1
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
2
|
André AS, Dias JNR, Aguiar S, Nogueira S, Bule P, Carvalho JI, António JPM, Cavaco M, Neves V, Oliveira S, Vicente G, Carrapiço B, Braz BS, Rütgen B, Gano L, Correia JDG, Castanho M, Goncalves J, Gois PMP, Gil S, Tavares L, Aires-da-Silva F. Rabbit derived VL single-domains as promising scaffolds to generate antibody-drug conjugates. Sci Rep 2023; 13:4837. [PMID: 36964198 PMCID: PMC10038998 DOI: 10.1038/s41598-023-31568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs. Most rabbit light chains have an extra disulfide bridge, that links the variable and constant domains, between Cys80 and Cys171, which is not found in the human or mouse. Thus, to develop a new generation of ADCs, we explored the potential of rabbit-derived VL-single-domain antibody scaffolds (sdAbs) to selectively conjugate a payload to Cys80. Hence, a rabbit sdAb library directed towards canine non-Hodgkin lymphoma (cNHL) was subjected to in vitro and in vivo phage display. This allowed the identification of several highly specific VL-sdAbs, including C5, which specifically target cNHL cells in vitro and present promising in vivo tumor uptake. C5 was selected for SN-38 site-selective payload conjugation through its exposed free Cys80 to generate a stable and homogenous C5-DAB-SN-38. C5-DAB-SN-38 exhibited potent cytotoxicity activity against cNHL cells while inhibiting DNA-TopoI activity. Overall, our strategy validates a platform to develop a novel class of ADCs that combines the benefits of rabbit VL-sdAb scaffolds and the canine lymphoma model as a powerful framework for clinically translation of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Ana S André
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Joana N R Dias
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Sandra Aguiar
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Joana Inês Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Cavaco
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Soraia Oliveira
- Technophage SA, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonçalo Vicente
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Belmira Carrapiço
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Berta São Braz
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Barbara Rütgen
- Department of Pathobiology, Clinical Pathology Unit, University of Veterinary Medicine, Vienna, Austria
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Miguel Castanho
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| |
Collapse
|
3
|
Yi M, Sun J, Sun H, Wang Y, Hou S, Jiang B, Xie Y, Ji R, Xue L, Ding X, Song X, Xu A, Huang C, Quan Q, Song J. Identification and characterization of an unexpected isomerization motif in CDRH2 that affects antibody activity. MAbs 2023; 15:2215364. [PMID: 37229604 DOI: 10.1080/19420862.2023.2215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Aspartic acid (Asp) isomerization is a spontaneous non-enzymatic post-translation modification causing a change in the structure of the protein backbone, which is commonly observed in therapeutic antibodies during manufacturing and storage. The Asps in Asp-Gly (DG), Asp-Ser (DS), and Asp-Thr (DT) motifs in the structurally flexible regions, such as complementarity-determining regions (CDRs) in antibodies, are often found to have high rate of isomerization, and they are considered "hot spots" in antibodies. In contrast, the Asp-His (DH) motif is usually considered a silent spot with low isomerization propensity. However, in monoclonal antibody mAb-a, the isomerization rate of an Asp residue, Asp55, in the aspartic acid-histidine-lysine (DHK) motif present in CDRH2 was found to be unexpectedly high. By determining the conformation of DHK motif in the crystal structure of mAb-a, we found that the Cgamma of the Asp side chain carbonyl group and the back bone amide nitrogen of successor His were in proximal contact, which facilitates the formation of succinimide intermediate, and the +2 Lys played an important role in stabilizing such conformation. The contributing roles of the His and Lys residues in DHK motif were also verified using a series of synthetic peptides. This study identified a novel Asp isomerization hot spot, DHK, and the structural-based molecular mechanism was revealed. When 20% Asp55 isomerization in this DHK motif occurred in mAb-a, antigen binding activity reduced to 54%, but the pharmacokinetics in rat was not affected significantly. Although Asp isomerization of DHK motif in CDR does not appear to have a negative impact on PK, DHK motifs in the CDRs of antibody therapeutics should be removed, considering the high propensity of isomerization and impact on antibody activity and stability.
Collapse
Affiliation(s)
- Meiqi Yi
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Jian Sun
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Yifei Wang
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Shan Hou
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Beibei Jiang
- Department of Pharmacology, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Yuanyuan Xie
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Ruyue Ji
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Liu Xue
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Xiao Ding
- Department of Translational Science, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Xiaomin Song
- Department of Pharmacology, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - April Xu
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Chichi Huang
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Quan Quan
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| | - Jing Song
- Department of Biologics, BeiGene (Beijing) Co. Ltd, Beijing, China
| |
Collapse
|
4
|
Advances in Antibody-Based Therapeutics for Cerebral Ischemia. Pharmaceutics 2022; 15:pharmaceutics15010145. [PMID: 36678774 PMCID: PMC9866586 DOI: 10.3390/pharmaceutics15010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral ischemia is an acute disorder characterized by an abrupt reduction in blood flow that results in immediate deprivation of both glucose and oxygen. The main types of cerebral ischemia are ischemic and hemorrhagic stroke. When a stroke occurs, several signaling pathways are activated, comprising necrosis, apoptosis, and autophagy as well as glial activation and white matter injury, which leads to neuronal cell death. Current treatments for strokes include challenging mechanical thrombectomy or tissue plasminogen activator, which increase the danger of cerebral bleeding, brain edema, and cerebral damage, limiting their usage in clinical settings. Monoclonal antibody therapy has proven to be effective and safe in the treatment of a variety of neurological disorders. In contrast, the evidence for stroke therapy is minimal. Recently, Clone MTS510 antibody targeting toll-like receptor-4 (TLR4) protein, ASC06-IgG1 antibody targeting acid sensing ion channel-1a (ASIC1a) protein, Anti-GluN1 antibodies targeting N-methyl-D-aspartate (NMDA) receptor associated calcium influx, GSK249320 antibody targeting myelin-associated glycoprotein (MAG), anti-High Mobility Group Box-1 antibody targeting high mobility group box-1 (HMGB1) are currently under clinical trials for cerebral ischemia treatment. In this article, we review the current antibody-based pharmaceuticals for neurological diseases, the use of antibody drugs in stroke, strategies to improve the efficacy of antibody therapeutics in cerebral ischemia, and the recent advancement of antibody drugs in clinical practice. Overall, we highlight the need of enhancing blood-brain barrier (BBB) penetration for the improvement of antibody-based therapeutics in the brain, which could greatly enhance the antibody medications for cerebral ischemia in clinical practice.
