1
|
Révész C, Kaucsár T, Godó M, Bocskai K, Krenács T, Mócsai A, Szénási G, Hamar P. Neutrophils and NADPH Oxidases Are Major Contributors to Mild but Not Severe Ischemic Acute Kidney Injury in Mice. Int J Mol Sci 2024; 25:2948. [PMID: 38474193 DOI: 10.3390/ijms25052948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Upregulation of free radical-generating NADPH oxidases (NOX), xanthine oxidoreductase (XOR), and neutrophil infiltration-induced, NOX2-mediated respiratory burst contribute to renal ischemia-reperfusion injury (IRI), but their roles may depend on the severity of IRI. We investigated the role of NOX, XOR, and neutrophils in developing IRI of various severities. C57BL/6 and Mcl-1ΔMyelo neutrophil-deficient mice were used. Oxidases were silenced by RNA interference (RNAi) or pharmacologically inhibited. Kidney function, morphology, immunohistochemistry and mRNA expression were assessed. After reperfusion, the expression of NOX enzymes and XOR increased until 6 h and from 15 h, respectively, while neutrophil infiltration was prominent from 3 h. NOX4 and XOR silencing or pharmacological XOR inhibition did not protect the kidney from IRI. Attenuation of NOX enzyme-induced oxidative stress by apocynin and neutrophil deficiency improved kidney function and ameliorated morphological damage after mild but not moderate/severe IRI. The IR-induced postischemic renal functional impairment (BUN, Lcn-2), tubular necrosis score, inflammation (TNF-α, F4/80), and decreases in the antioxidant enzyme (GPx3) mRNA expression were attenuated by both apocynin and neutrophil deficiency. Inhibition of NOX enzyme-induced oxidative stress or the lack of infiltration by NOX2-expressing neutrophils can attenuate reperfusion injury after mild but not moderate/severe renal IR.
Collapse
Affiliation(s)
- Csaba Révész
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Mária Godó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztián Bocskai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
2
|
Guglielmo A, Pileri A, Toniutto P, Bardazzi F, Potena L, Russo A, Masetti M, Maria Piraccini B, Stinco G. Biologic treatment of psoriasis in solid organ transplant recipients. J Dtsch Dermatol Ges 2024; 22:283-287. [PMID: 38066381 DOI: 10.1111/ddg.15291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/28/2023] [Indexed: 12/20/2023]
Affiliation(s)
- Alba Guglielmo
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Alessandro Pileri
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Pierluigi Toniutto
- Internal Medicine, Department of Medical Area, University of Udine, Udine, Italy
| | - Federico Bardazzi
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Russo
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Masetti
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Stinco
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
3
|
Guglielmo A, Pileri A, Toniutto P, Bardazzi F, Potena L, Russo A, Masetti M, Piraccini BM, Stinco G. Biologikatherapie der Psoriasis in organtransplantierten Patienten: Biologic treatment of psoriasis in solid organ transplant recipients. J Dtsch Dermatol Ges 2024; 22:283-287. [PMID: 38361191 DOI: 10.1111/ddg.15291_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/28/2023] [Indexed: 02/17/2024]
Affiliation(s)
- Alba Guglielmo
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Alessandro Pileri
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Pierluigi Toniutto
- Internal Medicine, Department of Medical Area, University of Udine, Udine, Italy
| | - Federico Bardazzi
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Russo
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Masetti
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Bianca Maria Piraccini
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giuseppe Stinco
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
4
|
Bos S, Pradère P, Beeckmans H, Zajacova A, Vanaudenaerde BM, Fisher AJ, Vos R. Lymphocyte Depleting and Modulating Therapies for Chronic Lung Allograft Dysfunction. Pharmacol Rev 2023; 75:1200-1217. [PMID: 37295951 PMCID: PMC10595020 DOI: 10.1124/pharmrev.123.000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/27/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic lung rejection, also called chronic lung allograft dysfunction (CLAD), remains the major hurdle limiting long-term survival after lung transplantation, and limited therapeutic options are available to slow the progressive decline in lung function. Most interventions are only temporarily effective in stabilizing the loss of or modestly improving lung function, with disease progression resuming over time in the majority of patients. Therefore, identification of effective treatments that prevent the onset or halt progression of CLAD is urgently needed. As a key effector cell in its pathophysiology, lymphocytes have been considered a therapeutic target in CLAD. The aim of this review is to evaluate the use and efficacy of lymphocyte depleting and immunomodulating therapies in progressive CLAD beyond usual maintenance immunosuppressive strategies. Modalities used include anti-thymocyte globulin, alemtuzumab, methotrexate, cyclophosphamide, total lymphoid irradiation, and extracorporeal photopheresis, and to explore possible future strategies. When considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin and total lymphoid irradiation appear to offer the best treatment options currently available for progressive CLAD patients. SIGNIFICANCE STATEMENT: Effective treatments to prevent the onset and progression of chronic lung rejection after lung transplantation are still a major shortcoming. Based on existing data to date, considering both efficacy and risk of side effects, extracorporeal photopheresis, anti-thymocyte globulin, and total lymphoid irradiation are currently the most viable second-line treatment options. However, it is important to note that interpretation of most results is hampered by the lack of randomized controlled trials.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Pauline Pradère
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Hanne Beeckmans
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrea Zajacova
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Bart M Vanaudenaerde
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| | - Robin Vos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom (S.B., P.P., A.J.F.); Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom (S.B., A.J.F.); Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph and Paris Saclay University, Department of Respiratory Diseases, Paris, France (P.P.); Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium (H.B., B.M.V., R.V.); Prague Lung Transplant Program, University Hospital Motol, Department of Pneumology, Prague, Czech Republic (A.Z.); and University Hospitals Leuven, Department of Respiratory Diseases, Leuven, Belgium (R.V.)
| |
Collapse
|
5
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
6
|
Wang C, Du X, Fu F, Li X, Wang Z, Zhou Y, Gou L, Li W, Li J, Zhang J, Liao G, Li L, Han YP, Tong N, Liu J, Chen Y, Cheng J, Cao Q, Ilegems E, Lu Y, Zheng X, Berggren PO. Adiponectin gene therapy prevents islet loss after transplantation. J Cell Mol Med 2022; 26:4847-4858. [PMID: 35975481 PMCID: PMC9465193 DOI: 10.1111/jcmm.17515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Significant pancreatic islet dysfunction and loss shortly after transplantation to the liver limit the widespread implementation of this procedure in the clinic. Nonimmune factors such as reactive oxygen species and inflammation have been considered as the primary driving force for graft failure. The adipokine adiponectin plays potent roles against inflammation and oxidative stress. Previous studies have demonstrated that systemic administration of adiponectin significantly prevented islet loss and enhanced islet function at post‐transplantation period. In vitro studies indicate that adiponectin protects islets from hypoxia/reoxygenation injury, oxidative stress as well as TNF‐α‐induced injury. By applying adenovirus mediated transfection, we now engineered islet cells to express exogenous adiponectin gene prior to islet transplantation. Adenovirus‐mediated adiponectin transfer to a syngeneic suboptimal islet graft transplanted under kidney capsule markedly prevented inflammation, preserved islet graft mass and improved islet transplant outcomes. These results suggest that adenovirus‐mediated adiponectin gene therapy would be a beneficial clinical engineering approach for islet preservation in islet transplantation.
Collapse
Affiliation(s)
- Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China.,Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojiong Du
- Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- West China Hospital, Institutes for Systems Genetics, Sichuan University, Chengdu, China
| | - Xiaoyu Li
- West China Hospital, Institutes for Systems Genetics, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Cao
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China.,The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Quinn CS, Jorgenson MR, Descourouez JL, Muth BL, Astor BC, Mandelbrot DA. Management of Tumor Necrosis Factor α Inhibitor Therapy After Renal Transplantation: A Comparative Analysis and Associated Outcomes. Ann Pharmacother 2018; 53:268-275. [PMID: 30234366 DOI: 10.1177/1060028018802814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Biologic agents inhibiting the tumor necrosis factor α pathway (TNFα-Is) are used to treat systemic inflammatory diseases. The best management of these agents after renal transplantation is unknown. OBJECTIVE Evaluate peritransplant use of TNFα-Is and associated outcomes. METHODS Retrospective, single-center study of adult renal-transplant-recipients (RTRs) transplanted between 1/1/1998-12/31/2017, who received TNFα-Is for inflammatory disease prior to transplant. Qualifying patients were divided into 2 cohorts: patients who resumed TNFα-Is after transplant and those who did not. Outcomes were evaluated. RESULTS A total of 5256 renal transplants occurred in the study window; 14 patients met inclusion criteria. Primary indication for TNFα-I was Crohn's-disease (CD; 57.1%). Infliximab was utilized most frequently (50%). Seven RTRs resumed TNFα-I posttransplant; mean time to resumption of 10.6±4.35 months (median=6 months), 85.7% for CD. Immunosuppression was modified in 2 patients (28.6%) in response to restarting TNFα-I therapy. Seven RTRs did not resume TNFα-Is following transplant; the majority of these had rheumatic diseases. There was no significant difference in time to first bacterial or fungal infection, rejection, or patient survival between the 2 groups. Last measured estimated glomerular-filtration-rate was similar between groups (TNFα-I: 41 ± 14.2 vs 48.6 ± 8.6, P = 0.25). No patient had cytomegalovirus infection; however, 42.8% of each cohort had documented BK virus infection. Malignancy occurred more frequently in the cohort that resumed TNFα-Is (42.8% vs 14.3%, P = 0.24); however, this was not statistically significant. Conclusion and Relevance: TNFα-I therapy prior to renal-transplant is relatively uncommon. The decision to continue therapy after transplant must balance risks of infection and malignancy against inflammatory disease recurrence. A multidisciplinary treatment approach is necessary as use of TNFα-I affects immunosuppressive management and appears to affect transplant outcomes. Future studies are needed to further clarify the role of TNFα-I therapy use in RTRs with inflammatory disorders focusing on its correlation with both BK and malignancy.
