1
|
Liu T, Wang D, Zhou X, Song J, Yang Z, Shi C, Li R, Zhang Y, Zhang J, Yan J, Zhu X, Li Y, Gong M, Wang C, Yuan C, Cui Y, Wu X. Study on the mechanism of American ginseng extract for treating type 2 diabetes mellitus based on metabolomics. Front Pharmacol 2022; 13:960050. [PMID: 36120310 PMCID: PMC9479495 DOI: 10.3389/fphar.2022.960050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
American ginseng extract (AGE) is an efficient and low-toxic adjuvant for type 2 diabetes mellitus (T2DM). However, the metabolic mechanisms of AGE against T2DM remain unknown. In this study, a rat model of T2DM was created and administered for 28 days. Their biological (body weight and serum biochemical indicators) and pathological (pancreatic sections stained with HE) information were collected for further pharmacodynamic evaluation. Moreover, an ultra-performance liquid chromatography–mass spectrometry–based (UHPLC–MS/MS–based) untargeted metabolomics method was used to identify potential biomarkers of serum samples from all rats and related metabolic pathways. The results indicated that body weight, fasting blood glucose (FBG), fasting blood insulin (FINS), blood triglyceride concentration (TG), high-density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI), and impaired islet cells were significantly improved after the high dose of AGE (H_AGE) and metformin treatment. Metabolomics analysis identified 101 potential biomarkers among which 94 metabolites had an obvious callback. These potential biomarkers were mainly enriched in nine metabolic pathways linked to amino acid metabolism and lipid metabolism. Tryptophan metabolism and glutathione metabolism, as differential metabolic pathways between AGE and metformin for treating T2DM, were further explored. Further analysis of the aforementioned results suggested that the anti-T2DM effect of AGE was closely associated with inflammation, oxidative stress, endothelial dysfunction, dyslipidemia, immune response, insulin resistance, insulin secretion, and T2DM-related complications. This study can provide powerful support for the systematic exploration of the mechanism of AGE against T2DM and a basis for the clinical diagnosis of T2DM.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dan Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
- Department of Pharmacy, Chu Hisen-I Memorial Hospital, Tianjin Medical University, Tianjin, China
| | - Xinfeng Zhou
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jiayin Song
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zijun Yang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chang Shi
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rongshan Li
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yanwen Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jiuxing Yan
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xuehui Zhu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Min Gong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL, United States
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL, United States
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Yan Cui, ; Xiaohui Wu,
| | - Xiaohui Wu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Yan Cui, ; Xiaohui Wu,
| |
Collapse
|
2
|
Adegbola A, Behrendt CA, Zyriax BC, Windler E, Kreutzburg T. The impact of nutrition on the development and progression of peripheral artery disease: A systematic review. Clin Nutr 2021; 41:49-70. [PMID: 34864455 DOI: 10.1016/j.clnu.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND & AIMS This systematic review sought to identify and summarize existing evidence for the impact of nutrition on the development, progression, and outcomes of peripheral artery disease (PAD). METHODS We performed a systematic literature search of available studies published between January 1974 and December 2019. Randomized controlled trials (RCT), observational studies, and cross-sectional studies reporting either the primary or secondary prevention of PAD with nutritional intake were included. The quality assessment was performed for the RCTs, without pooling a meta-risk estimate. RESULTS Among a total of 8502 records screened, 186 full texts were assessed for eligibility, and 82 studies (30% RCT) were analyzed. The nutrients were structured in fruits, vegetables and antioxidants, fats and oils, dietary fiber, meat, proteins, vitamins and trace elements, and diets and lifestyle. The findings of the current systematic review indicate that the Mediterranean diet, nuts, and polyunsaturated fat are associated with a lower incidence of PAD and saturated fat, cholesterol, and processed meat were associated with higher rates of cardiovascular events in patients suffering from PAD. CONCLUSIONS The current review found evidence of a beneficial impact of the Mediterranean diet including nuts in this target population. More RCTs and high-quality registries are needed that focus on nutritional habits among patients with PAD to design appropriate preventive programs.