Collapse
|
5
|
André AS, Moutinho I, Dias JNR, Aires-da-Silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol 2022; 13:962124. [PMID: 36225354 PMCID: PMC9549074 DOI: 10.3389/fmicb.2022.962124] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of hybridoma technology, described by Kohler and Milstein in 1975, and the resulting ability to generate monoclonal antibodies (mAbs) initiated a new era in antibody research and clinical development. However, limitations of the hybridoma technology as a routine antibody generation method in conjunction with high immunogenicity responses have led to the development of alternative approaches for the streamlined identification of most effective antibodies. Within this context, display selection technologies such as phage display, ribosome display, yeast display, bacterial display, and mammalian cell surface display have been widely promoted over the past three decades as ideal alternatives to traditional hybridoma methods. The display of antibodies on phages is probably the most widespread and powerful of these methods and, since its invention in late 1980s, significant technological advancements in the design, construction, and selection of antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. With evolving novel disease targets and the emerging of a new generation of therapeutic antibodies, such as bispecific antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapies, it is clear that phage display is expected to continue to play a central role in antibody development. Nevertheless, for non-standard and more demanding cases aiming to generate best-in-class therapeutic antibodies against challenging targets and unmet medical needs, in vivo phage display selections by which phage libraries are directly injected into animals or humans for isolating and identifying the phages bound to specific tissues offer an advantage over conventional in vitro phage display screening procedures. Thus, in the present review, we will first summarize a general overview of the antibody therapeutic market, the different types of antibody fragments, and novel engineered variants that have already been explored. Then, we will discuss the state-of-the-art of in vivo phage display methodologies as a promising emerging selection strategy for improvement antibody targeting and drug delivery properties.
Collapse
Affiliation(s)
- Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Isa Moutinho
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
6
|
High-Purity Corundum as Support for Affinity Extractions from Complex Samples. SEPARATIONS 2022. [DOI: 10.3390/separations9090252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, EDS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids were used to introduce functional groups for further conjugations. The common crosslinker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter was oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower non-specific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). A binding capacity of 1.8 mg IgG per gram of corundum powder was achieved. The advantages of corundum include the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, convenient handling, and flexible application.
Collapse
|
7
|
Dias JNR, Almeida A, André AS, Aguiar SI, Bule P, Nogueira S, Oliveira SS, Carrapiço B, Gil S, Tavares L, Aires-da-Silva F. Characterization of the canine CD20 as a therapeutic target for comparative passive immunotherapy. Sci Rep 2022; 12:2678. [PMID: 35177658 PMCID: PMC8854400 DOI: 10.1038/s41598-022-06549-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Anti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies. However, research has been limited by the scarcity of preclinical models that recapitulate the complex interaction between the immune system and cancers. The addition of the canine lymphoma (cNHL) model in the development of anti-CD20 therapies may provide a clinically relevant approach for the translation of improved immunotherapies. Still, an anti-CD20 therapy for cNHL has not been established stressing the need of a comprehensive target characterization. Herein, we performed an in-depth characterization on canine CD20 mRNA transcript and protein expression in a cNHL biobank and demonstrated a canine CD20 overexpression in B-cell lymphoma samples. Moreover, CD20 gene sequencing analysis identified six amino acid differences in patient samples (C77Y, L147F, I159M, L198V, A201T and G273E). Finally, we reported the use of a novel strategy for the generation of anti-CD20 mAbs, with human and canine cross-reactivity, by exploring our rabbit derived single-domain antibody platform. Overall, these results support the rationale of using CD20 as a target for veterinary settings and the development of novel therapeutics and immunodiagnostics.
Collapse
Affiliation(s)
- Joana N R Dias
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - André Almeida
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Ana S André
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sandra I Aguiar
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Soraia S Oliveira
- Technophage SA, Avenida Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Belmira Carrapiço
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
| |
Collapse
|
8
|
Pérez de la Lastra JM, Baca-González V, González-Acosta S, Asensio-Calavia P, Otazo-Pérez A, Morales-delaNuez A. Antibodies targeting enzyme inhibition as potential tools for research and drug development. Biomol Concepts 2021; 12:215-232. [PMID: 35104929 DOI: 10.1515/bmc-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
Antibodies have transformed biomedical research and are now being used for different experimental applications. Generally, the interaction of enzymes with their specific antibodies can lead to a reduction in their enzymatic activity. The effect of the antibody is dependent on its narrow i.e. the regions of the enzyme to which it is directed. The mechanism of this inhibition is rarely a direct combination of the antibodies with the catalytic site, but is rather due to steric hindrance, barring the substrate access to the active site. In several systems, however, the interaction with the antibody induces conformational changes on the enzyme that can either inhibit or enhance its catalytic activity. The extent of enzyme inhibition or enhancement is, therefore, a reflection of the nature and distribution of the various antigenic determinants on the enzyme molecule. Currently, the mode of action of many enzymes has been elucidated at the molecular level. We here review the molecular mechanisms and recent trends by which antibodies inhibit the catalytic activity of enzymes and provide examples of how specific antibodies can be useful for the neutralization of biologically active molecules.
Collapse
Affiliation(s)
- José Manuel Pérez de la Lastra
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Victoria Baca-González
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Sergio González-Acosta
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain.,Escuela Doctorado y Estudios de Posgrado. Universidad de La Laguna (ULL). C/ Pedro Zerolo, s/n. 38200. San Cristóbal de La Laguna. S/C de Tenerife, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of macromolecules. Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), San Cristóbal de la Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Roohvand F, Ehsani P, Abdollahpour-Alitappeh M, Shokri M, Kossari N. Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications. Expert Opin Ther Pat 2020; 30:609-631. [PMID: 32529867 DOI: 10.1080/13543776.2020.1781816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeast humanization, ranging from a simple point mutation to substitution of yeast gene(s) or even a complete pathway by human counterparts has enormously expanded yeast biomedical applications. AREAS COVERED General and patent-oriented insights into the application of native and humanized yeasts for production of human glycoproteins (gps) and antibodies (Abs), toxicity/mutagenicity assays, treatments of gastrointestinal (GI) disorders and potential drug delivery as a probiotic (with emphasis on Saccharomyces bulardii) and studies on human diseases/cancers and screening effective drugs. EXPERT OPINION Humanized yeasts cover the classical advantageous features of a 'microbial eukaryote' together with advanced human cellular processes. These unique characteristics would permit their use in the production of functional and stable therapeutic gps and Abs in lower prices compared to mammalian (CHO) production-based systems. Availability of yeasts humanized for cytochrome P450 s will expand their application in metabolism-related chemical toxicity assays. Engineered S. bulardii for expression of human proteins might expand its application by synergistically combining the probiotic activity with the treatment of metabolic diseases such as phenylketonuria via GI-delivery. Yeast models of human diseases will facilitate rapid functional/phenotypic characterization of the disease-producing mutant genes and screening of the therapeutic compounds using yeast-based high-throughput research techniques (Yeast one/two hybrid systems) and viability assays.