Collapse
Affiliation(s)
| | | | | | - Brenda L Muth
- 2 University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Brad C Astor
- 2 University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Didier A Mandelbrot
- 2 University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
8
|
Lauro A, Oltean M, Marino IR. Chronic Rejection After Intestinal Transplant: Where Are We in Order to Avert It? Dig Dis Sci 2018; 63:551-562. [PMID: 29327261 DOI: 10.1007/s10620-018-4909-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Chronic rejection affects the long-term survival of all solid organ transplants and, among intestinal allografts, occurs in up to 10% of the recipients. The insidious clinical evolution of the chronic allograft enteropathy, the absence of noninvasive biomarkers, and the late endoscopic findings delay its diagnosis. No pharmacological approach has been proven effective, and allograft removal nowadays still represents the only available therapy. The inclusion of the liver in the visceral allograft appears to be the only intervention affecting the development of chronic rejection, as revealed by large-center studies and registry reports. A significant body of evidence emerged from the experimental setting and provided essential knowledge on the complex mechanisms behind the development of chronic allograft enteropathy. More recently, donor-specific antibodies have been suggested as an early, key element in the natural history of chronic allograft enteropathy and several novel approaches, tackling the antibody-mediated graft injury, have gained acceptance in clinical settings and are believed to impact on chronic rejection. The inclusion of a liver allograft is advocated when re-transplanting a sensitized recipient, due to its protective effect against humoral immunity. Multicenter trials are required to understand and tackle chronic rejection, and find the therapeutic answer to this clinical dilemma.
Collapse
Affiliation(s)
- Augusto Lauro
- Liver and Multiorgan Transplant Unit, St. Orsola University Hospital, Alma Mater Studiorum, Bologna, Italy.
| | - Mihai Oltean
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ignazio R Marino
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Jin YP, Valenzuela NM, Zhang X, Rozengurt E, Reed EF. HLA Class II-Triggered Signaling Cascades Cause Endothelial Cell Proliferation and Migration: Relevance to Antibody-Mediated Transplant Rejection. THE JOURNAL OF IMMUNOLOGY 2018; 200:2372-2390. [PMID: 29475988 DOI: 10.4049/jimmunol.1701259] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Transplant recipients developing donor-specific HLA class II (HLA-II) Abs are at higher risk for Ab-mediated rejection (AMR) and transplant vasculopathy. To understand how HLA-II Abs cause AMR and transplant vasculopathy, we determined the signaling events triggered in vascular endothelial cells (EC) following Ab ligation of HLA-II molecules. HLA-II expression in EC was induced by adenoviral vector expression of CIITA or by pretreatment with TNF-α/IFN-γ. Ab ligation of class II stimulated EC proliferation and migration. Class II Ab also induced activation of key signaling nodes Src, focal adhesion kinase, PI3K, and ERK that regulated downstream targets of the mammalian target of rapamycin (mTOR) pathway Akt, p70 ribosomal S6 kinase, and S6 ribosomal protein. Pharmacological inhibitors and small interfering RNA showed the protein kinases Src, focal adhesion kinase, PI3K/Akt, and MEK/ERK regulate class II Ab-stimulated cell proliferation and migration. Treatment with rapalogs for 2 h did not affect HLA-II Ab-induced phosphorylation of ERK; instead, mTOR complex (mTORC)1 targets were dependent on activation of ERK. Importantly, suppression of mTORC2 for 24 h with rapamycin or everolimus or treatment with mTOR active-site inhibitors enhanced HLA-II Ab-stimulated phosphorylation of ERK. Furthermore, knockdown of Rictor with small interfering RNA caused overactivation of ERK while abolishing phosphorylation of Akt Ser473 induced by class II Ab. These data are different from HLA class I Ab-induced activation of ERK, which is mTORC2-dependent. Our results identify a complex signaling network triggered by HLA-II Ab in EC and indicate that combined ERK and mTORC2 inhibitors may be required to achieve optimal efficacy in controlling HLA-II Ab-mediated AMR.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Xiaohai Zhang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
10
|
Buermann A, Petkov S, Petersen B, Hein R, Lucas-Hahn A, Baars W, Brinkmann A, Niemann H, Schwinzer R. Pigs expressing the human inhibitory ligand PD-L1 (CD 274) provide a new source of xenogeneic cells and tissues with low immunogenic properties. Xenotransplantation 2018; 25:e12387. [DOI: 10.1111/xen.12387] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/27/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Anna Buermann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Stoyan Petkov
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Rabea Hein
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Wiebke Baars
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Antje Brinkmann
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut; Mariensee Germany
| | - Reinhard Schwinzer
- Transplant Laboratory; Department of General-, Visceral-, and Transplantation Surgery; Hannover Medical School; Hannover Germany
| |
Collapse
|
11
|
INTRAVITREAL INFLIXIMAB IN REFRACTORY UVEITIS IN BEHCET'S DISEASE: A Safety and Efficacy Clinical Study. Retina 2017; 36:2399-2408. [PMID: 27870802 DOI: 10.1097/iae.0000000000001109] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the safety and efficacy of intravitreal infliximab (1 mg/0.05 mL) in patients with refractory posterior uveitis in Behcet's disease. METHODS Twenty patients were included in this study. Best corrected visual acuity (BCVA), vitreous haze (graded 0-4), vasculitis, retinitis, and papillopathy (presence or absence) were assessed at baseline, Day 1 and Week 2, 4, 6, 8, 12, and 18. Optical coherence tomography (OCT) central foveal thickness, fluorescein angiography, and flash electroretinogram were done at baseline and 4, 12, and 18 weeks. RESULTS Mean baseline logMAR BCVA was 0.94 (20/160), had improved significantly by Week 2 to 0.6 (20/80) (P < 0.0001), and reached 0.36 (20/40) by Weeks 18 with three injections (P < 0.0001). Mean central foveal thickness OCT decreased significantly from baseline 361 μm to 180 μm at the end of follow-up (P < 0.0001). Profound decrease in mean vitreous haze gradings from two to 0.2 by the end follow-up (P < 0.05). There was a significant reduction in the number of patients with vasculitis (15 at baseline to 1 weeks at 18 weeks), retinitis (nine at baseline to none at 4 weeks), and papillitis (two at baseline to none at 4 weeks) (P < 0.05). No significant electrophysiological changes or ocular adverse inflammatory reactions were observed during the study period. CONCLUSION Intravitreal infliximab appeared to be safe and effective in treating uveitis in Behcet's disease and should be considered as an alternative to systemic therapies.