Collapse
Affiliation(s)
- Abiodun Adegbola
- Department of Vascular Medicine, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian-Alexander Behrendt
- Department of Vascular Medicine, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Birgit-Christiane Zyriax
- University Professorship for Midwifery Science - Health Care Research and Prevention, IVDP, University Medical Center Hamburg-Eppendorf, Germany.
| | - Eberhard Windler
- Institute for Health Services Research in Dermatology and Nursing, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thea Kreutzburg
- Department of Vascular Medicine, Research Group GermanVasc, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
ALSUntangled 53: Carnitine supplements. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:477-483. [PMID: 32046513 DOI: 10.1080/21678421.2020.1726565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Pagano G, Pallardó FV, Porto B, Fittipaldi MR, Lyakhovich A, Trifuoggi M. Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9010082. [PMID: 31963742 PMCID: PMC7023409 DOI: 10.3390/antiox9010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature-namely MDF-may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and as a premise to clinical studies aimed at counteracting MDF. In the case for T2D, the working hypothesis is raised of evaluating any in vivo decrease of mitochondrial cofactors, or mitochondrial nutrients (MNs) such as α-lipoic acid, coenzyme Q10, and l-carnitine, with possibly combined MN-based treatments. As for FA, the established knowledge of MDF, as yet only obtained from in vitro or molecular studies, prompts the requirement to ascertain in vivo MDF, and to design clinical studies aimed at utilizing MNs toward mitigating or delaying FA's clinical progression. Altogether, this paper may contribute to building hypotheses for clinical studies in a number of OS/MDF-related diseases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
- Correspondence: ; Tel.: +39-335-790-7261
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Beatriz Porto
- Institute of Biomedical Sciences, ICBAS, University of Porto, 4099-030 Porto, Portugal;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, 630117 Novosibirsk, Russia
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
| |
Collapse
|
5
|
Perng W, Rifas-Shiman SL, Hivert MF, Chavarro JE, Oken E. Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva. Obesity (Silver Spring) 2018; 26:916-926. [PMID: 29575812 PMCID: PMC5916029 DOI: 10.1002/oby.22164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/30/2018] [Accepted: 02/14/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to examine the associations of two obesity-related metabolite patterns with changes in metabolic biomarkers during early adolescence. METHODS Multivariable linear regression was used to examine associations of branched chain amino acid (BCAA) and androgen hormone patterns with changes in glycemia (fasting glucose, insulin, homeostatic model assessment of insulin resistance), adipokines (leptin, adiponectin), inflammation (C-reactive protein, interleukin-6), lipid profile, and blood pressure during ∼5 years of follow-up among 213 children aged 6 to 10 years at baseline. Covariates included baseline age, pubertal status, biomarker level, and BMI percentile, and age at follow-up. Interactions with sex and baseline BMI percentile were also considered. RESULTS The median age at baseline was 7.7 years; 48.8% were boys. In adjusted models, each 1 unit of the BCAA pattern corresponded with a 4.82 (95% CI: 0.92 to 8.71) mg/dL decrease in fasting glucose in boys. In girls, the BCAA pattern was associated with an increase in triglycerides (4.17 [0.03 to 8.32] mg/dL). The androgen pattern was associated with decreased leptin (-2.35 [-4.34 to -0.35] ng/dL) and increased C-reactive protein (0.28 [0.03 to 0.54] mg/dL) in girls. These relationships did not differ by baseline BMI percentile. CONCLUSIONS The BCAA and androgen hormone metabolite patterns are related to changes in metabolic parameters in a sex-specific manner during early adolescence.
Collapse
Affiliation(s)
- Wei Perng
- Department of Nutritional Sciences, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
6
|
Bene J, Hadzsiev K, Melegh B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr Diabetes 2018; 8:8. [PMID: 29549241 PMCID: PMC5856836 DOI: 10.1038/s41387-018-0017-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/05/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is a highly prevalent chronic metabolic disorder characterized by hyperglycemia and associated with several complications such as retinopathy, hyperlipidemia and polyneuropathy. The dysregulated fatty acid metabolism along with tissue lipid accumulation is generally assumed to be associated in the development of insulin resistance and T2D. Moreover, several studies suggest a central role for oxidative stress in the pathogenesis of the disease. Since L-carnitine (LC) has an indispensable role in lipid metabolism via its involvement in the β-oxidation of long-chain fatty acids and it has antioxidant properties as well, carnitine supplementation may prove to be an effective tool in the management of the clinical course of T2D. In this review we summarize the results from animal and clinical studies demonstrating the effects of supplementation with LC or LC derivatives (acetyl-LC, propionyl-LC) on various metabolic and clinical parameters associated with T2D.