Collapse
Affiliation(s)
- Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran , Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran , Tehran, Iran
| | | | - Mehdi Shokri
- ; Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Niloufar Kossari
- ; Universite de Versailles, Service de ne 'phrologie-transplantation re'nale, Hopital Foch, 40 rue Worth, Suresnes , Paris, France
| |
Collapse
|
10
|
Harish P, Malerba A, Lu-Nguyen N, Forrest L, Cappellari O, Roth F, Trollet C, Popplewell L, Dickson G. Inhibition of myostatin improves muscle atrophy in oculopharyngeal muscular dystrophy (OPMD). J Cachexia Sarcopenia Muscle 2019; 10:1016-1026. [PMID: 31066242 PMCID: PMC6818462 DOI: 10.1002/jcsm.12438] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease affecting one per 80 000 of the general population characterized by profound dysphagia and ptosis, and limb weakness at later stages. Affected muscles are characterized by increased fibrosis and atrophy. Myostatin is a negative regulator of muscle mass, and inhibition of myostatin has been demonstrated to ameliorate symptoms in dystrophic muscles. METHODS In this study, we performed a systemic delivery of a monoclonal antibody to immunologically block myostatin in the A17 mouse model of OPMD. The mice were administered a weekly dose of 10 mg/kg RK35 intraperitonially for 10 weeks, following which histological analyses were performed on the samples. RESULTS This treatment significantly (P < 0.01) improved body mass (11%) and muscle mass (for the tibialis anterior and extensor digitorum longus by 19% and 41%) in the A17 mice treated with RK35 when compared to saline controls. Similarly, a significantly (P < 0.01) increased muscle strength (18% increase in maximal tetanic force) and myofibre diameter (17% and 44% for the tibialis anterior and extensor digitorum longus), and reduced expression of markers of muscle fibrosis (40% reduction in area of expression), was also observed. No change in the density of intranuclear inclusions (a hallmark of disease progression of OPMD) was however observed. CONCLUSIONS Our study supports the clinical translation of such antibody-mediated inhibition of myostatin as a treatment of OPMD. This strategy has implications to be used as adjuvant therapies with gene therapy based approaches, or to stabilize the muscle prior to myoblast transplantation.
Collapse
Affiliation(s)
- Pradeep Harish
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| | - Alberto Malerba
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| | - Ngoc Lu-Nguyen
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| | - Leysa Forrest
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| | | | - Fanny Roth
- Association Institut de Myologie, Centre de Recherche en Myologie UMRS974, Sorbonne Université, INSERM, Paris, France
| | - Capucine Trollet
- Association Institut de Myologie, Centre de Recherche en Myologie UMRS974, Sorbonne Université, INSERM, Paris, France
| | - Linda Popplewell
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| | - George Dickson
- Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway-University of London, Surrey, UK
| |
Collapse
|
11
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
12
|
Ministro J, Manuel AM, Goncalves J. Therapeutic Antibody Engineering and Selection Strategies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:55-86. [PMID: 31776591 DOI: 10.1007/10_2019_116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody drugs became an increasingly important element of the therapeutic landscape. Their accomplishment has been driven by many unique properties, in particular by their very high specificity and selectivity, in contrast to the off-target liabilities of small molecules (SMs). Antibodies can bring additional functionality to the table with their ability to interact with the immune system, and this can be further manipulated with advances in antibody engineering.The expansion of strategies related to discovery technologies of monoclonal antibodies (mAbs) (phage display, yeast display, ribosome display, bacterial display, mammalian cell surface display, mRNA display, DNA display, transgenic animal, and human B cell derived) opened perspectives for the screening and the selection of therapeutic antibodies for, theoretically, any target from any kind of organism. Moreover, antibody engineering technologies were developed and explored to obtain chosen characteristics of selected leading candidates such as high affinity, low immunogenicity, improved functionality, improved protein production, improved stability, and others. This chapter contains an overview of discovery technologies, mainly display methods and antibody humanization methods for the selection of therapeutic humanized and human mAbs that appeared along the development of these technologies and thereafter. The increasing applications of these technologies will be highlighted in the antibody engineering area (affinity maturation, guided selection to obtain human antibodies) giving promising perspectives for the development of future therapeutics.
Collapse
Affiliation(s)
| | - Ana Margarida Manuel
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal
| | - Joao Goncalves
- iMed - Research Institute for Medicines, Faculty of Pharmacy at University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
13
|
Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, Faghfourian B, Sepehr KS, Abbaszadeh-Goudarzi K, Abbaszadeh-Goudarzi G, Johari B, Zali MR, Bagheri N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J Cell Physiol 2018; 234:5628-5642. [PMID: 30478951 DOI: 10.1002/jcp.27419] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
Abstract
Targeted delivery of therapeutic molecules into cancer cells is considered as a promising strategy to tackle cancer. Antibody-drug conjugates (ADCs), in which a monoclonal antibody (mAb) is conjugated to biologically active drugs through chemical linkers, have emerged as a promising class of anticancer treatment agents, being one of the fastest growing fields in cancer therapy. The failure of early ADCs led researchers to explore strategies to develop more effective and improved ADCs with lower levels of unconjugated mAbs and more-stable linkers between the drug and the antibody, which show improved pharmacokinetic properties, therapeutic indexes, and safety profiles. Such improvements resulted in the US Food and Drug Administration approvals of brentuximab vedotin, trastuzumab emtansine, and, more recently, inotuzumab ozogamicin. In addition, recent clinical outcomes have sparked additional interest, which leads to the dramatically increased number of ADCs in clinical development. The present review explores ADCs, their main characteristics, and new research developments, as well as discusses strategies for the selection of the most appropriate target antigens, mAbs, cytotoxic drugs, linkers, and conjugation chemistries.