Collapse
|
12
|
Augmenter of liver regeneration attenuates acute rejection after rat liver transplantation. Am J Surg 2016; 212:128-37. [DOI: 10.1016/j.amjsurg.2015.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/21/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022]
|
13
|
Hepatorenal protection in renal ischemia/reperfusion by celecoxib and pentoxifylline. J Surg Res 2016; 204:183-91. [DOI: 10.1016/j.jss.2016.04.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/29/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
|
14
|
Amoozadeh Y, Dan Q, Xiao J, Waheed F, Szászi K. Tumor necrosis factor-α induces a biphasic change in claudin-2 expression in tubular epithelial cells: role in barrier functions. Am J Physiol Cell Physiol 2015; 309:C38-50. [PMID: 25948735 DOI: 10.1152/ajpcell.00388.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/02/2015] [Indexed: 01/04/2023]
Abstract
The inflammatory cytokine tumor necrosis factor-α (TNF-α) is a pathogenic factor in acute and chronic kidney disease. TNF-α is known to alter expression of epithelial tight junction (TJ) proteins; however, the underlying mechanisms and the impact of this effect on epithelial functions remain poorly defined. Here we describe a novel biphasic effect of TNF-α on TJ protein expression. In LLC-PK1 tubular cells, short-term (1-6 h) TNF-α treatment selectively elevated the expression of the channel-forming TJ protein claudin-2. In contrast, prolonged (>8 h) TNF-α treatment caused a marked downregulation in claudin-2 and an increase in claudin-1, -4, and -7. The early increase and the late decrease in claudin-2 expression involved distinct mechanisms. TNF-α slowed claudin-2 degradation through ERK, causing the early increase. This increase was also mediated by the EGF receptor and RhoA and Rho kinase. In contrast, prolonged TNF-α treatment reduced claudin-2 mRNA levels and promoter activity independent from these signaling pathways. Electric Cell-substrate Impedance Sensing measurements revealed that TNF-α also exerted a biphasic effect on transepithelial resistance (TER) with an initial decrease and a late increase. Thus there was a good temporal correlation between TNF-α-induced claudin-2 protein and TER changes. Indeed, silencing experiments showed that the late TER increase was at least in part caused by reduced claudin-2 expression. Surprisingly, however, claudin-2 silencing did not prevent the early TER drop. Taken together, the TNF-α-induced changes in claudin-2 levels might contribute to TER changes and could also play a role in newly described functions of claudin-2 such as proliferation regulation.
Collapse
Affiliation(s)
- Yasaman Amoozadeh
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Jenny Xiao
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Faiza Waheed
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario, Canada
| |
Collapse
|
15
|
Tzeng YS, Wu SY, Peng YJ, Cheng CP, Tang SE, Huang KL, Chu SJ. Hypercapnic acidosis prolongs survival of skin allografts. J Surg Res 2014; 195:351-9. [PMID: 25577144 DOI: 10.1016/j.jss.2014.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 12/11/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Evidence reveals that hypercapnic acidosis (HCA) modulates immune responses. However, the effect of HCA on allogenic skin graft rejection is unknown. We examined whether HCA might improve skin graft survival in a mouse model of skin transplantation. METHODS A major histocompatibility-complex-incompatible BALB/c to C57BL/6 mouse skin transplantation model was used. Animals were divided into sham control, air, and HCA groups. Mice in the HCA group were exposed daily to 5% CO2 in air for 1 h. Skin grafts were harvested for histologic analyses. Nuclear factor (NF)-κB activation was determined in harvested draining lymph nodes. Spleen weights and serum levels of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 2 were serially assessed after skin transplantation. RESULTS Skin allografts survived significantly longer in the HCA group of mice than those in the air group. Allografted mice in the air group underwent a 2.1-fold increase in spleen weight compared with a 1.1-fold increase in the mice with HCA on day 3. There were increased inflammatory cell infiltration, folliculitis, focal dermal-epidermal separation, and areas of epidermal necrosis in the air group that were reduced with HCA treatment. In the HCA group, CD8(+) T cell infiltration at day 7 decreased significantly but not CD4(+) T cell infiltration. In addition, HCA significantly suppressed serum tumor necrosis factor-α on days 1 and 3 and chemokine (C-X-C motif) ligand 2 on days 1 and 10. Furthermore, the HCA group had remarkably suppressed NF-κB activity in draining lymph nodes. CONCLUSIONS HCA significantly prolonged the survival of incompatible skin allografts in mice by reducing proinflammatory cytokine production, immune cell infiltration, and NF-κB activation.
Collapse
Affiliation(s)
- Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Pi Cheng
- Department and Graduate institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Fayez AM, Awad AS, El-Naa MM, Kenawy SA, El-Sayed ME. Beneficial effects of thymoquinone and omega-3 on intestinal ischemia/reperfusion-induced renal dysfunction in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bfopcu.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Jeleń M, Pluta K, Zimecki M, Morak-Młodawska B, Artym J, Kocięba M. 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur J Med Chem 2014; 89:411-20. [PMID: 25462256 DOI: 10.1016/j.ejmech.2014.10.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines - a new type of tetracyclic azaphenothiazines-were obtained from of 6H-9-fluoroquinobenzothiazine by the introduction of appropriate substituents to the thiazine nitrogen atom (alkyl, aminoalkyl, amidoalkyl, sulfonamidoalkyl and nitrogen half-mustard groups). The compounds displayed differential cytotoxic as well as antiproliferative actions against human peripheral blood mononuclear cells (PBMC) stimulated with phytohemagglutinin A (PHA). In addition, they suppressed lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) production by whole blood human cell cultures. Two compounds (4 and 15, with the propargyl and methanesulfonamidopropyl groups) were selected for further experiments because of lack of cytotoxicity and strong antiproliferative actions. Compound 4 showed strong suppressive actions on growth of L1210, SW948, A-431 and CX-1 tumor cell lines which were close to those of cisplatin, the reference drug (e.g. GI50 of 2.28 μg/mL vs. 1.86 μg/mL for L1210 cells). Further, the compound appeared to be equally effective as cyclosporine A (CsA) in the inhibition of human two-way mixed lymphocyte reaction (MLR). The compound did not significantly inhibit interleukin 2 (IL-2)-induced growth of CTLL-2 cell line. In addition, inhibition of prostaglandin (PG) synthesis by indomethacin or block of PG receptors did not interfere with the inhibitory effect of the compound on PHA-induced cell proliferation. Therefore, it is likely that the compound acts by inhibiting cell cycle as proposed for other phenothiazines. Further studies are required for the elucidation of the mechanism of action and therapeutic utility of these compounds in more advanced in vivo models.
Collapse
Affiliation(s)
- Małgorzata Jeleń
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Krystian Pluta
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland.
| | - Michał Zimecki
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| | - Beata Morak-Młodawska
- The Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Organic Chemistry, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Jolanta Artym
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| | - Maja Kocięba
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Therapy, R. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
18
|
Cámara-Lemarroy CR, Guzmán-de la Garza FJ, Cordero-Pérez P, Alarcón-Galván G, Ibarra-Hernández JM, Muñoz-Espinosa LE, Fernández-Garza NE. Bupropion reduces the inflammatory response and intestinal injury due to ischemia-reperfusion. Transplant Proc 2014; 45:2502-5. [PMID: 23953570 DOI: 10.1016/j.transproceed.2013.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/07/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
Intestinal ischemia-reperfusion (I/R) causes severe organ failure and intense inflammatory responses, which are mediated in part by the cytokine tumor necrosis factor-alpha (TNF-alpha). Bupropion is an antidepressant known to inhibit TNF-alpha production. We sought to examine the protective effects of bupropion on intestinal I/R injury in 15 male Sprague-Dawley rats that were randomized to sham surgery, 45 minutes of intestinal ischemia followed by 180 minutes reperfusion, or bupropion (100 mg/kg) before the intestinal I/R injury. To evaluate the systemic inflammatory response induced by intestinal I/R, we measured serum levels of TNF-alpha, interleukins-1 and -6, lipid peroxidation, and transaminases. Histologic analysis evaluated intestinal injury using the Chiu muscosal injury score. After I/R, Chiu score in control animals was 3.6 ± 1.2 vs 2.6 ± 0.53 in animals that received bupropion (P < .05). Bupropion pretreatment reduced intestinal. I/R injury and blunted serum elevations of TNF-alpha (0.96 ± 1.1 ng/mL vs 0.09 ± 0.06 ng/mL, P < .05) and interleukin-1 (0.53 ± 0.24 ng/mL vs 0.2 ± 0.11 ng/mL, P < .05). Bupropion in reduced intestinal I/R injury through immunomodulatory machanisms that involve inflammatory cytokines such as TNF-alpha.
Collapse
Affiliation(s)
- C R Cámara-Lemarroy
- Departamento de Fisiología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | | | | | | | | | | | | |
Collapse
|
19
|
Tumor necrosis factor receptor 2: its contribution to acute cellular rejection and clear cell renal carcinoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:821310. [PMID: 24350291 PMCID: PMC3848079 DOI: 10.1155/2013/821310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 12/26/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is a type I transmembrane glycoprotein and one of the two receptors that orchestrate the complex biological functions of tumor necrosis factor (TNF, also designed TNF-α). Accumulating experimental evidence suggests that TNFR2 plays an important role in renal disorders associated with acute cellular rejection and clear cell renal carcinoma but its exact role in these settings is still not completely understood. This papers reviews the factors that may mediate TNFR2 induction in acute cellular rejection and clear cell renal carcinoma and its contribution to these conditions and discusses its therapeutic implications. A greater understanding of the function of TNFR2 may lead to the development of new anti-TNF drugs.