Collapse
Affiliation(s)
- Judit Bene
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary. .,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary.
| | - Kinga Hadzsiev
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| | - Bela Melegh
- Department of Medical Genetics, University of Pécs, Medical School, Szigeti 12, Pécs, H-7624, Hungary.,Szentágothai Research Centre, University of Pécs, Ifjúság 20, Pécs, H-7624, Hungary
| |
Collapse
|
7
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials. Int J Mol Sci 2014; 15:20169-208. [PMID: 25380523 PMCID: PMC4264162 DOI: 10.3390/ijms151120169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Annarita Aiello Talamanca
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Giuseppe Castello
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Mario D Cordero
- Research Laboratory, Dental School, Universidad de Sevilla, Sevilla 41009, Spain.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Naples I-80126, Italy.
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari I-70126, Italy.
| | - Federico V Pallardó
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), University of Valencia-INCLIVA, Valencia 46010, Spain.
| | - Sandra Petrović
- Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia.
| | - Luca Tiano
- Biochemistry Unit, Department of Clinical and Dental Sciences, Polytechnical University of Marche, Ancona I-60131, Italy.
| | - Adriana Zatterale
- Genetics Unit, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples I-80136, Italy.
| |
Collapse
|
8
|
Hagiwara S, Jha JC, Cooper ME. Identifying and interpreting novel targets that address more than one diabetic complication: a strategy for optimal end organ protection in diabetes. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0148-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Abstract
PURPOSE OF REVIEW Carnitine and its derivatives are natural substances involved in both carbohydrate and lipid metabolism. This review summarizes the recent progress in the field in relation to the molecular mechanisms. RECENT FINDINGS The pool of different carnitine derivatives is formed by acetyl-L-carnitine (ALC), propionyl-L-carnitine (PLC), and isovaleryl-carnitine. ALC may have a preferential effect on the brain tissue. ALC represents a compound of great interest for its wide clinical application in various neurological disorders: it may be of benefit in treating Alzheimer's dementia, depression in the elderly, HIV infection, chronic fatigue syndrome, peripheral neuropathies, ischemia and reperfusion of the brain, and cognitive impairment associated with various conditions. PLC has been demonstrated to replenish the intermediates of the tricarboxylic acid cycle by the propionyl-CoA moiety, a greater affinity for the sarcolemmal carrier, peripheral vasodilator activity, a greater positive inotropism, and more rapid entry into myocytes. Most studies of the therapeutic use of PLC are focused on the prevention and treatment of ischemic heart disease, congestive heart failure, hypertrophic heart disease, and peripheral arterial disease. ALC and PLC are considered well tolerated without significant side-effects. SUMMARY A number of therapeutic effects possibly come from the interaction of carnitine and its derivatives with the elements of cellular membranes.
Collapse
|
10
|
Mingorance C, Rodríguez-Rodríguez R, Justo ML, Alvarez de Sotomayor M, Herrera MD. Critical update for the clinical use of L-carnitine analogs in cardiometabolic disorders. Vasc Health Risk Manag 2011; 7:169-76. [PMID: 21490942 PMCID: PMC3072740 DOI: 10.2147/vhrm.s14356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Indexed: 01/12/2023] Open
Abstract
Acetyl-L-carnitine (ALC) and propionyl-L-carnitine (PLC) are two naturally occurring carnitine derivates formed by carnitine acetyltransferase. The beneficial cardiovascular effects of ALC and PLC have been extensively evaluated in animals and humans during the last 20 years. For instance, many clinical trials have suggested ALC and PLC as potential strategies in the management of peripheral arterial disease, heart and cerebral ischemia, and congestive heart failure. As a result, several experts have already aimed to revise the clinical evidence supporting the therapeutic use of ALC and PLC. On the basis of their conclusions, our aim was a critical review of the effectiveness of ALC and PLC in the treatment of cardiovascular diseases. Type 2 diabetes mellitus is an independent risk factor for the development of cardiovascular disease. Therefore we also describe recent studies that have addressed the emerging use of ALC and PLC amelioration of the insulin resistant state and its related morbidities.
