1
|
Serretti A, Mandelli L, Bajo E, Cevenini N, Papili P, Mori E, Bigelli M, Berardi D. The socio-economical burden of schizophrenia: A simulation of cost-offset of early intervention program in Italy. Eur Psychiatry 2020; 24:11-6. [DOI: 10.1016/j.eurpsy.2008.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 11/28/2022] Open
Abstract
AbstractSchizophrenia is associated with a high familiar, social and economic burden. During the recent years early and specific intervention for first psychotic episodes has been suggested to improve the long term outcome of the disease. Despite the promising results obtained so far, early intervention is still scarcely applied. One major problem arises from the translation of research findings into stakeholder policies. In fact very few analyses of cost reductions obtained with early intervention have been reported. In the present paper we present a simulation of direct cost reduction that can be obtained with early intervention programmes. We based our analysis on available data about schizophrenia care costs in Italy and the expected cost reduction with the use of early intervention. We observed that the increase in costs due to the more intensive early intervention is largely compensated by the reduction of inpatient admissions with a reduction of direct costs of 6.01%. Despite the apparently small economic gain, early intervention offers more clinical and social benefits as it seems to be effective also in decreasing relapse rates, in improving the patients' quality of life and disability associated with psychosis and in increasing employment rates. Those indirect costs however are difficult to estimate and were not included in our model.In conclusion, our study supports the use of early intervention in schizophrenia, which could allow an outcome improvement with lower direct and indirect costs.
Collapse
|
2
|
»Treatment Resistance« Enigma Resolved by Pharmacogenomics - A Case Study of Clozapine Therapy in Schizophrenia. J Med Biochem 2015; 34:223-227. [PMID: 28356835 PMCID: PMC4922322 DOI: 10.2478/jomb-2014-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 01/31/2023] Open
Abstract
The introduction of antipsychotic medication in the 1950s forever changed the outlook on the treatment of schizophrenia, although there is still a large proportion of patients who do not reach functional recovery. At least 30% of patients do not respond to clozapine, the tricyclic dibenzodiazepine with complex pharmacological actions, which was proven to be more effective than any other antipsychotic in the treatment of schizophrenia. According to most of the therapeutic guidelines for schizophrenia, clozapine is the third line therapy for patients who did not respond to other antipsychotics. Large inter-individual variability exists for clozapine bioavailability and plasma steady-state concentrations and clearance. Clozapine is metabolized by the cytochrome P450 oxidase enzyme family (CYP450). Cytochrome P450 1A2 (CYP1A2), which is polymorphically expressed in humans, is the main enzyme of clozapine metabolism. This case report addresses the influence of CYP1A2*1F genetic polymorphism on clozapine metabolism, explains the primary non-response of a young patient with schizophrenia due to increased gene expression in homozygous genotype *1F/*1F (increased metabolism of clozapine) and underlies the importance of personalizing schizophrenia treatment by means of genetic and other molecular tools, at least in the cases of »treatment resistance«.
Collapse
|
3
|
Kohlrausch FB. Pharmacogenetics in schizophrenia: a review of clozapine studies. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:305-17. [PMID: 24142094 DOI: 10.1590/1516-4446-2012-0970] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/19/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Clozapine is quite effective to treat schizophrenia, but its use is complicated by several factors. Although many patients respond to antipsychotic therapy, about 50% of them exhibit inadequate response, and ineffective medication trials may entail weeks of unremitted illness, potential adverse drug reactions, and treatment nonadherence. This review of the literature sought to describe the main pharmacogenetic studies of clozapine and the genes that potentially influence response to treatment with this medication in schizophrenics. METHODS We searched the PubMed database for studies published in English in the last 20 years using keywords related to the topic. RESULTS AND CONCLUSIONS Our search yielded 145 studies that met the search and selection criteria. Of these, 21 review articles were excluded. The 124 studies included for analysis showed controversial results. Therefore, efforts to identify key gene mechanisms that will be useful in predicting clozapine response and side effects have not been fully successful. Further studies with new analysis approaches and larger sample sizes are still required.