Collapse
|
20
|
GE MIAN, GAN XIAOLIANG, LIU DEZHAO, ZHANG WENHUA, GAO WANLING, HUANG PINJIE, HEI ZIQING. Time-course analysis of counts and degranulation of mast cells during early intestinal ischemia-reperfusion injury in mice. Mol Med Rep 2013; 8:401-6. [DOI: 10.3892/mmr.2013.1530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/04/2013] [Indexed: 11/05/2022] Open
|
21
|
Waheed F, Dan Q, Amoozadeh Y, Zhang Y, Tanimura S, Speight P, Kapus A, Szászi K. Central role of the exchange factor GEF-H1 in TNF-α-induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells. Mol Biol Cell 2013; 24:1068-82. [PMID: 23389627 PMCID: PMC3608494 DOI: 10.1091/mbc.e12-09-0661] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor-α activates the enzyme TACE/ADAM17 through the guanine nucleotide exchange factor GEF-H1, Rac, and p38, leading to activation of the epidermal growth factor. GEF-H1 mediates hierarchical activation of Rac and RhoA through differential phosphorylation. Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration.
Collapse
Affiliation(s)
- Faiza Waheed
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rogers NM, Yao M, Novelli EM, Thomson AW, Roberts DD, Isenberg JS. Activated CD47 regulates multiple vascular and stress responses: implications for acute kidney injury and its management. Am J Physiol Renal Physiol 2012; 303:F1117-25. [PMID: 22874763 PMCID: PMC3469673 DOI: 10.1152/ajprenal.00359.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/05/2012] [Indexed: 02/08/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) remains a significant source of early and delayed renal transplant failure. Therapeutic interventions have yet to resolve this ongoing clinical challenge although the reasons for this remain unclear. The cell surface receptor CD47 is widely expressed on vascular cells and in tissues. It has one known soluble ligand, the stress-released matricellular protein thrombospondin-1 (TSP1). The TSP1-CD47 ligand receptor axis controls a number of important cellular processes, inhibiting survival factors such as nitric oxide, cGMP, cAMP, and VEGF, while activating injurious pathways such as production of reactive oxygen species. A role of CD47 in renal IRI was recently revealed by the finding that the TSP1-CD47 axis is induced in renal tubular epithelial cells (RTEC) under hypoxia and following IRI. The absence of CD47 in knockout mice increases survival, mitigates RTEC damage, and prevents subsequent kidney failure. Conversely, therapeutic blockade of TSP1-CD47 signaling provides these same advantages to wild-type animals. Together, these findings suggest an important role for CD47 in renal IRI as a proximate promoter of injury and as a novel therapeutic target.
Collapse
Affiliation(s)
- Natasha M Rogers
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
23
|
Marqui CE, Silva HCA, Ferez D, Cavassani SS, Moraes JB, Silva DAMD, Simões RS, Lopes CA, Taha MO, Oliveira-Júnior IS. Pretreatment with pentoxifylline attenuates lung injury induced by intestinal ischemia/reperfusion in rats. Acta Cir Bras 2012; 26:438-44. [PMID: 22042105 DOI: 10.1590/s0102-86502011000600006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/15/2011] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To investigate the protective effect of pentoxifylline against the lung injury observed after intestinal ischemia (I) followed by a period of reperfusion (R). METHODS Twenty-eight male Wistar rats were equally divided into 4 experimental groups and operated under ketamine-xylazine anesthesia. (1) Sham: falsely-operated animals; (2) SS+IR: intestinal ischemia was accomplished by clipping the superior mesenteric artery during 60 minutes, with an administration of a standard volume of saline solution (SS) 5 min before the end of the ischemia period; the clip was then releases or a 120-min period of reperfusion; (3) I+PTX+R: ischemia as above, PTX was administered (25 mg/kg) and the gut reperfused as above; (4) PTX+I+PTX+R: Five minutes before arterial occlusion PTX was administered; the superior mesenteric artery was then clipped for 60 minutes. After 55-min ischemia, an additional dosis of PTX was administered; the clip was removed for reperfusion as above. At the 60th min of reperfusion a third dosis of PTX was administered. RESULTS PTX markedly attenuated lung injury as manifested by significant decreases (all P<0.001 as compared with the SS+IR group) of pulmonary wet/dry tissue weight ratio, total protein content, myeloperoxidase activity and tumor necrosis factor-alpha. Moreover, it was apparent that in the group PTX+I+PTX+R the improvements have been even more significant. CONCLUSION PTX exerted a protective effect on the lung from the injuries caused by intestinal ischemia/reperfusion.
Collapse
Affiliation(s)
- Carlos Eduardo Marqui
- Division of Anesthesiology, Pain and Intensive Therapy, UNIFESP, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Angaswamy N, Fukami N, Tiriveedhi V, Cianciolo GJ, Mohanakumar T. LMP-420, a small molecular inhibitor of TNF-α, prolongs islet allograft survival by induction of suppressor of cytokine signaling-1: synergistic effect with cyclosporin-A. Cell Transplant 2012; 21:1285-96. [PMID: 22469483 DOI: 10.3727/096368911x637371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inflammatory insults following islet transplantation (ITx) hinders engraftment and long-term function of the transplanted (Tx) islets. Using a murine model of ITx, we determined the role of LMP-420, a novel TNF-α inhibitor, both individually and in combination with the immunosuppressant cyclosporine A (CSA) in islet engraftment and survival. Diabetic C57BL/6 mice were Tx with 500 BALB/c islets under the kidney capsule. Four cohorts were used: LMP-420 only, CSA only, combination of LMP-420 and CSA (LMP+CSA), and control (n = 12 per cohort). Serial monitoring of blood glucose levels revealed that LMP+CSA (35 ± 5 days) prolonged stable blood insulin levels compared to control (6 ± 4 days). Immunohistology demonstrated that coadministration (LMP+CSA) results in a significant decrease in CD8(+) T-cell infiltration (LMP+CSA: 31 ± 18 vs. control: 224 ± 51 cells, p < 0.001). Serum cytokine analysis revealed that LMP-420 administration resulted in an increase in the anti-inflammatory cytokine IL-10 (2.5-fold), and a decrease in TNF-α (threefold) with no change in IL-2. However, coadministration resulted in a marked decrease in both IL-2 and TNF-α (threefold) along with increase in IL-10 (threefold). Coadministration also demonstrated increase of antiapoptotic SOCS-1 and Mn-SOD expression and significant reduction of donor-specific antibodies (p < 0.005). In conclusion, LMP-420 administration with CSA results in the upregulation of anti-inflammatory and antiapoptotic mechanisms which facilitate islet allograft engraftment and survival.
Collapse
Affiliation(s)
- Nataraju Angaswamy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
25
|
Pech T, Fujishiro J, Finger T, Ohsawa I, Praktiknjo M, von Websky M, Wehner S, Abu-Elmagd K, Kalff JC, Schaefer N. Perioperative infliximab application has marginal effects on ischemia-reperfusion injury in experimental small bowel transplantation in rats. Langenbecks Arch Surg 2011; 397:131-40. [PMID: 21960137 DOI: 10.1007/s00423-011-0853-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 09/14/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Ischemia-reperfusion injury leads to impaired smooth muscle function and inflammatory reactions after intestinal transplantation. In previous studies, infliximab has been shown to effectively protect allogenic intestinal grafts in the early phase after transplantation with resulting improved contractility. This study was designed to reveal protective effects of infliximab on ischemia-reperfusion injury in isogenic transplantation. METHODS Isogenic, orthotopic small bowel transplantation was performed in Lewis rats (3 h cold ischemia). Five groups were defined: non-transplanted animals with no treatment (group 1), isogenic transplanted animals with vehicle treatment (groups 2/3) or with infliximab treatment (5 mg/kg body weight intravenously, directly after reperfusion; groups 4/5). The treated animals were sacrificed after 3 (group 2/4) or 24 h (group 3/5). Histological and immunohistochemical analysis, TUNEL staining, real-time RT-PCR, and contractility measurements in a standard organ bath were used for determination of ischemia-reperfusion injury. RESULTS All transplanted animals showed reduced smooth muscle function, while no significant advantage of infliximab treatment was observed. Reduced infiltration of neutrophils was noted in the early phase in animals treated with infliximab. The structural integrity of the bowel and infiltration of ED1-positive monocytes and macrophages did not improve with infliximab treatment. At 3 h after reperfusion, mRNA expression of interleukin (IL)-6, TNF-α, IL-10, and iNOS and MCP-1 displayed increased activation in the infliximab group. CONCLUSION The protective effects of infliximab in the early phase after experimental small bowel transplantation seem to be unrelated to ischemia-reperfusion injury. The promising effects in allogenic transplantation indicate the need for further experiments with infliximab as complementary treatment under standard immunosuppressive therapy. Further experiments should focus on additional infliximab treatment in the setting of acute rejection.