Collapse
Affiliation(s)
- Meghdad Abdollahpour-Alitappeh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran.,Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Majid Lotfinia
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Behrouz Farhadihosseinabadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Faghfourian
- Department of Cardiology, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ghasem Abbaszadeh-Goudarzi
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behrooz Johari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Aguiar S, Dias J, Manuel AM, Russo R, Gois PMP, da Silva FA, Goncalves J. Chimeric Small Antibody Fragments as Strategy to Deliver Therapeutic Payloads. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:143-182. [PMID: 29680236 DOI: 10.1016/bs.apcsb.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) represent an innovative class of biopharmaceuticals, which aim at achieving a site-specific delivery of cytotoxic agents to the target cell. The use of ADCs represents a promising strategy to overcome the disadvantages of conventional pharmacotherapy of cancer or neurological diseases, based on cytotoxic or immunomodulatory agents. ADCs consist of monoclonal antibodies attached to biologically active drugs by means of cleavable chemical linkers. Advances in technologies for the coupling of antibodies to cytotoxic drugs promise to deliver greater control of drug pharmacokinetic properties and to significantly improve pharmacodelivery applications, minimizing exposure of healthy tissue. The clinical success of brentuximab vedotin and trastuzumab emtansine has led to an extensive expansion of the clinical ADC pipeline. Although the concept of an ADC seems simple, designing a successful ADC is complex and requires careful selection of the receptor antigen, antibody, linker, and payload. In this review, we explore insights in the antibody and antigen requirements needed for optimal payload delivery and support the development of novel and improved ADCs for the treatment of cancer and neurological diseases.
Collapse
Affiliation(s)
- Sandra Aguiar
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Joana Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Ana M Manuel
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Roberto Russo
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M P Gois
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico A da Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Joao Goncalves
- iMed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Cantante C, Lourenço S, Morais M, Leandro J, Gano L, Silva N, Leandro P, Serrano M, Henriques AO, Andre A, Cunha-Santos C, Fontes C, Correia JDG, Aires-da-Silva F, Goncalves J. Albumin-binding domain from Streptococcus zooepidemicus protein Zag as a novel strategy to improve the half-life of therapeutic proteins. J Biotechnol 2017; 253:23-33. [PMID: 28549690 DOI: 10.1016/j.jbiotec.2017.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
Abstract
Recombinant antibody fragments belong to the promising class of biopharmaceuticals with high potential for future therapeutic applications. However, due to their small size they are rapidly cleared from circulation. Binding to serum proteins can be an effective approach to improve pharmacokinetic properties of short half-life molecules. Herein, we have investigated the Zag albumin-binding domain (ABD) derived from Streptococcus zooepidemicus as a novel strategy to improve the pharmacokinetic properties of therapeutic molecules. To validate our approach, the Zag ABD was fused with an anti-TNFα single-domain antibody (sdAb). Our results demonstrated that the sdAb-Zag fusion protein was highly expressed and specifically recognizes human, rat and mouse serum albumins with affinities in the nanomolar range. Moreover, data also demonstrated that the sdAb activity against the therapeutic target (TNFα) was not affected when fused with Zag ABD. Importantly, the Zag ABD increased the sdAb half-life ∼39-fold (47min for sdAb versus 31h for sdAb-Zag). These findings demonstrate that the Zag ABD fusion is a promising approach to increase the half-life of small recombinant antibodies molecules without affecting their therapeutic efficacy. Moreover, the present study strongly suggests that the Zag ABD fusion strategy can be potentially used as a universal method to improve the pharmokinetics properties of many others therapeutics proteins and peptides in order to improve their dosing schedule and clinical effects.
Collapse
Affiliation(s)
- Cátia Cantante
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Maurício Morais
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - João Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Nuno Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Leandro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Ana Andre
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal
| | - Catarina Cunha-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos Fontes
- CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Frederico Aires-da-Silva
- Technophage, SA, 1649-028 Lisbon, Portugal; CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa,1300-477 Lisbon, Portugal.
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
16
|
Glycoengineering of pertuzumab and its impact on the pharmacokinetic/pharmacodynamic properties. Sci Rep 2017; 7:46347. [PMID: 28397880 PMCID: PMC5387714 DOI: 10.1038/srep46347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/16/2017] [Indexed: 01/07/2023] Open
Abstract
Pertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, the roles of fucose and sialic acid in the function of therapeutic antibodies still need further investigation, especially the role of sialic acid in nonfucosylated antibodies. This study focused on the pharmacokinetic and pharmacodynamic properties of pertuzumab after glycoengineering. Herein, nonfucosylated pertuzumab was produced in CHOFUT8−/− cells, and desialylated pertuzumab was generated by enzymatic hydrolysis. Present data indicated that fucose was critical for ADCC activity by influencing the interaction between pertuzumab and FcγRIIIa, nevertheless removal of sialic acid increased the ADCC and CDC activity of pertuzumab. Meanwhile, regarding to sialic acid, sialidase hydrolysis directly resulted in asialoglycoprotein receptors (ASGPRs) dependent clearance in hepatic cells in vitro. The pharmacokinetic assay revealed that co-injection of asialofetuin can protect desialylated pertuzumab against ASGPRs-mediated clearance. Taken together, the present study elucidated the importance of fucose and sialic acid for pertuzumab, and also provided further understanding of the relationship of glycosylation/pharmacokinetics/pharmacodynamics of therapeutic antibody.
