; 8:92926-92942. [PMID: 29190967 PMCID: PMC5696233 DOI: 10.18632/oncotarget.21669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a group of cancers whose heterogeneity and shortage of effective drug therapies has prompted efforts to divide these cancers into molecular subtypes. Our computational platform, entitled GenEx-TNBC, applies concepts in systems biology and polypharmacology to prioritize thousands of approved and experimental drugs for therapeutic potential against each molecular subtype of TNBC. Using patient-based and cell line-based gene expression data, we constructed networks to describe the biological perturbation associated with each TNBC subtype at multiple levels of biological action. These networks were analyzed for statistical coincidence with drug action networks stemming from known drug-protein targets, while accounting for the direction of disease modulation for coinciding entities. GenEx-TNBC successfully designated drugs, and drug classes, that were previously shown to be broadly effective or subtype-specific against TNBC, as well as novel agents. We further performed biological validation of the platform by testing the relative sensitivities of three cell lines, representing three distinct TNBC subtypes, to several small molecules according to the degree of predicted biological coincidence with each subtype. GenEx-TNBC is the first computational platform to associate drugs to diseases based on inverse relationships with multi-scale disease mechanisms mapped from global gene expression of a disease. This method may be useful for directing current efforts in preclinical drug development surrounding TNBC, and may offer insights into the targetable mechanisms of each TNBC subtype.
Collapse
Affiliation(s)
- Henri Wathieu
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Naiem T. Issa
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Aileen I. Fernandez
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Manisha Mohandoss
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, 20057 USA
| | - Deanna M. Tiek
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Jennifer L. Franke
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, 20057 USA
| | - Rebecca B. Riggins
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Sivanesan Dakshanamurthy
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, 20057 USA
- Department of Biochemistry and Molecular Biology, Georgetown University, Washington, DC, 20057 USA
| |
Collapse
|
11
|
Gregório AC, Lacerda M, Figueiredo P, Simões S, Dias S, Moreira JN. Therapeutic Implications of the Molecular and Immune Landscape of Triple-Negative Breast Cancer. Pathol Oncol Res 2017; 24:701-716. [PMID: 28913723 DOI: 10.1007/s12253-017-0307-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
Treatment and management of breast cancer imposes a heavy burden on public health care, and incidence rates continue to increase. Breast cancer is the most common female neoplasia and primary cause of death among women worldwide. The recognition of breast cancer as a complex and heterogeneous disease, comprising different molecular entities, was a landmark in our understanding of this malignancy. Valuing the impact of the molecular characteristics on tumor behavior enabled a better assessment of a patient's prognosis and increased the predictive power to therapeutic response and clinical outcome. Molecular heterogeneity is also prominent in the triple-negative breast cancer subtype, and is reflected by the distinct prognostic and patient's sensitivity to treatment, being chemotherapy the only systemic treatment currently available. From a therapeutic perspective, gene expression profiling of triple-negative tumors has notably contributed to the exploration of new druggable targets and brought to light the need to align these patients to the various therapies according to their triple-negative subtype. Additionally, the higher amount of tumor infiltrating lymphocytes, and the prevalence of an increased expression of PD-1 receptor and its ligand, PD-L1, in triple-negative tumors, created a new treatment opportunity with immune checkpoint inhibitors. This manuscript addresses the current knowledge on the molecular and immune profiles of breast cancer, and its impact on the development of targeted therapies, with a particular emphasis on the triple-negative subtype.
Collapse
Affiliation(s)
- Ana C Gregório
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Manuela Lacerda
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paulo Figueiredo
- IPOFG-EPE - Portuguese Institute of Oncology Francisco Gentil, Coimbra, Portugal
| | - Sérgio Simões
- FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal
| | - Sérgio Dias
- IMM - Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Caruso D, Papa A, Tomao S, Vici P, Panici PB, Tomao F. Niraparib in ovarian cancer: results to date and clinical potential. Ther Adv Med Oncol 2017; 9:579-588. [PMID: 29081841 PMCID: PMC5564880 DOI: 10.1177/1758834017718775] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is the first cause of death from gynaecological malignancy. Germline mutation in BRCA1 and 2, two genes involved in the mechanisms of reparation of DNA damage, are showed to be related with the incidence of breast and ovarian cancer, both sporadic and familiar. PARP is a family of enzymes involved in the base excision repair (BER) system. The introduction of inhibitors of PARP in patients with BRCA-mutated ovarian cancer is correlated with the concept of synthetic lethality. Among the PARP inhibitors introduced in clinical practice, niraparib showed interesting results in a phase III trial in the setting of maintenance treatment in ovarian cancer, after platinum-based chemotherapy. Interestingly, was niraparib showed to be efficacious not only in BRCA-mutated patients, but also in patients with other alterations of the homologous recombination (HR) system and in patients with unknown alterations. These results position niraparib as the first PARP-inhibitor with clinically and statistically significant results also in patients with no alterations in BRCA 1/2 and other genes involved in the DNA repair system. Even if the results are potentially practice-changing, the action of niraparib must be further studied and deepened.