Collapse
|
4
|
Villagra D, Goethe J, Schwartz HI, Szarek B, Kocherla M, Gorowski K, Windemuth A, Ruaño G. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes. Biomark Med 2012; 5:427-38. [PMID: 21861665 DOI: 10.2217/bmm.11.32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. METHODS A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. RESULTS The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. CONCLUSIONS We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes.
Collapse
|
5
|
Francis PJ, Klein ML. Update on the role of genetics in the onset of age-related macular degeneration. Clin Ophthalmol 2011; 5:1127-33. [PMID: 21887094 PMCID: PMC3162292 DOI: 10.2147/opth.s11627] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD), akin to other common age-related diseases, has a complex pathogenesis and arises from the interplay of genes, environmental factors, and personal characteristics. The past decade has seen very significant strides towards identification of those precise genetic variants associated with disease. That genes encoding proteins of the (alternative) complement pathway (CFH, C2, CFB, C3, CFI) are major players in etiology came as a surprise to many but has already lead to the development of therapies entering human clinical trials. Other genes replicated in many populations ARMS2, APOE, variants near TIMP3, and genes involved in lipid metabolism have also been implicated in disease pathogenesis. The genes discovered to date can be estimated to account for approximately 50% of the genetic variance of AMD and have been discovered by candidate gene approaches, pathway analysis, and latterly genome-wide association studies. Next generation sequencing modalities and meta-analysis techniques are being employed with the aim of identifying the remaining rarer but, perhaps, individually more significant sequence variations, linked to disease status. Complementary studies have also begun to utilize this genetic information to develop clinically useful algorithms to predict AMD risk and evaluate pharmacogenetics. In this article, contemporary commentary is provided on rapidly progressing efforts to elucidate the genetic pathogenesis of AMD as the field stands at the end of the first decade of the 21st century.
Collapse
Affiliation(s)
- Peter James Francis
- Macular Degeneration Center, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
6
|
Jannetto PJ, Bratanow NC. Utilization of pharmacogenomics and therapeutic drug monitoring for opioid pain management. Pharmacogenomics 2009; 10:1157-67. [DOI: 10.2217/pgs.09.64] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aims: The use of medication in pain management currently involves empirical adjustment based on observed clinical outcome and the presence of adverse drug reactions. In this study, pharmacogenomics and therapeutic drug monitoring were used to evaluate the clinical effectiveness of genotyping chronic pain patients on analgesic therapy. It was hypothesized that patients who have inherited polymorphisms in CYP2D6 that make them poor or intermediate metabolizers of opioid medications would have higher steady-state concentrations of those opioids and may be more likely to experience adverse drug reactions. Materials & Methods: In an attempt to investigate the relationship between the polymorphic enzymes, steady-state drug concentrations, therapeutic effects and side effects, 61 patients were clinically evaluated and genotyped, and drug concentrations were measured and outcomes analyzed. Samples were collected and DNA extracted from whole blood using a Puregene® DNA isolation kit. CYP2D6 genotyping (*3, *4, *5, *6, *7, *8 and gene duplication) were carried out using Pyrosequencing®. Steady-state plasma concentrations of methadone, oxycodone, hydrocodone and tramadol were determined by HPLC tandem mass spectrometry. Results: The results demonstrated the prevalence of CYP2D6 polymorphisms in the population undergoing pain management was not statistically different from the general population. The majority of the pain patients (54%) were extensive metabolizers; 41% were intermediate metabolizers and 5% poor metabolizers. Poor metabolizers in general tended to have the highest steady-state drug concentrations compared with extensive metabolizers (poor metabolizers > intermediate metabolizers > extensive metabolizers) although this wasn’t statistically significant. Also, a relationship between oxycodone steady-state drug concentrations and pain relief was found. A total of 80% of patients reporting adverse drug reactions also had impaired CYP2D6 metabolism. The remaining 20% with adverse drug reactions had other cofactors (i.e., drug–drug interactions) that could explain the toxicity. Conclusion: These results suggest that patient care may be improved by genotyping and following therapeutic drug concentrations. Benefits include increased efficiency in proper drug selection, dose optimization and minimization of adverse drug reactions to improve patient outcome and safety. In addition, this study clearly demonstrated a relationship between oxycodone steady-state drug concentrations and pain relief. Future large-scale prospective studies are needed to confirm the clinical value of using genetic information to guide pain management therapy.