Collapse
Affiliation(s)
- T Pech
- Department of Surgery, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cho B, Koo OJ, Hwang JI, Kim H, Lee EM, Hurh S, Park SJ, Ro H, Yang J, Surh CD, d'Apice AJ, Lee BC, Ahn C. Generation of Soluble Human Tumor Necrosis Factor-α Receptor 1-Fc Transgenic Pig. Transplantation 2011; 92:139-47. [DOI: 10.1097/tp.0b013e3182215e7e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Perry BC, Soltys D, Toledo AH, Toledo-Pereyra LH. Tumor Necrosis Factor-α in Liver Ischemia/Reperfusion Injury. J INVEST SURG 2011; 24:178-88. [DOI: 10.3109/08941939.2011.568594] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Patel R, Cafardi JM, Patel N, Sami N, Cafardi JA. Tumor necrosis factor biologics beyond psoriasis in dermatology. Expert Opin Biol Ther 2011; 11:1341-59. [PMID: 21651458 DOI: 10.1517/14712598.2011.590798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION TNF-α is a cytokine essential for immune response and its receptors has been shown to be dysregulated in a variety of diseases including psoriasis vulgaris. There are a number of TNF-α inhibitors approved for psoriasis, however there is a growing body of literature supporting their use in a wide variety of dermatological conditions. AREAS COVERED The use of biologic TNF-α antagonists in conditions for which they have not yet been approved by the FDA ('off-label' uses) and the literature that supports the most appropriate agents and conditions for use. A PubMed/MEDLINE search was performed with the keywords 'TNFα antagonist', 'biologic therapy', 'off-label' and 'unapproved'. The list of references and citing articles of the articles retrieved were also used as sources. This complete list was evaluated for inclusion, based on relevance to the proposed goal of this review. EXPERT OPINION There are a large number of conditions for which biologic antagonists of TNFα are effective, beyond those already approved by the FDA. The various agents vary in their efficacy in treatment, with infliximab consistently the most effective, particularly in granulomatous diseases. Although effectiveness varies among these conditions, biologic antagonists of TNF-α are promising for the treatment of these diseases.
Collapse
Affiliation(s)
- Raj Patel
- University of Alabama at Birmingham, Dermatology, 1530 Third Avenue South, EFH suite 414 Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
29
|
Towards cytoprotection in the peritransplant period. Semin Immunol 2011; 23:209-13. [DOI: 10.1016/j.smim.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/10/2011] [Indexed: 01/26/2023]
|
30
|
Kakiashvili E, Dan Q, Vandermeer M, Zhang Y, Waheed F, Pham M, Szászi K. The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 2011; 286:9268-79. [PMID: 21212278 PMCID: PMC3059019 DOI: 10.1074/jbc.m110.179903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/05/2011] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces cytoskeleton and intercellular junction remodeling in tubular epithelial cells; the underlying mechanisms, however, are incompletely explored. We have previously shown that ERK-mediated stimulation of the RhoA GDP/GTP exchange factor GEF-H1/Lfc is critical for TNF-α-induced RhoA stimulation. Here we investigated the upstream mechanisms of ERK/GEF-H1 activation. Surprisingly, TNF-α-induced ERK and RhoA stimulation in tubular cells were prevented by epidermal growth factor receptor (EGFR) inhibition or silencing. TNF-α also enhanced phosphorylation of the EGFR. EGF treatment mimicked the effects of TNF-α, as it elicited potent, ERK-dependent GEF-H1 and RhoA activation. Moreover, EGF-induced RhoA activation was prevented by GEF-H1 silencing, indicating that GEF-H1 is a key downstream effector of the EGFR. The TNF-α-elicited EGFR, ERK, and RhoA stimulation were mediated by the TNF-α convertase enzyme (TACE) that can release EGFR ligands. Further, EGFR transactivation also required the tyrosine kinase Src, as Src inhibition prevented TNF-α-induced activation of the EGFR/ERK/GEF-H1/RhoA pathway. Importantly, a bromodeoxyuridine (BrdU) incorporation assay and electric cell substrate impedance-sensing (ECIS) measurements revealed that TNF-α stimulated cell growth in an EGFR-dependent manner. In contrast, TNF-α-induced NFκB activation was not prevented by EGFR or Src inhibition, suggesting that TNF-α exerts both EGFR-dependent and -independent effects. In summary, in the present study we show that the TNF-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular cells is mediated through Src- and TACE-dependent EGFR activation. Such a mechanism could couple inflammatory and proliferative stimuli and, thus, may play a key role in the regulation of wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Eli Kakiashvili
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Qinghong Dan
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Matthew Vandermeer
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Yuqian Zhang
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Faiza Waheed
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Monica Pham
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Katalin Szászi
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
31
|
Pech T, Finger T, Fujishiro J, Praktiknjo M, Ohsawa I, Abu-Elmagd K, Limmer A, Hirner A, Kalff JC, Schaefer N. Perioperative infliximab application ameliorates acute rejection associated inflammation after intestinal transplantation. Am J Transplant 2010; 10:2431-41. [PMID: 20977634 DOI: 10.1111/j.1600-6143.2010.03279.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As we have shown in the past, acute rejection-related TNF-α upregulation in resident macrophages in the tunica muscularis after small bowel transplantation (SBTx) results in local amplification of inflammation, decisively contributing to graft dysmotility. Therefore, the aim of this study is to investigate the effectiveness of the chimeric-monoclonal-anti-TNF-α antibody infliximab as perioperative single shot treatment addressing inflammatory processes during acute rejection early after transplantation. Orthotopic, isogenic and allogenic SBTx was performed in rats (BN-Lewis/BN-BN) with infliximab treatment. Vehicle and IV-immunoglobulin-treated animals served as controls. Animals were sacrificed after 24 and 168 h. Leukocyte infiltration was investigated in muscularis whole mounts by immunohistochemistry, mediator mRNA expression by Real-Time-RT-PCR, apoptosis by TUNEL and smooth muscle contractility in a standard organ bath. Both, infliximab and Sandoglobulin® revealed antiinflammatory effects. Infliximab resulted in significantly less leukocyte infiltration compared to allogenic controls and IV-immunoglobulin, which was accompanied by lower gene expression of MCP-1 (24 h), IFN-γ (168 h) and infiltration of CD8-positive cells. Smooth muscle contractility improved significantly after 24 h compared to all controls in infliximab treated animals accompanied by lower iNOS expression. Perioperative treatment with infliximab is a possible pharmaceutical approach to overcome graft dysmotility early after SBTx.
Collapse
Affiliation(s)
- T Pech
- Department of Surgery, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany Division of Intestinal Transplantation, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheng SP, Lee JJ, Chi CW, Chang KM, Chen YJ. Platonin Improves Survival of Skin Allografts. J Surg Res 2010; 164:146-54. [DOI: 10.1016/j.jss.2009.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/24/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
|
33
|
Effects of thalidomide and pentoxyphylline over local and remote organ injury after intestinal ischemia/reperfusion. Transplant Proc 2010; 42:1624-6. [PMID: 20620488 DOI: 10.1016/j.transproceed.2009.12.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 12/28/2009] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We investigated the effects of thalidomide alone or in combination with pentoxyphylline upon intestinal ischemia/reperfusion (I/R) injury in the rat. MATERIALS AND METHODS Twenty male Wistar rats were randomized into 5 groups: sham-operated (SHAM), control (CTL), thalidomide (400 mg/kg) treatment (THAL), pentoxyphylline (50 mg/kg) treatment and a combination group (THAL + POX). I/R was induced by clamping the superior mesenteric artery for 45 minutes, followed by 120 minutes of reperfusion. We measured serum concentrations of aspartate-aminotransferase (AST), lactate dehydrogenase (LDH), tumor necrosis factor (TNF)-alpha as well as lipid peroxidation and antioxidant status. Intestinal samples were morphologically analyzed, and dry to wet (W/D) ratios calculated in intestinal, lung and liver samples, as a measurement of tissue edema. RESULTS Serum concentrations of AST, LDH, and TNF-alpha were increased after I/R in the CTL compared with the SHAM group (P < .05). Lipid peroxidation was also increased, and antioxidant capacity in serum, decreased (P < .05). The W/D ratio was elevated in all tissue samples as well (P < .05). Both thalidomide and pentoxyphylline effectively reduced AST, LDH, TNF-alpha, and lipid peroxidation levels, as well as attenuated tissue edema and intestinal injury induced by I/R (P < .05). Combination treatment showed only modest additive effects on lung W/D ratio and TNF-alpha levels. CONCLUSION Both drugs protected the intestine, lungs, and liver against intestinal I/R injury, probably by inhibition of TNF-alpha and lipid peroxidation. However, combination treatment showed small, additive effects.