Collapse
|
17
|
Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H, Rahbarnia L. Immunotoxins in cancer therapy: Review and update. Int Rev Immunol 2017; 36:207-219. [DOI: 10.1080/08830185.2017.1284211] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bahman Akbari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatemeh Safari
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dariushnejad
- Department of Medical Laboratory Sciences, School of Paramedicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rahbarnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Neves V, Aires-da-Silva F, Corte-Real S, Castanho MA. Antibody Approaches To Treat Brain Diseases. Trends Biotechnol 2016. [DOI: 10.1016/j.tibtech.2015.10.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Kang HJ, Kim HJ, Cha SH. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life. Immunol Lett 2016; 169:33-40. [DOI: 10.1016/j.imlet.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
|
20
|
Morais M, Cantante C, Gano L, Santos I, Lourenço S, Santos C, Fontes C, Aires da Silva F, Gonçalves J, Correia JD. Biodistribution of a 67Ga-labeled anti-TNF VHH single-domain antibody containing a bacterial albumin-binding domain (Zag). Nucl Med Biol 2014; 41 Suppl:e44-8. [DOI: 10.1016/j.nucmedbio.2014.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 11/30/2022]
|
21
|
Pepinsky RB, Arndt JW, Quan C, Gao Y, Quintero-Monzon O, Lee X, Mi S. Structure of the LINGO-1–Anti-LINGO-1 Li81 Antibody Complex Provides Insights into the Biology of LINGO-1 and the Mechanism of Action of the Antibody Therapy. J Pharmacol Exp Ther 2014; 350:110-23. [DOI: 10.1124/jpet.113.211771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Construction and development of a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma. Appl Microbiol Biotechnol 2012; 96:1233-41. [PMID: 22772863 DOI: 10.1007/s00253-012-4243-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
We present a detailed method for constructing a mammalian cell-based full-length antibody display library for targeting hepatocellular carcinoma. Two novel mammalian library vectors pcDNA3-CHm and pcDNA3-CLm were constructed that contained restriction enzyme sites NheI, ClaI and antibody constant domain. Mammalian expression vector pcDNA3-CHm contains IgG heavy-chain (HC) constant region and glycosylphosphatidylinositol anchor (GPI) that could be anchored full-length antibodies on the surface of mammalian cells. GOLPH2 prokaryotic expression vector was carried out in Escherichia coli and purified by immobilized metal affinity chromatography. Variable domain of heavy-chain and variable domain of light-chain genes were respectively inserted into the vector pcDNA3-CHm and pcDNA3-CLm by ligation, and antibody libraries are displayed as whole IgG molecules on the cell surface by co-transfecting this HC-GPI with a light chain. By screening the cell library using magnetic beads and cell ELISA, the cell clone that displayed GOLPH2-specific antibodies on cell surfaces was identified. The mammalian cell-based antibody display library is a great potential application for displaying full-length functional antibodies of targeting hepatocellular carcinoma on the surface of mammalian cells. Anti-GOLPH2 display antibody was successfully isolated from the library.
Collapse
|
23
|
Human anti-EGFL7 recombinant full-length antibodies selected from a mammalian cell-based antibody display library. Mol Cell Biochem 2012; 365:77-84. [DOI: 10.1007/s11010-012-1245-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/14/2012] [Indexed: 11/25/2022]
|
24
|
Abstract
Antibodies make up the largest, growing segment of protein therapeutics in the pharmaceutical and biotechnology industries. The development or engineering of therapeutic antibodies is based to a large extent on our knowledge of antibody structure and requires sophisticated methods that continue to evolve. In this chapter, after a review of what is known about the structure and functional properties of antibodies, the current, state-of-the-art antibody engineering methods are described. These methods include antibody humanization, antigen-affinity optimization, Fc engineering for modulated effector function and extended half-life, and engineering for improved stability and biophysical properties. X-ray crystallographic structures of antibody fragments and their complexes can play a critical role in guiding and, in some cases, accelerating these processes. These approaches represent guidelines for developing antibody therapeutics with the desired affinity, effector function, and biophysical properties.
Collapse
|
25
|
Abstract
Display technology has been developed and widely used in antibody screening and selecting. While phage can only display antibody fragments, mammalian cells can display not only fragments but full-length antibodies. Here we described the display of full length antibody on the surface of 293 cells. Both heavy chain and light chain genes were cloned in a single mammalian expression vector containing dual mammalian expression cassettes. While transfected into 293 cells of the vector, both heavy and light chains were expressed. With the help of transmembrane domain of platelet-derived growth factor receptor (PDGFR-TM) fused at the 3'-end of heavy chain in frame, expressed full-length antibodies were displayed on the cell surface and can be easily detected and analyzed by flow cytometry.
Collapse
Affiliation(s)
- Chen Zhou
- Antivirus Research Center, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
26
|
Halder P, Chen YC, Brauckhoff J, Hofbauer A, Dabauvalle MC, Lewandrowski U, Winkler C, Sickmann A, Buchner E. Identification of Eps15 as antigen recognized by the monoclonal antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila brain. PLoS One 2011; 6:e29352. [PMID: 22206011 PMCID: PMC3244249 DOI: 10.1371/journal.pone.0029352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/27/2011] [Indexed: 01/16/2023] Open
Abstract
The Wuerzburg Hybridoma Library against the
Drosophila brain represents a
collection of around 200 monoclonal antibodies
that bind to specific structures in the
Drosophila brain. Here we
describe the immunohistochemical staining
patterns, the Western blot signals of one- and
two-dimensional electrophoretic separation, and
the mass spectrometric characterization of the
target protein candidates recognized by the
monoclonal antibodies aa2 and ab52 from the
library. Analysis of a mutant of a candidate gene
identified the Drosophila homolog
of the Epidermal growth factor receptor Pathway
Substrate clone 15 (Eps15) as the antigen for
these two antibodies.
Collapse
Affiliation(s)
- Partho Halder
- Department of
Neurobiology and Genetics, Theodor-Boveri
Institute, University of Wuerzburg, Wuerzburg,
Germany
- Institute of Clinical
Neurobiology, University of Wuerzburg, Wuerzburg,
Germany
| | - Yi-chun Chen
- Department of
Neurobiology and Genetics, Theodor-Boveri
Institute, University of Wuerzburg, Wuerzburg,
Germany
| | - Janine Brauckhoff
- Department of
Neurobiology and Genetics, Theodor-Boveri
Institute, University of Wuerzburg, Wuerzburg,
Germany
| | - Alois Hofbauer
- Department of
Developmental Biology, Institute of Zoology,
University of Regensburg, Regensburg,
Germany
| | | | - Urs Lewandrowski
- Rudolf Virchow Center,
DFG Research Center for Experimental Biomedicine,
University of Wuerzburg, Wuerzburg,
Germany
- Leibniz Institut
für Analytische Wissenschaften-ISAS-e.V.,
Dortmund, Germany
| | - Christiane Winkler
- Rudolf Virchow Center,
DFG Research Center for Experimental Biomedicine,
University of Wuerzburg, Wuerzburg,
Germany
| | - Albert Sickmann
- Rudolf Virchow Center,
DFG Research Center for Experimental Biomedicine,
University of Wuerzburg, Wuerzburg,
Germany
- Leibniz Institut
für Analytische Wissenschaften-ISAS-e.V.,
Dortmund, Germany
- Medizinisches
Proteom-Center, Ruhr-Universität Bochum,
Bochum, Germany
| | - Erich Buchner
- Department of
Neurobiology and Genetics, Theodor-Boveri
Institute, University of Wuerzburg, Wuerzburg,
Germany
- Institute of Clinical
Neurobiology, University of Wuerzburg, Wuerzburg,
Germany
- * E-mail:
| |
Collapse
|
27
|
Sundaram S, Matathia A, Qian J, Zhang J, Hsieh MC, Liu T, Crowley R, Parekh B, Zhou Q. An innovative approach for the characterization of the isoforms of a monoclonal antibody product. MAbs 2011; 3:505-12. [PMID: 22123057 PMCID: PMC3242836 DOI: 10.4161/mabs.3.6.18090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
Protein biopharmaceuticals, such as monoclonal antibodies (mAbs) are widely used for the prevention and treatment of various diseases. The complex and lengthy upstream and downstream production methods of the antibodies make them susceptible to physical and chemical modifications. Several IgG1 immunoglobulins are used as medical agents for the treatment of colon, breast, and head and neck cancers, and at least four to eight isoforms exist in the products. The regulatory agencies understand the complex nature of the antibody molecules and allow the manufactures to set their own specifications for lot release, provided the safety and efficacy of the products are established in animal models prior to clinical trials. During the manufacture of a mAb product, we observed lot-to-lot variability in the isoform content and, although the variability is within the set specifications for lot release, made attempts to gain mechanistic insight by isolating and characterizing the individual isoforms. Matrix-assisted laser desorption/ionization (MALDI) and liquid chromatography (LC)/mass spectrometry (MS)/MS analyses of the isolated isoforms indicate that this variability is caused by sialic acid content, as well as truncation of C-terminal lysine of the individual isoforms. Sialidase and carboxypeptidase treatment of the product confirm the observations made by MALDI and LC/MS/MS.