Collapse
Affiliation(s)
- Davide Caruso
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome 'Sapienza', Latina, Italy
| | - Anselmo Papa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome 'Sapienza', Corso della Repubblica 79, 04100, Latina, Italy
| | - Silverio Tomao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome 'Sapienza', Latina, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, 'Regina Elena' National Cancer Institute, Rome, Italy
| | | | - Federica Tomao
- Department of Gynaecology and Obstetrics, University of Rome 'Sapienza', Rome, Italy; Department of Gynecology, University of Heraklion, Heraklion, Greece
| |
Collapse
|
13
|
Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, Wu XY. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 2017; 38:835-847. [PMID: 28216624 PMCID: PMC5520182 DOI: 10.1038/aps.2016.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
Lung metastasis is the major cause of death in patients with triple negative breast
cancer (TNBC), an aggressive subtype of breast cancer with no effective therapy at
present. It has been proposed that dual-targeted therapy, ie, targeting
chemotherapeutic agents to both tumor vasculature and cancer cells, may offer some
advantages. The present work was aimed to develop a dual-targeted synergistic drug
combination nanomedicine for the treatment of lung metastases of TNBC. Thus,
Arg-Gly-Asp peptide (RGD)-conjugated, doxorubicin (DOX) and mitomycin C (MMC)
co-loaded polymer-lipid hybrid nanoparticles (RGD-DMPLN) were prepared and
characterized. The synergism between DOX and MMC and the effect of RGD-DMPLN on cell
morphology and cell viability were evaluated in human MDA-MB-231 cells in
vitro. The optimal RGD density on nanoparticles (NPs) was identified based on
the biodistribution and tumor accumulation of the NPs in a murine lung metastatic
model of MDA-MB-231 cells. The microscopic distribution of RGD-conjugated NPs in lung
metastases was examined using confocal microscopy. The anticancer efficacy of
RGD-DMPLN was investigated in the lung metastatic model. A synergistic ratio of DOX
and MMC was found in the MDA-MB-231 human TNBC cells. RGD-DMPLN induced morphological
changes and enhanced cytotoxicity in vitro. NPs with a median RGD density
showed the highest accumulation in lung metastases by targeting both tumor
vasculature and cancer cells. Compared to free drugs, RGD-DMPLN exhibited
significantly low toxicity to the host, liver and heart. Compared to non-targeted
DMPLN or free drugs, administration of RGD-DMPLN (10 mg/kg, iv) resulted in a
4.7-fold and 31-fold reduction in the burden of lung metastases measured by
bioluminescence imaging, a 2.4-fold and 4.0-fold reduction in the lung metastasis
area index, and a 35% and 57% longer median survival time, respectively.
Dual-targeted RGD-DMPLN, with optimal RGD density, significantly inhibited the
progression of lung metastasis and extended host survival.
Collapse
|
14
|
Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X. Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 2017; 8:1913-1924. [PMID: 27765921 PMCID: PMC5352107 DOI: 10.18632/oncotarget.12284] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/17/2016] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC), which accounts for 15-20% of all breast cancers, does not express estrogen receptor (ER) or progesterone receptor (PR) and lacks human epidermal growth factor receptor 2 (HER2) overexpression or amplification. These tumors have a more aggressive phenotype and a poorer prognosis due to the high propensity for metastatic progression and absence of specific targeted treatments. Patients with TNBC do not benefit from hormonal or trastuzumab-based targeted therapies because of the loss of target receptors. Although these patients respond to chemotherapeutic agents such as taxanes and anthracyclines better than other subtypes of breast cancer, prognosis remains poor. A group of targeted therapies under investigation showed favorable results in TNBC, especially in cancers with BRCA mutation. The lipid-lowering statins (3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitors), including lovastatin and simvastatin, have been shown to preferentially target TNBC compared with non-TNBC. These statins hold great promise for the management of TNBC. Only with the understanding of the molecular basis for the preference of statins for TNBC and more investigations in clinical trials can they be reformulated into a clinically approved drug against TNBC.