Collapse
|
34
|
Zhang K, Hou R, Niu X, Zhang J, Yin G, Li X, Jia Y. Decreased colony formation of high proliferative potential colony-forming cells and granulocyte-macrophage colony-forming units and increased Hes-1 expression in bone marrow mononuclear cells from patients with psoriasis. Br J Dermatol 2010; 163:93-101. [PMID: 20377586 DOI: 10.1111/j.1365-2133.2010.09790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disease of the skin. The dysfunctional immunity experienced by patients with psoriasis is believed to influence the bone marrow haematopoietic cells and their surrounding microenvironment. Phagocytes derived from the bone marrow of patients with active psoriasis exhibit enhanced monocytopoietic activity and hyperplasia in vitro. However, direct evidence supporting the hypothesis that bone marrow is involved in the pathogenesis of psoriasis has yet to be established. OBJECTIVES To investigate the involvement of bone marrow in the pathogenesis of psoriasis. METHODS Bone marrow mononuclear cells (BMMNCs) were isolated from patients with psoriasis and healthy individuals. The high proliferative potential colony-forming cells (HPP-CFCs), granulocyte-macrophage colony-forming units (CFU-GM) and erythroid colony-forming units (CFU-E) were cultured in the presence of defined cytokines, and the effects of secreted factors from psoriatic peripheral blood mononuclear cells (PBMCs) on colony formation of normal haematopoietic cells were analysed. Furthermore, the telomere activity of psoriatic and normal BMMNCs was determined using the polymerase chain reaction (PCR)-based telomeric repeat amplification protocol, while the expression of human telomerase reverse transcriptase (hTERT) and HES1 mRNA was detected by reverse transcription-PCR assay. RESULTS The numbers of HPP-CFCs and CFU-GM, but not CFU-E, were significantly reduced in cultured haematopoietic cells from patients with psoriasis. The culture supernatant of PBMCs from patients with psoriasis was found to inhibit the colony formation capacity of HPP-CFCs, CFU-GM and CFU-E of normal haematopoietic cells. We also detected low levels of telomerase activity and hTERT gene expression in psoriatic and control BMMNCs that was statistically similar between the two groups. In contrast, the HES1 gene expression appeared to be significantly elevated in psoriatic BMMNCs (P < 0.05). CONCLUSIONS Together, our results indicate the involvement of bone marrow in the immunopathogenesis of psoriasis, and suggest a mechanism mediated by certain inflammatory or haematopoietic cytokines present in the bone marrow microenvironment. Elevated expression levels of HES1 mRNA suggest a potential role for the Notch signalling pathway in this process.
Collapse
Affiliation(s)
- K Zhang
- Institute of Dermatology, Taiyuan City Central Hospital, Affiliated with Shanxi Medical University, 1 Dong San Dao Xiang, Taiyuan 030009, Shanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Goldfarb-Rumyantzev AS, Naiman N. Genetic predictors of acute renal transplant rejection. Nephrol Dial Transplant 2010; 25:1039-47. [DOI: 10.1093/ndt/gfp782] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
36
|
Chhabra P, Wang K, Zeng Q, Jecmenica M, Langman L, Linden J, Ketchum RJ, Brayman KL. Adenosine A(2A) agonist administration improves islet transplant outcome: Evidence for the role of innate immunity in islet graft rejection. Cell Transplant 2010; 19:597-612. [PMID: 20350347 DOI: 10.3727/096368910x491806] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of adenosine A(2A) receptors inhibits inflammation in ischemia/reperfusion injury, and protects against cell damage at the injury site. Following transplantation 50% of islets die due to inflammation and apoptosis. This study investigated the effects of adenosine A(2A) receptor agonists (ATL146e and ATL313) on glucose-stimulated insulin secretion (GSIS) in vitro and transplanted murine syngeneic islet function in vivo. Compared to vehicle controls, ATL146e (100 nM) decreased insulin stimulation index [SI, (insulin)(high glucose)/(insulin)(low glucose)] (2.36 +/- 0.22 vs. 3.75 +/- 0.45; n = 9; p < 0.05). Coculture of islets with syngeneic leukocytes reduced SI (1.41 +/- 0.17; p < 0.05), and this was restored by ATL treatment (2.57 +/- 0.18; NS). Addition of a selective A(2A)AR antagonist abrogated ATL's protective effect, reducing SI (1.11 +/- 0.42). ATL treatment of A(2A)AR(+/+) islet/A(2A)AR(-/-) leukocyte cocultures failed to protect islet function (SI), implicating leukocytes as likely targets of A(2A)AR agonists. Diabetic recipient C57BL/6 mice (streptozotocin; 250 mg/kg, IP) received islet transplants to either the renal subcapsular or hepatic-intraportal site. Recipient mice receiving ATL therapy (ATL 146e or ATL313, 60 ng/kg/min, IP) achieved normoglycemia more rapidly than untreated recipients. Histological examination of grafts suggested reduced cellular necrosis, fibrosis, and lymphocyte infiltration in agonist-treated animals. Administration of adenosine A(2A) receptor agonists (ATL146e or ATL313) improves in vitro GSIS by an effect on leukocytes, and improves survival and functional engraftment of transplanted islets by inhibiting inflammatory islet damage in the peritransplant period, suggesting a potentially significant new strategy for reducing inflammatory islet loss in clinical transplantation.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, University of Virginia, Charlottesville, 22908-0709, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Wu JM, Lin TY, Wu CC, Chiu KM, Chang BF, Tseng SH, Chu SH. Tetrandrine ameliorated reperfusion injury of small bowel transplantation. J Pediatr Surg 2009; 44:2145-52. [PMID: 19944224 DOI: 10.1016/j.jpedsurg.2009.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE In small bowel transplantation, the bowel graft is susceptible to reperfusion injury. This study investigated the effects of tetrandrine, a bisbenzylisoquinoline alkaloid, on the development of intestinal reperfusion injury in small bowel transplantation in pigs. MATERIALS AND METHODS Pigs underwent small bowel transplantation and were treated with tetrandrine or a vehicle. Blood and small bowel specimens were harvested at 1, 3, and 24 hours after reperfusion. Histopathologic analysis of the small bowel was assessed for tissue damage. Serum levels of tumor necrosis factor-alpha, interleukin-1beta (IL-1beta), and IL-6 were measured by enzyme-linked immunosorbent assay. Reverse-transcriptase polymerase chain reaction analysis was performed to analyze the expression of proinflammatory cytokines, and immunohistochemical analysis was used to study the expression of intercellular adhesion molecule-1 (ICAM-1) in the small bowel. Myeloperoxidase staining detected neutrophil infiltration in the small bowel and the number of myeloperoxidase positively stained cells was counted. RESULTS Pigs receiving small bowel transplantation had elevated serum proinflammatory cytokine levels. The transplanted small bowel showed mucosal damage, increased expression of proinflammatory cytokines and ICAM-1, and prominent neutrophil infiltration. Tetrandrine administration reduced mucosal damage, serum and tissue proinflammatory cytokine levels, ICAM-1 expression, and neutrophil accumulation in the transplanted small bowel. CONCLUSIONS Tetrandrine reduced the reperfusion injury in porcine intestinal transplantation during the first 24 hours after the procedure.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, Taipei 220, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Guzmán-de la Garza FJ, Cámara-Lemarroy CR, Alarcón-Galván G, Cordero-Pérez P, Muñoz-Espinosa LE, Fernández-Garza NE. Different patterns of intestinal response to injury after arterial, venous or arteriovenous occlusion in rats. World J Gastroenterol 2009; 15:3901-7. [PMID: 19701970 PMCID: PMC2731252 DOI: 10.3748/wjg.15.3901] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differences in injury patterns caused by arterial, venous or arteriovenous mesenteric occlusion.
METHODS: Male Wistar rats were separated equally into four groups. Occlusion was performed by clamping the superior mesenteric artery (A), the mesenteric vein (V) or both (AV) for 30 min, followed by 60 min of reperfusion. A control group received sham surgery only. Intestinal sections were examined for histological damage and serum tumor necrosis factor-α (TNF-α), endothelin-1 (ET-1), P-selectin, antithrombin III (ATIII) and soluble intracellular adhesion molecule-1 (ICAM-1) concentrations were measured.
RESULTS: All groups showed significant mucosal injury compared to controls. Furthermore, mucosal injury was significantly more severe in the V and AV groups compared to the A group (3.6 ± 0.55, 3.4 ± 0.55 and 2 ± 0.71, respectively, P = 0.01). ICAM-1 was similarly elevated in all groups, with no significant differences between the groups. P-selectin levels were significantly elevated in the V and AV groups but not the A group (1.4 ± 0.5 ng/mL, 2.52 ± 0.9 ng/mL and 0.02 ± 0.01 ng/mL, respectively, P = 0.01) and ET-1 was significantly elevated in the A and V groups but not the AV group (0.32 ± 0.04 pg/mL, 0.36 ± 0.05 pg/mL and 0.29 ± 0.03 pg/mL, respectively, P = 0.01) compared to sham controls. ATIII levels were markedly depleted in the V and AV groups, but not in the A group (29.1 ± 5.2 pg/mL, 31.4 ± 21.8 pg/mL and 55.8 ± 35.6 pg/mL, respectively, P = 0.01), compared to controls. Serum TNF-α was significantly increased in all groups compared to sham controls (1.32 ± 0.87 ng/mL, 1.79 ± 0.20 ng/mL and 4.4 ± 0.69 ng/mL, for groups A, V and AV, respectively, P = 0.01), with higher values in the AV group.