Collapse
Affiliation(s)
- Carmen Mingorance
- Department of Pharmacology, School of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
11
|
Kiliçli F, Dökmetaş S, Candan F, Ozşahin S, Korkmaz S, Amasyali E, Fakioğlu K, Dal K, Acibucu F, Cakir I. Inspiratory muscle strength is correlated with carnitine levels in type 2 diabetes. Endocr Res 2010; 35:51-8. [PMID: 20408753 DOI: 10.3109/07435800903535506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Plasma carnitine insufficiency has been known to cause muscle weakness. Carnitine levels and pulmonary functions were lower in patients with diabetes. PATIENTS AND METHODS To determine whether pulmonary functions are correlated with carnitine levels in patients with type 2 diabetes. In this study, we evaluated pulmonary functions and carnitine concentrations in 49 patients with type 2 diabetes and 34 healthy controls. RESULTS Carnitine levels were lower in type 2 diabetes group than control group (52.56 +/- 12.38 and 78.96 +/- 10.66 hmol/mL, respectively, p < 0.0001). Pulmonary functions were not significantly different between groups. Carnitine levels were not correlated with age, duration of diabetes, fasting blood glucose levels, and glycemic control (HbA1c%) in patients with type 2 diabetes. However, carnitine levels in patient group were correlated with % forced vital capacity (FVC%) (r = 0.35, p = 0.016), % forced expiratory volume in 1 s (FEV1%) (r = 0.318, p= 0.029), FEV1/FVC (r= 0.302, p= 0.039), inspiratory muscle strength (PImax) (r = 0.407, p = 0.023), and PImax% (r = 0.423, p= 0.018). CONCLUSION This study suggests that low carnitine levels may be associated with lower PImax and PImax% in type 2 diabetes.
Collapse
Affiliation(s)
- Fatih Kiliçli
- Department of Endocrinology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Andreozzi GM. Propionyl l-carnitine: intermittent claudication and peripheral arterial disease. Expert Opin Pharmacother 2010; 10:2697-707. [PMID: 19827991 DOI: 10.1517/14656560903215871] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peripheral arterial disease (PAD) is a clinical manifestation of underlying aorto-iliac and leg atherosclerosis that is characterized by different stages of stenosis and obstruction. It affects approximately 12% of the adult population and about 20% of people over the age of 70 years, and is associated with increased cardiovascular (CV) and cerebrovascular morbidity. Intermittent claudication (IC) is the major symptom of PAD; it is defined as cramping leg pain (in the buttock, thigh, or calf) while/after clim bing one or two flights of stairs, or during walking. The goals of IC management are to: slow the progression of local and systemic atherosclerosis, prevent major fatal and nonfatal CV events (myocardial infarction and stroke), improve walking capacity, prevent and reduce resting pain and cutaneous lesions. Propionyl L-carnitine is an acyl derivative of levocarnitine (L-carnitine) and is indicated for patients with peripheral arterial occlusive disease. It corrects secondary muscle carnitine deficiency in patients with PAD, significantly improving the walking capacity; it is a free radical that produces positive effects on endothelial function; it protects from oxidative stress; and it enhances most measures of quality of life. The recent Trans-Atlantic Inter-Society Consensus II update recommends the use of propionyl L-carnitine in combination with physical training to improve the symptoms associated with PAD.