Collapse
Affiliation(s)
- Hui Yao
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Guangchun He
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Shichao Yan
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Chao Chen
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Liujiang Song
- Department of Pediatrics, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| |
Collapse
|
15
|
Predicting and Overcoming Chemotherapeutic Resistance in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:59-104. [PMID: 29282680 DOI: 10.1007/978-981-10-6020-5_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of breast cancer and its therapeutic approach has improved greatly due to the advancement of molecular biology in recent years. Clinically, breast cancers are characterized into three basic types based on their immunohistochemical properties. They are triple-negative breast cancer, estrogen receptor (ER) and progesterone receptor (PR)-positive-HR positive breast cancer, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Even though these subtypes have been characterized, assessment of a breast cancer's receptor status is still widely used to determine whether or not a targeted therapy could be applied. Moreover, drug resistance is common in all breast cancer types despite the different treatment modalities applied. The development of resistance to different therapeutics is not mutually exclusive. It seems that tumor could be resistant to multiple treatment strategies, such as being both chemoresistant and monoclonal antibody resistant. However, the underlying mechanisms are complicated and need further investigation. In this chapter, we aim to provide a brief review of the different types of breast cancer and their respective treatment strategies. We also review the possible mechanisms of potential drug resistance associated with each treatment type. We believe that a better understanding of the drug resistance mechanisms can lead to a more effective and efficient therapeutic success.
Collapse
|
16
|
Papa A, Caruso D, Strudel M, Tomao S, Tomao F. Update on Poly-ADP-ribose polymerase inhibition for ovarian cancer treatment. J Transl Med 2016; 14:267. [PMID: 27634150 PMCID: PMC5024442 DOI: 10.1186/s12967-016-1027-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite standard treatment for epithelial ovarian cancer (EOC), that involves cytoreductive surgery followed by platinum-based chemotherapy, and initial high response rates to these, up to 80 % of patients experience relapses with a median progression-free survival of 12-18 months. There remains an urgent need for novel targeted therapies to improve clinical outcomes in ovarian cancer. Of the many targeted therapies currently under evaluation, the most promising strategies developed thus far are antiangiogenic agents and Poly(ADP-ribose) polymerase (PARP) inhibitors. Particularly, PARP inhibitors are active in cells that have impaired repair of DNA by the homologous recombination (HR) pathway. Cells with mutated breast related cancer antigens (BRCA) function have HR deficiency, which is also present in a significant proportion of non-BRCA-mutated ovarian cancer ("BRCAness" ovarian cancer). The prevalence of germline BRCA mutations in EOC has historically been estimated to be around 10-15 %. However, recent reports suggest that this may be a gross underestimate, especially in women with high-grade serous ovarian cancer (HGSOC). The emergence of the DNA repair pathway as a rational target in various cancers led to the development of the PARP inhibitors. The concept of tumor-selective synthetic lethality heralded the beginning of an eventful decade, culminating in the approval by regulatory authorities both in Europe as a maintenance therapy and in the United States treatment for advanced recurrent disease of the first oral PARP inhibitor, olaparib, for the treatment of BRCA-mutated ovarian cancer patients. Other PARP inhibitors are clearly effective in this disease and, within the next years, the results of ongoing randomized trials will clarify their respective roles. CONCLUSION This review will discuss the different PARP inhibitors in development and the potential use of this class of agents in the future. Moreover, combination strategies involving PARP inhibitors are likely to receive increasing attention. The utility of PARP inhibitors combined with cytotoxic chemotherapy is of doubtful value, because of enhanced toxicity of this combination; while, more promising strategies include the combination with antiangiogenic agents, or with inhibitors of the P13K/AKT pathway and new generation of immunotherapy.