CONCLUSION: Different patterns of response to ischemia/reperfusion are associated with venous, arterial or arteriovenous occlusion. Venous and arteriovenous occlusion was associated with the most severe alterations.
Collapse
|
39
|
Ernandez T, Mayadas TN. Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int 2009; 76:262-76. [PMID: 19436333 DOI: 10.1038/ki.2009.142] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, plays important inflammatory roles in renal diseases such as lupus nephritis, anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis and renal allograft rejection. However, TNFalpha also plays critical immunoregulatory roles that are required to maintain immune homeostasis. These complex biological functions of TNFalpha are orchestrated by its two receptors, TNFR1 and TNFR2. For example, TNFR2 promotes leukocyte infiltration and tissue injury in an animal model of immune complex-mediated glomerulonephritis. On the other hand, TNFR1 plays an immunoregulatory function in a murine lupus model with a deficiency in this receptor that leads to more severe autoimmune symptoms. In humans, proinflammatory and immunoregulatory roles for TNFalpha are strikingly illustrated in patients on anti-TNFalpha medications: These treatments are greatly beneficial in certain inflammatory diseases such as rheumatoid arthritis but, on the other hand, are also associated with the induction of autoimmune lupus-like syndromes and enhanced autoimmunity in multiple sclerosis patients. The indication for anti-TNFalpha treatments in renal inflammatory diseases is still under discussion. Ongoing clinical trials may help to clarify the potential benefit of such treatments in lupus nephritis and ANCA-associated glomerulonephritis. Overall, the complex biology of TNFalpha is not fully understood. A greater understanding of the function of its receptors may provide a framework to understand its contrasting proinflammatory and immunoregulatory functions. This may lead the development of new, more specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Thomas Ernandez
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
40
|
TLR ligand decreases mesenteric ischemia and reperfusion injury-induced gut damage through TNF-alpha signaling. Shock 2009; 30:563-70. [PMID: 18317407 DOI: 10.1097/shk.0b013e31816a3458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemic gut contributes to the development of sepsis and organ failure in critically ill patients. Toll-like receptors (TLRs) have been reported to mediate the pathophysiology of organ damage following ischemia/reperfusion (I/R) injury. We hypothesize that LPS, a ligand for TLR4, decreases mesenteric I/R injury-induced gut damage through tumor necrosis factor alpha (TNF-alpha) signaling. First, wild-type (WT) mice were fed with oral antibiotics for 4 weeks to deplete the intestinal commensal microflora. At week 3, drinking water was supplemented with LPS (10 microg/microL) to trigger TLRs. The intestinal mucosa was harvested for TLR4 protein, caspase 3 activity, and terminal deoxynucleotide transferase labeling assay. Second, WT and Tnfrsf1a mice received 30-min ischemia and 30-min reperfusion (30I-30R) or 30I-180R of the intestine; intestinal permeability and lipid peroxidation of the intestine were examined. Third, WT and Tnfrsf1a mice were fed with oral antibiotics with or without LPS and received 30I-180R of the intestine. The intestinal mucosa was harvested for lipid peroxidation; glutathione (GSH) level; nuclear factor kappaB (NF-kappaB) and AP-1 DNA-binding activity; Bcl-w, TNF-alpha, and CXCR2 mRNA expression; and HSP70 protein assay. Commensal depletion increased caspase 3 activity as well as villi apoptosis and decreased TLR4 expression of the intestinal mucosa. LPS increased TLR4 expression and decreased villi apoptosis. Commensal depletion augmented 30I-180R-induced intestine permeability as well as lipid peroxidation and decreased GSH level in WT mice but not in Tnfrsf1a mice. LPS decreased 30I-180R-induced intestinal permeability as well as lipid peroxidation and increased GSH level of the intestinal mucosa in WT mice but not in Tnfrsf1a mice. Commensal depletion with 30I-180R increased NF-kappaB and AP-1 DNA-binding activity, HSP70 protein expression, and decreased Bcl-w and TNF-alpha mRNA expression of the intestinal mucosa in WT mice but not in Tnfrsf1a mice. Collectively, commensal microflora induces TLR4 expression and decreases apoptosis of the intestinal mucosa. Commensal depletion enhances I/R-induced gut damage. LPS prevents I/R-induced intestinal permeability, lipid peroxidation, and decrease in GSH level. Given that the preventive effect of LPS on I/R-induced gut damage and NF-kappaB activity of the intestine is abolished in Tnfrsf1a mice, we conclude that TLR ligand decreases mesenteric I/R injury-induced gut damage through TNF-alpha signaling.
Collapse
|
41
|
Kakiashvili E, Speight P, Waheed F, Seth R, Lodyga M, Tanimura S, Kohno M, Rotstein OD, Kapus A, Szászi K. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability. J Biol Chem 2009; 284:11454-66. [PMID: 19261619 DOI: 10.1074/jbc.m805933200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-alpha), an inflammatory cytokine, has been shown to activate the small GTPase Rho, but the underlying signaling mechanisms remained undefined. This general problem is particularly important in the kidney, because TNF-alpha, a major mediator of kidney injury, is known to increase paracellular permeability in tubular epithelia. Here we aimed to determine the effect of TNF-alpha on the Rho pathway in tubular cells (LLC-PK(1) and Madin-Darby canine kidney), define the upstream signaling, and investigate the role of the Rho pathway in the TNF-alpha-induced alterations of paracellular permeability. We show that TNF-alpha induced a rapid and sustained RhoA activation that led to stress fiber formation and Rho kinase-dependent myosin light chain (MLC) phosphorylation. To identify new regulators connecting the TNF receptor to Rho signaling, we applied an affinity precipitation assay with a Rho mutant (RhoG17A), which captures activated GDP-GTP exchange factors (GEFs). Mass spectrometry analysis of the RhoG17A-precipitated proteins identified GEF-H1 as a TNF-alpha-activated Rho GEF. Consistent with a central role of GEF-H1, its down-regulation by small interfering RNA prevented the activation of the Rho pathway. Moreover GEF-H1 and Rho activation are downstream of ERK signaling as the MEK1/2 inhibitor PD98059 mitigated TNF-alpha-induced activation of these proteins. Importantly TNF-alpha enhanced the ERK pathway-dependent phosphorylation of Thr-678 of GEF-H1 that was key for activation. Finally the TNF-alpha-induced paracellular permeability increase was absent in LLC-PK(1) cells stably expressing a non-phosphorylatable, dominant negative MLC. In summary, we have identified the ERK/GEF-H1/Rho/Rho kinase/phospho-MLC pathway as the mechanism mediating TNF-alpha-induced elevation of tubular epithelial permeability, which in turn might contribute to kidney injury.
Collapse
Affiliation(s)
- Eli Kakiashvili
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital and Department of Surgery, University of Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bertoletto PR, Chaves JC, Fagundes ATN, Simões RS, Oshima CTF, Simões MDJ, Fagundes DJ. Effect of different periods of hyperbaric oxygen on ischemia-reperfusion injury of rat small bowel. Acta Cir Bras 2009; 23:11-5. [PMID: 18278387 DOI: 10.1590/s0102-86502008000100003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/12/2007] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To determine whether hyperbaric oxygen (HBO) could effectively protect the small intestine mucosa against an ischemic insult, according to different periods of application. METHODS The gut of 32 male rats was subjected to 60-min ischemia (clamping the mesenteric artery and vein); After they were further reperfused upon clamp opening during 60 min. Animal groups were as follows. GII = placed on HBO during the ischemia period; GIII = placed on HBO during reperfusion; GIV = treated with HBO throughout the ischemia-reperfusion period. Some animals (GI) did not receive HBO treatment at all and served as reference of ischemia-reperfusion injury (IR). HBO was carried out in a cylindrical acrylic chamber (2.0 ATA). Samples of small bowel were prepared for H.E staining for histological evaluations. RESULTS The histological injury of mucosa was significantly less when HBO was administered during the ischemia period (17.6 +/- 0.6) as compared with the IR (21.3 +/- 1.8). HBO was not effective when applied during reperfusion (23.1 +/- 2.1) or during the ischemia plus reperfusion period (18.7 +/- 1.9). The thickness of the mucosa was preserved by HBO in ischemia (327.50 +/- 30.23 microm) in comparison with the IR (172.79 +/- 5.95 microm). In the periods of reperfusion (162.50 +/- 6.05 microm) and ischemia plus reperfusion (296.49 +/- 20.01 microm) the mucosa revealed a structural injury. CONCLUSION Hyperbaric oxygen affects the ischemic insult of small bowel, being the favorable effect obtained when hyperbaric oxygen was administered early in the ischemic period.