Collapse
Affiliation(s)
- Paul J Jannetto
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin, WI 53226, USA
| | | |
Collapse
|
7
|
Abstract
This article focuses on the first generation of pharmacogenetic tests that are potentially useful in psychiatry. All pharmacogenetic tests currently on the market, or soon to be marketed in psychiatry, for which some information has been published in peer-reviewed journal articles (or abstracts), were selected. Five pharmacogenetic tests are reviewed in detail: the Roche AmpliChip CYP450 Test, the Luminex Tag-It Mutation Detection Kit, the LGC clozapine response test, the PGxPredict: Clozapine test, and the Genomas PhyzioType system. After reviewing these tests, three practical aspects of implementing pharmacogenetic testing in psychiatric clinical practice are briefly reviewed: (1) the evaluation of these tests in clinical practice, (2) cost-effectiveness, and (3) regulatory oversight. Finally, the future of these and other pharmacogenetic tests in psychiatry is discussed.
Collapse
|
8
|
CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 2008; 115:1019-25. [PMID: 18423869 DOI: 10.1016/j.ophtha.2008.01.036] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To determine if CFH and LOC387715/ARMS2 genotypes influence treatment response to AREDS-type nutritional supplementation with antioxidants and zinc. DESIGN Retrospective analysis of participants in a randomized, controlled clinical trial, the Age-Related Eye Disease Study (AREDS). PARTICIPANTS AND/OR CONTROLS Eight hundred seventy-six AREDS study participants who were considered at high risk for developing advanced age-related macular degeneration (AMD). METHODS Using DNA extracted from venous blood of 876 white participants in AREDS categories 3 and 4, that is, those considered to be at high risk for progression to advanced AMD, the authors genotyped for the single nucleotide polymorphisms in the CFH (Y402H, rs1061170) and LOC387715/ARMS2 (A69S, rs10490924) genes. The authors performed adjusted unconditional logistic regression analysis and assessed interactions of these genotypes to determine the relationship between CFH and LOC387715/ARMS2 genotype and treatment with antioxidants plus zinc. MAIN OUTCOME MEASURES Interaction between genetic variants and treatment response as determined by progression from high-risk to advanced AMD. RESULTS Progression occurred in 264 of 876 patients from AREDS category 3 (intermediate AMD) to category 4 or 5 (unilateral or bilateral advanced AMD, respectively), or from category 4 to category 5. A treatment interaction was observed between the CFH Y402H genotype and supplementation with antioxidants plus zinc (CC; P = 0.03). An interaction (P = 0.004) was observed in the AREDS treatment groups taking zinc when compared with the groups taking no zinc, but not in groups taking antioxidants compared with those taking no antioxidants (P = 0.59). There were no significant treatment interactions observed with LOC387715/ARMS2. CONCLUSIONS The findings of this study indicate that an individual's response to AREDS supplements may be related to CFH genotype. This could have clinical relevance by predicting treatment outcome and potentially preventing unwanted side effects in those who may not benefit. Corroboration of these analyses is needed before considering modification of current management. This is among the first pharmacogenetic studies to suggest interaction between genotype and treatment.