Collapse
|
28
|
Pepinsky RB, Shao Z, Ji B, Wang Q, Meng G, Walus L, Lee X, Hu Y, Graff C, Garber E, Meier W, Mi S. Exposure Levels of Anti-LINGO-1 Li81 Antibody in the Central Nervous System and Dose-Efficacy Relationships in Rat Spinal Cord Remyelination Models after Systemic Administration. J Pharmacol Exp Ther 2011; 339:519-29. [DOI: 10.1124/jpet.111.183483] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
Huang J, Liang J, Tang Q, Wang Z, Chen L, Zhu J, Feng Z. An active murine–human chimeric Fab antibody derived from Escherichia coli, potential therapy against over-expressing VEGFR2 solid tumors. Appl Microbiol Biotechnol 2011; 91:1341-51. [DOI: 10.1007/s00253-011-3335-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 11/25/2022]
|
30
|
Isolation of human Fab antibodies specific for the low-affinity IgE receptor (CD23) by selecting a hierarchical antibody library system against B lymphoblastic IM-9 cells. Immunol Lett 2011; 136:213-20. [DOI: 10.1016/j.imlet.2011.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 11/17/2022]
|
31
|
Shibui T, Kobayashi T. Mimotopes to Cetuximab Isolated by mRNA-Display using Random Peptide Libraries and their Characteristics. Int J Pept Res Ther 2011. [DOI: 10.1007/s10989-011-9242-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Pepinsky RB, Walus L, Shao Z, Ji B, Gu S, Sun Y, Wen D, Lee X, Wang Q, Garber E, Mi S. Production of a PEGylated Fab′ of the anti-LINGO-1 Li33 Antibody and Assessment of Its Biochemical and Functional Properties in Vitro and in a Rat Model of Remyelination. Bioconjug Chem 2011; 22:200-10. [DOI: 10.1021/bc1002746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R. Blake Pepinsky
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Lee Walus
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Zhaohui Shao
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Benxiu Ji
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Sheng Gu
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Yaping Sun
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Dingyi Wen
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Xinhua Lee
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Qin Wang
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Ellen Garber
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Sha Mi
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
33
|
Isolation of a human anti-epidermal growth factor receptor Fab antibody, EG-19-11, with subnanomolar affinity from naïve immunoglobulin repertoires using a hierarchical antibody library system. Immunol Lett 2010; 134:55-61. [DOI: 10.1016/j.imlet.2010.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/07/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
|
34
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
35
|
Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. MAbs 2010; 2:508-18. [PMID: 20716968 DOI: 10.4161/mabs.2.5.12970] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antibody display systems have been successfully applied to screen, select and characterize antibody fragments. These systems typically use prokaryotic organisms such as phage and bacteria or lower eukaryotic organisms, such as yeast. These organisms possess either no or different post-translational modification functions from mammalian cells and prefer to display small antibody fragments instead of full-length IgGs. We report here a novel mammalian cell-based antibody display platform that displays full-length functional antibodies on the surface of mammalian cells. Through recombinase-mediated DNA integration, each host cell contains one copy of the gene of interest in the genome. Utilizing a hot-spot integration site, the expression levels of the gene of interest are high and comparable between clones, ensuring a high signal to noise ratio. Coupled with fluorescence-activated cell sorting (FACS) technology, our platform is high throughput and can distinguish antibodies with very high antigen binding affinities directly on the cell surface. Single-round FACS can enrich high affinity antibodies by more than 500 fold. Antibodies with significantly improved neutralizing activity have been identified from a randomly mutagenized library, demonstrating the power of this platform in screening and selecting antibody therapeutics.
Collapse
Affiliation(s)
- Chen Zhou
- Protein Science, Amgen Inc., Thousand Oaks, CA, USA
| | | | | | | | | |
Collapse
|
36
|
Pepinsky RB, Silvian L, Berkowitz SA, Farrington G, Lugovskoy A, Walus L, Eldredge J, Capili A, Mi S, Graff C, Garber E. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci 2010; 19:954-66. [PMID: 20198683 DOI: 10.1002/pro.372] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for its propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.
Collapse
Affiliation(s)
- R Blake Pepinsky
- Department of Drug Discovery, Biogen Idec, Inc., Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou Y, Chen ZR, Li CZ, He W, Liu S, Jiang S, Ma WL, Tan W, Zhou C. A novel strategy for rapid construction of libraries of full-length antibodies highly expressed on mammalian cell surfaces. Acta Biochim Biophys Sin (Shanghai) 2010; 42:575-84. [PMID: 20705599 DOI: 10.1093/abbs/gmq055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Development of a versatile mammalian display system is essential for the selection of functional human antibodies with high affinities. Here we described a novel strategy for rapid construction of full-length antibody libraries that could be efficiently expressed on mammalian cell surfaces. The universal vector pDGB-HC-TM was constructed by inserting multiple cloning site unique sequences recognized by restriction endonucleases BsmBI, SfiI, and BstXI for the pop-in and pop-out of genes of interest. Cytomegalovirus promoter, a commonly used promoter for high expression of proteins in a variety of mammalian cells, was used to drive expression of the inserted antibody genes and a transmembrane domain from platelet-derived growth factor receptor was fused in frame to the C-terminus of heavy chain consistent region to anchor the antibody expressed on the mammalian cell surface. Using this strategy, we constructed a full-length human antibody display library. DNA sequence analysis and expression analysis indicated that the library constructed had a combinatory expressible, detectable diversity of 6.58 x 10(10).