Collapse
Affiliation(s)
- Anselmo Papa
- Oncology Unit, Department of Medico-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Latina, Italy
| | - Davide Caruso
- Oncology Unit, Department of Medico-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Latina, Italy
| | - Martina Strudel
- Oncology Unit, Department of Medico-Surgical Sciences and Biotechnologies, University of Rome “Sapienza”, Latina, Italy
| | - Silverio Tomao
- Oncology Unit, Department of Radiological Sciences, Oncology and Pathology, University of Rome “Sapienza”, Latina, Italy
| | - Federica Tomao
- Department of Gynaecology and Obstetrics, University of Rome “Sapienza”, Policlinico “Umberto I”, Rome, Italy
| |
Collapse
|
17
|
Gautam P, Karhinen L, Szwajda A, Jha SK, Yadav B, Aittokallio T, Wennerberg K. Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Mol Cancer 2016; 15:34. [PMID: 27165605 PMCID: PMC4862054 DOI: 10.1186/s12943-016-0517-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/30/2016] [Indexed: 01/23/2023] Open
Abstract
Background Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive type of cancer that lacks effective targeted therapy. Despite detailed molecular profiling, no targeted therapy has been established. Hence, with the aim of gaining deeper understanding of the functional differences of TNBC subtypes and how that may relate to potential novel therapeutic strategies, we studied comprehensive anticancer-agent responses among a panel of TNBC cell lines. Method The responses of 301 approved and investigational oncology compounds were measured in 16 TNBC cell lines applying a functional profiling approach. To go beyond the standard drug viability effect profiling, which has been used in most chemosensitivity studies, we utilized a multiplexed readout for both cell viability and cytotoxicity, allowing us to differentiate between cytostatic and cytotoxic responses. Results Our approach revealed that most single-agent anti-cancer compounds that showed activity for the viability readout had no or little cytotoxic effects. Major compound classes that exhibited this type of response included anti-mitotics, mTOR, CDK, and metabolic inhibitors, as well as many agents selectively inhibiting oncogene-activated pathways. However, within the broad viability-acting classes of compounds, there were often subsets of cell lines that responded by cell death, suggesting that these cells are particularly vulnerable to the tested substance. In those cases we could identify differential levels of protein markers associated with cytotoxic responses. For example, PAI-1, MAPK phosphatase and Notch-3 levels associated with cytotoxic responses to mitotic and proteasome inhibitors, suggesting that these might serve as markers of response also in clinical settings. Furthermore, the cytotoxicity readout highlighted selective synergistic and synthetic lethal drug combinations that were missed by the cell viability readouts. For instance, the MEK inhibitor trametinib synergized with PARP inhibitors. Similarly, combination of two non-cytotoxic compounds, the rapamycin analog everolimus and an ATP-competitive mTOR inhibitor dactolisib, showed synthetic lethality in several mTOR-addicted cell lines. Conclusions Taken together, by studying the combination of cytotoxic and cytostatic drug responses, we identified a deeper spectrum of cellular responses both to single agents and combinations that may be highly relevant for identifying precision medicine approaches in TNBC as well as in other types of cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0517-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prson Gautam
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Leena Karhinen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Agnieszka Szwajda
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Edmonds CE, Makvandi M, Lieberman BP, Xu K, Zeng C, Li S, Hou C, Lee H, Greenberg RA, Mankoff DA, Mach RH. [(18)F]FluorThanatrace uptake as a marker of PARP1 expression and activity in breast cancer. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2016; 6:94-101. [PMID: 27069769 PMCID: PMC4749508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
The nuclear enzyme PARP1 plays a central role in sensing DNA damage and facilitating repair. Tumors with BRCA1/2 mutations are highly dependent on PARP1 as an alternative mechanism for DNA repair, and PARP inhibitors generate synthetic lethality in tumors with BRCA mutations, resulting in cell cycle arrest and apoptosis. Zhou et al. recently synthesized an (18)F-labeled PARP1 inhibitor ([(18)F]FluorThanatrace) for PET, and demonstrated high specific tracer uptake in a xenograft model of breast cancer [1]. In the current study, we characterize the level of baseline PARP expression and activity across multiple human breast cancer cell lines, including a BRCA1 mutant line. PARP expression and activity, as measured by levels of PAR and PARP1, is correlated with in vitro [(18)F]FluorThanatrace binding as well as tracer uptake on PET in a xenograft model of breast cancer. Radiotracer uptake in genetically-engineered mouse fibroblasts indicates [(18)F]FluorThanatrace is selective for PARP1 versus other PARP enzymes. This motivates further studies of [(18)F]FluorThanatrace as an in vivo measure of PARP1 expression and activity in patients who would benefit from PARP inhibitor therapy.
Collapse
Affiliation(s)
- Christine E Edmonds
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Brian P Lieberman
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Chenbo Zeng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Shihong Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Abstract
The nuclear enzyme poly (ADP-ribose) polymerase (PARP) represents an important novel target in the treatment of ovarian cancer. This article charts over 50 years of research from the discovery of the first PARP enzyme in 1963, to the approval and licensing in 2015 of the first PARP inhibitor, olaparib (Lynparza), in the treatment of BRCA-mutated ovarian cancer.
Collapse
Affiliation(s)
- Yvette Drew
- Northern Institute for Cancer
Research, Newcastle University, Newcastle upon Tyne,
UK
- Northern Centre for Cancer Care,
Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|