Collapse
|
9
|
The Impact of CYP2D6 and CYP2C19 Polymorphisms on Suicidal Behavior and Substance Abuse Disorder Among Patients With Schizophrenia: A Retrospective Study. Ther Drug Monit 2008; 30:265-70. [DOI: 10.1097/ftd.0b013e31817721d6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cacabelos R. Pharmacogenetic basis for therapeutic optimization in Alzheimer's disease. Mol Diagn Ther 2008; 11:385-405. [PMID: 18078356 DOI: 10.1007/bf03256262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease is a major health problem in developed countries. Approximately 10-15% of direct costs in dementia are attributed to pharmacological treatment, and only 10-20% of the patients are moderate responders to conventional antidementia drugs, with questionable cost effectiveness. The phenotypic expression of Alzheimer's disease is characterized by amyloid deposition in brain tissue and vessels (amyloid angiopathy), intracellular neurofibrillary tangle formation, synaptic and dendritic loss, and premature neuronal death. Primary pathogenic events underlying this neurodegenerative process include genetic factors involving more than 200 different genes distributed across the human genome, accompanied by progressive cerebrovascular dysfunction, and diverse environmental factors. Mutations in genes directly associated with the amyloid cascade (APP, PSEN1, PSEN2) are present in less than 5% of the Alzheimer's disease population; however, the presence of the epsilon4 allele of the apolipoprotein E gene (APOE) represents a major risk factor for more than 40% of patients with dementia. Genotype-phenotype correlation studies and functional genomics studies have revealed the association of specific mutations in primary loci and/or APOE-related polymorphic variants with the phenotypic expression of biological traits. It is estimated that genetics accounts for between 20% and 95% of the variability in drug disposition and pharmacodynamics. Recent studies indicate that the therapeutic response in Alzheimer's disease is genotype specific, depending on genes associated with Alzheimer's disease pathogenesis and/or genes responsible for drug metabolism (e.g. cytochrome P450 [CYP] genes). In monogenic studies, APOEepsilon4/epsilon4 genotype carriers are the worst responders to conventional treatments. Some cholinesterase inhibitors currently being use in the treatment of Alzheimer's disease are metabolized via CYP-related enzymes. These drugs can interact with many other drugs that are substrates, inhibitors or inducers of the CYP system, this interaction eliciting liver toxicity and other adverse drug reactions. CYP2D6 enzyme isoforms are involved in the metabolism of more than 20% of drugs used in CNS disorders. The distribution of the CYP2D6 genotypes in the European population of the Iberian peninsula differentiates four major categories of CYP2D6-related metabolizer types: (i) extensive metabolizers (EM) [51.61%]; (ii) intermediate metabolizers (IM) [32.26%]; (iii) poor metabolizers (PM) [9.03%]; and (iv) ultra-rapid metabolizers (UM) [7.10%]. PMs and UMs tend to show higher transaminase activity than EMs and IMs. EMs and IMs are the best responders, and PMs and UMs are the worst responders to pharmacologic treatments in Alzheimer's disease. At this early stage of the development of pharmacogenomic/pharmacogenetic procedures in Alzheimer's disease therapeutics, it seems very plausible that the pharmacogenetic response in Alzheimer's disease depends on the interaction of genes involved in drug metabolism and genes associated with Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain.
| |
Collapse
|
11
|
Abstract
Dementia is a major problem of health in developed countries. Alzheimer's disease (AD) is the main cause of dementia, accounting for 50-70% of the cases, followed by vascular dementia (30-40%) and mixed dementia (15-20%). Approximately 10-15% of direct costs in dementia are attributed to pharmacological treatment, and only 10-20% of the patients are moderate responders to conventional anti-dementia drugs, with questionable cost-effectiveness. Primary pathogenic events underlying the dementia process include genetic factors in which more than 200 different genes distributed across the human genome are involved, accompanied by progressive cerebrovascular dysfunction and diverse environmental factors. Mutations in genes directly associated with the amyloid cascade (APP, PS1, PS2) are only present in less than 5% of the AD population; however, the presence of the APOE-4 allele in the apolipoprotein E (APOE) gene represents a major risk factor for more than 40% of patients with dementia. Genotype-phenotype correlation studies and functional genomics studies have revealed the association of specific mutations in primary loci (APP, PS1, PS2) and/or APOE-related polymorphic variants with the phenotypic expression of biological traits. It is estimated that genetics accounts for 20-95% of variability in drug disposition and pharmacodynamics. Recent studies indicate that the therapeutic response in AD is genotype-specific depending upon genes associated with AD pathogenesis and/or genes responsible for drug metabolism (CYPs). In monogenic-related studies, APOE-4/4 carriers are the worst responders. In trigenic (APOE-PS1-PS2 clusters)-related studies the best responders are those patients carrying the 331222-, 341122-, 341222-, and 441112- genomic