Collapse
Affiliation(s)
- Ye Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pristatsky P, Cohen SL, Krantz D, Acevedo J, Ionescu R, Vlasak J. Evidence for trisulfide bonds in a recombinant variant of a human IgG2 monoclonal antibody. Anal Chem 2010; 81:6148-55. [PMID: 19591437 DOI: 10.1021/ac9006254] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hinge region of human IgG2 contains four cysteine residues involved in disulfide linkages between the heavy chains, as well as the heavy and light chains. These linkages provide the fundamental framework of three distinct IgG2 disulfide isoforms recently described. Here, we detail another, disulfide-related post-translational modification in a recombinant variant of human IgG2. Heterogeneity associated with this antibody was separated into several fractions by anion-exchange chromatography (AEX), which is an important initial step that highlights the resolving power of surface charge-based HPLC techniques. Mass spectrometry of the intact antibody revealed weakly resolved discrete covalent additions of 25-35 Da in one of the two main AEX fractions. Digestion by endoproteinase Lys-C performed under nonreducing conditions, as well as tandem MS experiments, narrowed the modification to the peptide-containing disulfide-bridged hinge structure. High mass resolution and accuracy measurements of the peptide strongly suggested an addition of one or two S atoms. The modification could be eliminated by a mild reducing treatment of the intact antibody. Overall, these findings are consistent with the replacement of up to two disulfide bridges (S-S) with a like number of trisulfides (S-S-S) in the antibody hinge. The trisulfide modification is rather uncommon for proteins and its possible origins in the IgG2 variant are discussed.
Collapse
Affiliation(s)
- Pavlo Pristatsky
- Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | |
Collapse
|
39
|
Aono H, Wen D, Zang L, Houde D, Pepinsky RB, Evans DRH. Efficient on-column conversion of IgG1 trisulfide linkages to native disulfides in tandem with Protein A affinity chromatography. J Chromatogr A 2010; 1217:5225-32. [PMID: 20598700 DOI: 10.1016/j.chroma.2010.06.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/04/2010] [Accepted: 06/10/2010] [Indexed: 12/17/2022]
Abstract
Protein trisulfide linkages are generated by the post-translational insertion of a sulfur atom into a disulfide bond. Molecular heterogeneity was detected in a recombinant IgG(1) monoclonal antibody (mAb) and attributed to the presence of a protein trisulfide moiety. The predominant site of trisulfide modification was the bond between the heavy and light chains. The trisulfide was eliminated during purification of the IgG(1) mAb via a cysteine wash step incorporated into Protein A affinity column chromatography. Analysis of the cysteine-treated mAb by electrophoresis and peptide mapping indicated that the trisulfide linkages were efficiently converted to intact disulfide bonds (13% trisulfide decreased consistently to 1% or less) without disulfide scrambling or an increase in free sulfhydryls. The on-column trisulfide conversion caused no change in protein folding detectable by hydrogen/deuterium exchange or differential scanning calorimetry. Consistent with this, binding of the mAb to its antigen in vitro was insensitive to the presence of the trisulfide modification and to its removal by the on-column cysteine treatment. Similar, high efficiency trisulfide conversion was achieved for a second IgG(1) mAb using the column wash strategy (at least 7% trisulfide decreased to 1% or less). Therefore, trisulfide/disulfide heterogeneity can be eliminated from IgG(1) molecules via a convenient and inexpensive procedure compatible with routine Protein A affinity capture.
Collapse
Affiliation(s)
- Hiromasa Aono
- Biogen Idec Inc., Department of Bioprocess Development, 14 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hur BU, Choi HJ, Song SY, Yoon JB, Liu LK, Cha SH. Development of the dual-vector system-III (DVS-III), which facilitates affinity maturation of a Fab antibody via light chain shuffling. Immunol Lett 2010; 132:24-30. [PMID: 20471422 DOI: 10.1016/j.imlet.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/22/2010] [Accepted: 05/06/2010] [Indexed: 11/29/2022]
Abstract
Light (L) chain shuffling is routinely used to analyze optimal L chains that pair with a specific heavy (Fd or H) chain, which ultimately leads to in vitro affinity maturation of a particular antibody. One of the major drawbacks to this procedure is that L chain libraries have to be created for each distinct H chain, which involves complicated cloning procedures. Herein, we designed of the dual-vector system-III (DVS-III), which is composed of a set of pLf1T-3 phagemid and pHg3A-3 plasmid, for L chain shuffling of any given human Fab antibody via phage display technology. To demonstrate the feasibility of our system, a human naïve L chain sublibrary, HuNL-D3, constructed in pLf1T-3 phagemid, was combined with the Fd of a human anti-IL-15 Fab, 4H10, subcloned in pHg3A-3 plasmid as a model system. After solution-phase sorting and biopanning the library we obtained eight Fab variants (4H10-LP1-7 and 4H10-LS). Among them, 4H10-LP4 exhibited the highest affinity which is about 36-fold higher than that of the parent molecule 4H10 (K(D)=6 nM versus 200 nM). Our results demonstrate that the DVS-III, along with the HuNL-D3 L chain sublibrary, can be served as a convenient approach for affinity maturation of any given human Fab antibody through L chain optimization.
Collapse
Affiliation(s)
- Byung-ung Hur
- Division of Molecular and Medical Biotechnology, College of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 200-701, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Dick LW, Qiu D, Wong RB, Cheng KC. Isomerization in the CDR2 of a monoclonal antibody: Binding analysis and factors that influence the isomerization rate. Biotechnol Bioeng 2010; 105:515-23. [DOI: 10.1002/bit.22561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Robert F, Bierau H, Rossi M, Agugiaro D, Soranzo T, Broly H, Mitchell-Logean C. Degradation of an Fc-fusion recombinant protein by host cell proteases: Identification of a CHO cathepsin D protease. Biotechnol Bioeng 2010; 104:1132-41. [PMID: 19655395 DOI: 10.1002/bit.22494] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A host-cell-related proteolytic activity was identified in a recombinant Fc-fusion protein production process. This report describes the strategy applied to characterize and isolate the enzyme responsible for this degradation by combining cell culture investigation and dedicated analytical tools. After isolation and sequencing of the clipped fragment generated in post-capture material, enzymatic activity was traced in different culture conditions, allowing identification of viable CHO cells as the source of protease. Inhibitors and pH screenings showed that the enzyme belongs to an aspartic protease family and is preferably active at acidic pH. The protease was isolated by purification on a pepstatin A column and characterized as a protein related to cathepsin D. An additional metallo-protease inhibited by EDTA was identified with an optimum activity at neutral pH. This study is an example of how quality and stability of therapeutic recombinant molecules are strongly influenced by cell culture parameters.