Collapse
|
43
|
Intragraft TNF Receptor Signaling Contributes to Activation of Innate and Adaptive Immunity in a Renal Allograft Model. Transplantation 2009; 87:178-88. [DOI: 10.1097/tp.0b013e3181938971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Lo HA, Sun LN, Chen CF, Wang D, Zhang HP. Ischemia-Reperfusion of the Pancreas Induced Hyperresponsiveness of the Airways in Rats. Transplant Proc 2009; 41:63-6. [DOI: 10.1016/j.transproceed.2008.08.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/06/2008] [Indexed: 12/12/2022]
|
45
|
Thorvaldson L, Sandler S. Factors influencing the regulation of cytokine balance during islet transplantation in mice. Transpl Immunol 2009; 20:186-94. [DOI: 10.1016/j.trim.2008.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 01/06/2023]
|
46
|
Wollin M, Abele S, Bruns H, Weyand M, Kalden JR, Ensminger SM, Spriewald BM. Inhibition of TNF-alpha reduces transplant arteriosclerosis in a murine aortic transplant model. Transpl Int 2008; 22:342-9. [PMID: 19055619 DOI: 10.1111/j.1432-2277.2008.00802.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Experimental and clinical data provide evidence that TNF-alpha contributes to acute and chronic allograft rejection. In this study, we explored the effect of TNF-alpha blockade using the chimeric monoclonal antibody infliximab on the development of transplant arterisoclerosis in a fully mismatched aortic allograft model. Post-transplant treatment of CBA (H2(k)) recipients with 250 mug infliximab (cumulative dose 1.25 mg) reduced luminal occlusion of C57Bl/6 (H2(b)) aortic grafts on day 30 from 77 +/- 5% in untreated controls to 52 +/- 6%. Increasing the dose of anti-TNF-alpha antibody had no further beneficial effect. Treatment with human control immunoglobulin had no effect on intima proliferation. Under TNF-alpha blockade, ICAM-1 and PDGF mRNA expression within the grafts was strongly reduced, whereas iNOS expression was enhanced. The data show that TNF-alpha blockade using infliximab can reduce the development of transplant arteriosclerosis in fully mismatched murine aortic grafts.
Collapse
Affiliation(s)
- Martina Wollin
- Department for Internal Medicine 3 and Institute for Clinical Immunology, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Pevni D, Frolkis I, Schwartz D, Schwartz I, Chernichovski T, Kramer A, Ben-Gal Y, Uretzky G, Shapira I, Weinbroum A. New evidence for the role of TNF-alpha in liver ischaemic/reperfusion injury. Eur J Clin Invest 2008; 38:649-55. [PMID: 18837741 DOI: 10.1111/j.1365-2362.2008.01996.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tumour necrosis factor-alpha (TNF-alpha) plays a key role in causing ischaemia/reperfusion (I/R) injury. I/R also causes activation of xanthine oxidase and dehydrogenase (XDH + XO) system that, via generated free radicals, causes organ damage. We investigated the effect of ischaemia, reperfusion and non-ischaemic prolonged perfusion (NIP) on TNF-alpha and XDH + XO production in an isolated perfused rat liver model. MATERIALS AND METHODS Rat livers underwent 150 min NIP (control group) or two hours of ischaemia followed by reperfusion (I/R group). TNF-alpha (TNF-alpha mRNA and protein level), XDH + XO production and bile secretion were determined in tissue and effluent at baseline, at 120 min of ischaemia, after 30 min of reperfusion (I/R group) and after 120 and 150 min of prolonged perfusion (control). RESULTS Unexpectedly, neither ischaemia nor reperfusion had any effect on TNF-alpha production. TNF-alpha in effluent was 11 +/- 4.8 pg mL(-1) at baseline, 7 +/- 3.2 pg mL(-1) at the end of ischaemia, and 13 +/- 5.3 pg mL(-1) after 30 min of reperfusion. NIP, however, caused a significant increase of TNF-alpha synthesis and release. TNF-alpha effluent level after 120 and 150 min of perfusion was 392 +/- 78.7 pg mL(-1) and 408 +/- 64.3 pg mL(-1), respectively. TNF-alpha mRNA in tissue was also significantly elevated compared to baseline levels (1.31 +/- 0.2 P < 0.001 and 1.38 P < 0.002, respectively). Decrease of liver function (expressed by bile secretion) during I/R and NIP was accompanied by significant XDH + XO elevation. CONCLUSION This is the first evidence that NIP, and not I/R, is the decisive trigger for TNF-alpha production. This study leads to a better understanding of pathogenesis of liver I/R and perfusion damage.
Collapse
Affiliation(s)
- D Pevni
- Department of Cardiac Surgery, Tel-Aviv Sourasky Medical Centre, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen C, Chen H, Wang D, Li J, Fong Y. Restrictive Ventilatory Insufficiency and Lung Injury Induced by Ischemia/Reperfusion of the Pancreas in Rats. Transplant Proc 2008; 40:2185-7. [DOI: 10.1016/j.transproceed.2008.07.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Vielhauer V, Mayadas TN. Functions of TNF and its receptors in renal disease: distinct roles in inflammatory tissue injury and immune regulation. Semin Nephrol 2007; 27:286-308. [PMID: 17533007 DOI: 10.1016/j.semnephrol.2007.02.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor (TNF) alpha is a potent proinflammatory cytokine and important mediator of inflammatory tissue damage. In addition, it has important immune-regulatory functions. Many experimental studies and clinical observations support a role for TNF in the pathogenesis of acute and chronic renal disease. However, given its dual functions in inflammation and immune regulation, TNF may mediate both proinflammatory as well as immunosuppressive effects, particularly in chronic kidney diseases and systemic autoimmunity. Blockade of TNF in human rheumatoid arthritis or Crohn's disease led to the development of autoantibodies, lupus-like syndrome, and glomerulonephritis in some patients. These data raise concern about using TNF-blocking therapies in renal disease because the kidney may be especially vulnerable to the manifestation of autoimmune processes. Interestingly, recent experimental evidence suggests distinct roles for the 2 TNF receptors in mediating local inflammatory injury in the kidney and systemic immune-regulatory functions. In this review the biologic properties of TNF and its receptors, TNF receptors 1 and 2, relevant to kidney disease are summarized followed by a review of the available experimental and clinical data on the pathogenic role of the TNF system in nonimmune and immune renal diseases. Experimental evidence also is reviewed that supports a rationale for specifically blocking TNF receptor 2 versus anti-TNF therapies in some nephropathies, including immune complex-mediated glomerulonephritis.
Collapse
Affiliation(s)
- Volker Vielhauer
- Medizinische Poliklinik Innenstadt, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.
| | | |
Collapse
|
50
|
Ozaki CK, Jiang Z, Berceli SA. TNF-alpha and shear stress-induced large artery adaptations. J Surg Res 2007; 141:299-305. [PMID: 17574273 PMCID: PMC2032015 DOI: 10.1016/j.jss.2006.12.563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/18/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-alpha) up-regulation has been associated with both low and high shear-induced arterial remodeling. To address this apparent paradox and to define the biology of TNF-alpha signaling in large arteries, we tested the hypotheses that differential temporal expression of TNF-alpha drives shear-regulated arterial remodeling. MATERIALS AND METHODS Both low- and high-shear environments in the same rabbit were surgically created for common carotid arteries. Common carotid arteries (n = 60 total) were harvested after d0, d1, d3, d7, and d14 and analyses included morphology, TNF-alpha, and IL-10 mRNA quantitation. In separate experiments, animals received pegylated soluble TNF-alpha Type 1 receptor (PEG sTNF-RI) or vehicle via either short- or long-term dosing to define the effect of TNF-alpha blockade. RESULTS The model yielded a 14-fold shear differential (P < 0.001) with medial thickening under low shear (P = 0.025), and evidence of outward remodeling with high shear (P = 0.007). Low shear immediately up-regulated TNF-alpha expression approximately 50 fold (P < 0.001) at d1. Conversely, high shear-induced delayed and sustained TNF-alpha expression (22-fold at d7, P = 0.012; 23-fold at d14, P = 0.007). Both low and high shear gradually induced IL-10 expression (P = 0.002 and P = 0.004, respectively). Neither short-term (5-day) nor long-term (14-day) blockage of TNF-alpha signaling resulted in treatment-induced changes in the remodeling of low- or high-shear arteries. CONCLUSIONS Shear stress differentially and temporally regulates TNF-alpha expression in remodeling large arteries. However, TNF-alpha blockage did not substantially impact the final shear-induced morphology, suggesting that large arteries can remodel in response to flow perturbations independent of TNF-alpha signaling.
Collapse
Affiliation(s)
- C Keith Ozaki
- University of Florida College of Medicine and the Malcom Randall VAMC, Gainesville, Florida, USA.
| | | | | |
Collapse
|