profiles. The worst responders in all genomic clusters are patients with the 441122+ genotype, indicating the powerful, deleterious effect of the APOE-4/4 genotype on therapeutics in networking activity with other AD-related genes. Cholinesterase inhibitors of current use in AD are metabolized via CYP-related enzymes. These drugs can interact with many other drugs which are substrates, inhibitors or inducers of the cytochrome P-450 system; this interaction elicits liver toxicity and other adverse drug reactions. CYP2D6-related enzymes are involved in the metabolism of more than 20% of CNS drugs. The distribution of the CYP2D6 genotypes differentiates four major categories of CYP2D6-related metabolyzer types: (a) Extensive Metabolizers (EM)(*1/*1, *1/*10)(51.61%); (b) Intermediate Metabolizers (IM) (*1/*3, *1/*4, *1/*5, *1/*6, *1/*7, *10/*10, *4/*10, *6/*10, *7/*10) (32.26%); (c) Poor Metabolizers (PM) (*4/*4, *5/*5) (9.03%); and (d) Ultra-rapid Metabolizers (UM) (*1xN/*1, *1xN/*4, Dupl) (7.10%). PMs and UMs tend to show higher transaminase activity than EMs and IMs. EMs and IMs are the best responders, and PMs and UMs are the worst responders to pharmacological treatments in AD. It seems very plausible that the pharmacogenetic response in AD depends upon the interaction of genes involved in drug metabolism and genes associated with AD pathogenesis. The establishment of clinical protocols for the practical application of pharmacogenetic strategies in AD will foster important advances in drug development, pharmacological optimization and cost-effectiveness of drugs, and personalized treatments in dementia.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15166-Bergondo, Coruña, Spain.
| |
Collapse
|
12
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
13
|
|
14
|
Ruaño G, Goethe JW, Caley C, Woolley S, Holford TR, Kocherla M, Windemuth A, de Leon J. Physiogenomic comparison of weight profiles of olanzapine- and risperidone-treated patients. Mol Psychiatry 2007; 12:474-82. [PMID: 17199131 DOI: 10.1038/sj.mp.4001944] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Atypical antipsychotics induce pre-diabetic symptoms in some but not all patients, characterized most notably by elevated weight. The side effect profiles of the various drugs in the class differ, however, raising the possibility of drug-specific mechanisms for similar side effects. We used physiogenomic analysis, an approach previously employed to study the genetics of drug and diet response, to discover and compare genetic associations with weight profiles observed in patients treated with olanzapine and risperidone as an approach to unraveling contrasting mechanistic features of both drugs. A total of 29 single nucleotide polymorphisms (SNPs) were selected from 13 candidate genes relevant to two potential pharmacological axes of psychotropic-related weight profiles, appetite peptides and peripheral lipid homeostasis. We applied physiogenomic analysis to a cross-section of 67 and 101 patients being treated with olanzapine and risperidone, respectively, and assessed genetic associations with the weight profiles. Weight profiles in patients treated with olanzapine were significantly associated with SNPs in the genes for apolipoprotein E, apolipoprotein A4 and scavenger receptor class B, member 1. Weight profiles in patients treated with risperidone were significantly associated with SNPs in the genes for leptin receptor, neuropeptide Y receptor Y5 and paraoxonase 1. These results are consistent with contrasting mechanisms for the weight profile of patients treated with these drugs. Genes associated with olanzapine weight profiles may be related to peripheral lipid homeostatic axes, whereas those associated with risperidone's may be related to brain appetite peptide regulation. Future physiogenomic studies will include neurotransmitter receptor SNPs and validation in independent samples.
Collapse
Affiliation(s)
- G Ruaño
- Genomas, Inc., Hartford, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
White TJ, Clark AG, Broder S. Genome-based biomarkers for adverse drug effects, patient enrichment and prediction of drug response, and their incorporation into clinical trial design. Per Med 2006; 3:177-185. [DOI: 10.2217/17410541.3.2.177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classic examples of pharmacogenomic biomarkers for drug efficacy include genetic variation in the drug target (including its expression level) and drug metabolizing enzymes (DMEs). Recent US FDA approvals of tests for cytochrome P450 2D6/2C9 and uridine diphosphate glucuronsyltransferase (UGT)1A1 have given regulatory endorsement to biomarkers that can improve drug safety by identifying individuals at risk for drug toxicity. Markers that predict risk for disease can identify patients who will have a greater than average benefit from therapy. This creates a new opportunity to enrich clinical trials with patients who are likely to have more events and to achieve earlier drug approval. Markers that predict for risk of cardiovascular, thrombotic and liver diseases may also identify a subset of individuals at substantially elevated risk for adverse drug effects. The adaptive clinical trial design provides a mechanism for incorporating genomic information during clinical trials, while providing sufficient time for diagnostic product development and co-registration with a new drug application.