Collapse
Affiliation(s)
- Flavie Robert
- Merck Serono Biotech Center, Merck Serono SA Corsier-sur-Vevey, CH-Fenil-sur-Corsier, Switzerland
| | | | | | | | | | | | | |
Collapse
|
43
|
Franco EJ, Sonneson GJ, DeLegge TJ, Hofstetter H, Horn JR, Hofstetter O. Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:177-86. [DOI: 10.1016/j.jchromb.2009.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/16/2022]
|
44
|
Vaidyanathan G, Jestin E, Olafsen T, Wu AM, Zalutsky MR. Evaluation of an anti-p185(HER2) (scFv-C(H)2-C(H)3)2 fragment following radioiodination using two different residualizing labels: SGMIB and IB-Mal-D-GEEEK. Nucl Med Biol 2009; 36:671-80. [PMID: 19647173 DOI: 10.1016/j.nucmedbio.2009.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/31/2009] [Accepted: 04/02/2009] [Indexed: 11/15/2022]
Abstract
INTRODUCTION A 105-kDa double mutant single-chain Fv-Fc fragment (scFv-Fc DM) derived from the anti-p185(HER2) hu4D5v8 antibody (trastuzumab; Herceptin) has been described recently. The goal of this study was to investigate whether improved tumor targeting could be achieved with this fragment through the use of residualizing radioiodination methods. METHODS The scFv-Fc DM fragment was radioiodinated using N-succinimidyl 4-guanidinomethyl 3-[(131)I]iodobenzoate ([(131)I]SGMIB) and N(epsilon)-(3-[(131)I]iodobenzoyl)-Lys(5)-N(alpha)- maleimido-Gly(1)-GEEEK ([(131)I]IB-Mal-D-GEEEK), two residualizing radioiodination agents that have been used successfully with intact antibodies. Paired-label internalization assays of the labeled fragments were performed in vitro using MCF7 human breast cancer cells transfected to express HER2 (MCF7-HER2); comparisons were made to scFv-Fc DM directly radioiodinated using Iodogen. The tissue distribution of the scFv-Fc DM labeled with [(125)I]IB-Mal-d-GEEEK and [(131)I]SGMIB was compared in athymic mice bearing MCF7-HER2 xenografts. RESULTS The scFv-Fc DM fragment was labeled with [(131)I]SGMIB and [(131)I]IB-Mal-d-GEEEK in conjugation yields of 53% and 25%, respectively, with preservation of immunoreactivity for HER2. Internalization assays indicated that labeling via SGMIB resulted in a 1.6- to 3.5-fold higher (P<.05) retention of radioactivity, compared to that from the directly labeled fragment, in HER2-expressing cells during a 24-h observation period. Likewise, the amount of radioactivity retained in cells from the IB-Mal-d-GEEEK-labeled fragment was 1.4- to 3.3-fold higher (P<.05). Tumor uptake of radioiodine activity in athymic mice bearing MCF7-HER2 xenografts in vivo was significantly higher for the [(125)I]IB-Mal-d-GEEEK-labeled scFv-Fc DM fragment compared with that of the [(131)I]SGMIB-labeled fragment, particularly at later time points. The uptake of (125)I was threefold (3.6+/-1.1 %ID/g vs. 1.2+/-0.4 %ID/g) and fourfold (3.1+/-1.7 %ID/g vs. 0.8+/-0.4 %ID/g) higher than that for (131)I at 24 and 48 h, respectively. However, the [(125)I]IB-Mal-d-GEEEK-labeled scFv-Fc DM fragment also exhibited considerably higher levels of radioiodine activity in liver, spleen and kidney. CONCLUSIONS The overall results further demonstrate the potential utility of these two prosthetic groups for the radiohalogenation of internalizing monoclonal antibodies and their fragments. Specifically, the trastuzumab-derived double mutant fragment in combination with these residualizing agents warrants further evaluation for imaging and possibly treatment of HER2 expressing malignancies.
Collapse
|
45
|
Identification and measurement of isoaspartic acid formation in the complementarity determining region of a fully human monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3841-9. [PMID: 19819766 DOI: 10.1016/j.jchromb.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/29/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022]
Abstract
Isomerization plays a key role in protein degradation. This isomerization is often difficult to detect by many protein characterization methods such as SDS-PAGE, SEC, and IEF. This work shows the identification of an isomerized aspartic acid residue in the CDR2 of the heavy chain of a fully human monoclonal antibody. This isoaspartic acid increases significantly with storage at 2-8 degrees C. Hydrophobic interaction chromatography was utilized to separate the isoaspartic variant in the intact state. Mass spectrometry including peptide mapping was employed to identify and confirm the exact location of the modification. Since this modification occurs in the complementarity determining region (CDR) it was found that binding is reduced. Therefore, three different analytical methods for regular analysis of this isomerization are evaluated. These methods include peptide mapping by LC-MS, HIC, and a protein isoaspartate methyltransferase assay. It was determined that HIC is the best method to regularly assay the level of isomerization in this monoclonal antibody.
Collapse
|
46
|
Clarke A, Harmon B, DeFelippis MR. Analysis of 3-(acetylamino)-6-aminoacridine-derivatized oligosaccharides from recombinant monoclonal antibodies by liquid chromatography–mass spectrometry. Anal Biochem 2009; 390:209-11. [DOI: 10.1016/j.ab.2009.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
47
|
The Novel Chimeric Anti-NCAM (Neural Cell Adhesion Molecule) Antibody ch.MK1 Displays Antitumor Activity in SCID Mice but Does not Activate Complement-Dependent Cytolysis (CDC). J Immunother 2009; 32:442-51. [DOI: 10.1097/cji.0b013e31819f8b69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
48
|
Dick LW, Mahon D, Qiu D, Cheng KC. Peptide mapping of therapeutic monoclonal antibodies: Improvements for increased speed and fewer artifacts. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:230-6. [DOI: 10.1016/j.jchromb.2008.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/14/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
49
|
Journal Watch. Pharmaceut Med 2008. [DOI: 10.1007/bf03256737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|