Collapse
Affiliation(s)
- G M Andreozzi
- University Hospital, Angiology Care Unit, via Giustiniani 2, Padua 35128, Italy.
| |
Collapse
|
13
|
Anuradha CV. L-carnitine: implications in the treatment of the metabolic syndrome and Type 2 diabetes. Expert Rev Endocrinol Metab 2008; 3:777-783. [PMID: 30764066 DOI: 10.1586/17446651.3.6.777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metabolic syndrome (MS) is a conglomeration of inter-related common clinical disorders, including obesity, glucose intolerance, hypertension and dyslipidemia, which predispose to Type 2 diabetes (T2D) and cardiovascular diseases. Hyperinsulinemia, per se, and insulin resistance are the pathogenic factors associated with the metabolic risk factors. Since these risk factors are the most frequent causes for mortality among patients with T2D and the MS, treatments targeting normalization of both lipid and glucose homeostasis are of interest. The crucial role of L-carnitine (CA) as a regulator of lipid and glucose metabolism has raised considerable interest in its use as a potential tool for therapeutic intervention in the MS. Several clinical studies have, therefore, been undertaken to examine the efficacy and other benefits in the treatment of T2D and the MS. Studies from rodent models of MS have also shown the positive effects of CA on several components of the syndrome. CA, being an endogenous water-soluble nutrient, could be a safe adjunct and a relevant future drug for the MS. This review provides an overview on the importance of CA in T2D and the MS and the need for further evaluation of its inclusion in treatment protocols.
Collapse
Affiliation(s)
- Carani V Anuradha
- a Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India.
| |
Collapse
|
14
|
Lango R, Smoleński RT, Rogowski J, Siebert J, Wujtewicz M, Słomińska EM, Lysiak-Szydłowska W, Yacoub MH. Propionyl-L-carnitine improves hemodynamics and metabolic markers of cardiac perfusion during coronary surgery in diabetic patients. Cardiovasc Drugs Ther 2006; 19:267-75. [PMID: 16187006 DOI: 10.1007/s10557-005-3349-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED Diabetic hearts are particularly vulnerable to ischemia-reperfusion injury during cardiac surgery. Application of carnitine derivatives could be beneficial not only because of metabolic effects but also by protecting vasculature. This study aimed to evaluate hemodynamic changes associated with propionyl-L-carnitine and L-carnitine administration and its correlation with biochemical markers of cardiac vascular function. METHODS Sixty-eight diabetic patients undergoing cardiopulmonary bypass coronary operation were given intravenously 20 mg/kg b.w. L-carnitine (LC), 24 mg/kg b.w. propionyl-L-carnitine (PC), or placebo (Cont). Endothelin and nucleotide metabolites were determined intraoperatively in arterial and coronary sinus blood and heart biopsies. RESULTS Cardiac index at 6 and 12 h after cardiopulmonary bypass was significantly higher in PC (3.30 +/- 0.12 and 3.47 +/- 0.15 L/min/m2) as compared to Cont (2.92 +/- 0.13 and 2.91 +/- 0.16 L/min/m2; P = 0.04 and P = 0.01, respectively). Mean pulmonary artery pressure was lower in PC at 6 (20.8 +/- 0.91 mmHg) and 12 h (20.7 +/- 0.81 mmHg) in comparison to Cont (23.5 +/- 0.75 and 23.4 +/- 0.75 mmHg; P = 0.03 and P = 0.02, respectively). Trans-cardiac endothelin difference on reperfusion was higher in Cont (0.33 +/- 0.26 pmol/L) than in LC (-0.61 +/- 0.24 pmol/L, P = 0.012) and tended to be higher than in PC (-0.29 +/- 0.17 pmol/L, P = 0.056). Trans-cardiac hypoxanthine difference after 10 min reperfusion was significantly higher in Cont (6.22 +/- 1.08 micromol/L) in comparison to LC (3.17 +/- 0.66 micromol/L, P = 0.025) and PC (2.36 +/- 0.73 micromol/L, P = 0.006). Myocardial hypoxanthine concentration was lowest in PC. CONCLUSIONS Significant improvement of hemodynamics following propionyl-L-carnitine administration in diabetic patients undergoing on-bypass coronary surgery was accompanied by reduced trans-cardiac endothelin difference and rapid hypoxanthine washout during reperfusion suggesting improvement of metabolism or vascular function.
Collapse
Affiliation(s)
- Romuald Lango
- Department of Anesthesiology and Intensive Care, Medical University of Gdańsk, Debinki, 7 80-211, Poland.
| | | | | | | | | | | | | | | |
Collapse
|