Collapse
Affiliation(s)
- Thomas J White
- Celera Genomics, 1401 Harbor Bay Parkway, Alameda, CA 94502, USA
| | - Andrew G Clark
- Cornell University, Molecular Biology and Genetics, Ithaca, NY 14853, USA
| | - Samuel Broder
- Celera Genomics, Inc. & Celera Diagnostics, 45 W. Gude Drive, Rockville, MD 20850, USA
| |
Collapse
|
16
|
Abstract
Approximately 10-20% of the direct costs of Alzheimer's disease are attributed to pharmacological treatment. Less than 20% of Alzheimer's disease patients are moderate responders to conventional drugs (e.g., donepezil, rivastigmine, galantamine, memantine) with doubtful cost-effectiveness. In total, 15% of the Caucasian population with Alzheimer's disease are carriers of defective CYP2D6 polymorphic variants that are potentially responsible for therapeutic failures when receiving cholinesterase inhibitors and psychotropic drugs. In addition, structural genomics studies demonstrate that > 100 genes might be involved in Alzheimer's disease pathogenesis, regulating dysfunctional genetic networks leading to premature neuronal death. The Alzheimer's disease population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. Alzheimer's disease patients also differ from patients with other forms of dementia in their genomic architecture, possibly with different genes acting synergistically to influence the phenotypic expression of biological traits. Functional genomics studies in Alzheimer's disease reveal that age of onset, brain atrophy, cerebrovascular haemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function and amyloid deposition are associated with Alzheimer's disease-related genes. Pioneering pharmacogenomics studies also demonstrate that the therapeutic response in Alzheimer's disease is genotype-specific, with APOE-4/4 carriers as the worst responders to conventional treatments. It is likely that pharmacogenetic and pharmacogenomic factors account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenomic/pharmacogenetic protocols in Alzheimer's disease may foster therapeutic optimisation by helping to develop cost-effective drugs, improving efficacy and safety, and reducing adverse events and cutting-down unnecessary cost for the industry and the community.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, 15166-Bergondo, Coruña, Spain.
| |
Collapse
|
17
|
Anderlik M. Commercial biobanks and genetic research: ethical and legal issues. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2004; 3:203-15. [PMID: 12814328 DOI: 10.2165/00129785-200303030-00006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human biological material is recognized as an important tool in research, and the demand for collections that combine samples and data is increasing. For-profit companies have assumed a leading role in assembling and managing these collections. The emergence of commercial biobanks has raised significant ethical and legal issues. The growing awareness of the importance of human biological material in research has been accompanied by a growing awareness of the deficiencies of existing archives of tissue. Commercial biobanks are attempting to position themselves as a, if not the, solution to problems that include a lack of public trust in researchers and lack of financial resources to support the prospective creation of collections that meet the highest scientific and ethical standards in the non-profit sector. Broad social and policy questions surrounding the operation of commercial biobanks have been raised however. International documents, in particular, suggest discomfort with the idea of gain from the mere transfer or exchange of human genetic material and information. Commercial involvement in the development of useful products from tissue is generally not condemned, so long as there is attention to scientific and social norms. Views on the acceptability of commercial biobanks vary. Specific issues that arise when commercial biobanks are permitted--in the areas of consent, recruitment, confidentiality, and accountability--are also relevant to the operation of public and private, non-profit biobanks. Although many uncertainties remain, consensus seems to be forming on a number of issues. For example, there appears to be agreement that blanket consent to future unspecified research uses, with no conditions, is unacceptable. Indeed, many of the leading commercial biobanks have been attentive to concerns about consent, recruitment, and confidentiality. Unfortunately, the binding nature of assurances in these areas is unclear, especially given the risk of insolvency. Hence, accountability may be the most important area of concern in relation to commercial biobanks. A few countries have enacted general legislation providing for comprehensive regulation of biobanks, for example, through licensure. Efforts to achieve harmonization of standards at the international level, and cautions against an approach that focuses on biobanking for genetic research alone, are to be applauded.
Collapse
Affiliation(s)
- Mary Anderlik
- Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA.
| |
Collapse
|
18
|
Oscarson M. Pharmacogenetics of drug metabolising enzymes: importance for personalised medicine. Clin Chem Lab Med 2003; 41:573-80. [PMID: 12747605 DOI: 10.1515/cclm.2003.087] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The number of polymorphisms identified in genes encoding drug metabolising enzymes, drug transporters, and receptors is rapidly increasing. In many cases, these genetic factors have a major impact on the pharmacokinetics and pharmacodynamics of a particular drug and thereby influence the sensitivity to such drug in an individual patient with a certain genotype. The highest impact is seen for drugs with a narrow therapeutic index, with important examples emerging from treatment with antidepressants, oral anticoagulants, and cytostatics, which are metabolised by the polymorphic enzymes cytochrome P450 2D6 (CYP2D6), cytochrome P450 2C9 (CYP2C9), and thiopurine-S-methyltransferase (TPMT), respectively. In order to apply the increasing amount of pharmacogenetic knowledge to clinical practise, specific dosage recommendations based on genotypes will have to be developed to guide the clinician, and these recommendations will have to be evaluated in prospective clinical studies. Such development will lead to a patient-tailored drug therapy which hopefully would be more efficient and will result in fewer adverse drug reactions.
Collapse
Affiliation(s)
- Mikael Oscarson
- Division of Pharmacology/Neurobiology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
19
|
Reilly PR. Personalized Medicine and Pharmacogenetics: New Tools for Disease Management. ACTA ACUST UNITED AC 2002. [DOI: 10.1089/109350702320229168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Abstract
Alzheimer's disease (AD) is a genetically complex disorder associated with multiple genetic defects either mutational or of susceptibility. Current AD genetics does not explain in full the etiopathogenesis of AD, suggesting that environmental factors and/or epigenetic phenomena may also contribute to AD pathology and phenotypic expression of dementia. The genomics of AD is still in its infancy, but is helping us to understand novel aspects of the disease including genetic epidemiology, multifactorial risk factors, pathogenic mechanisms associated with genetic networks and genetically-regulated metabolic cascades. AD genomics is also fostering new strategies in pharmacogenomic research and prevention. Functional genomics, proteomics, pharmacogenomics, high-throughput methods, combinatorial chemistry and modern bioinformatics will greatly contribute to accelerating drug development for AD and other complex disorders. The multifactorial genetic dysfunction in AD includes mutational loci (APP, PS1, PS2) and diverse susceptibility loci (APOE, A2M, AACT, LRP1, IL1A, TNF, ACE, BACE, BCHE, CST3, MTHFR, GSK3B, NOS3) distributed across the human genome, probably converging in common pathogenic mechanisms that lead to premature neuronal death. Genomic associations integrate polygenic matrix models to elucidate the genomic organization of AD in comparison to the control population. Using APOE-related monogenic models it has been demonstrated that the therapeutic response to drugs (e.g., cholinesterase inhibitors, non-cholinergic compounds) in AD is genotype-specific. A multifactorial therapy combining three different drugs yielded positive results during 6-12 months in approximately 60% of the patients. With this therapeutic strategy, APOE-4/4 carriers were the worst responders and patients with the APOE-3/4 genotype were the best responders. Other polymorphic variants (PS1, PS2) also influence the therapeutic response to different drugs in AD patients, suggesting that the final pharmacological outcome is the result of multiple genomic interactions, including AD-related genes and genes associated with drug metabolism, disposition, and elimination. The pharmacogenomics of AD may contribute in the future to optimise drug development and therapeutics, increasing efficacy and safety, and reducing side-effects and unnecessary costs.
Collapse
Affiliation(s)
- Ramón Cacabelos
- From the EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, La Coruña, Spain.
| |
Collapse
|
21
|
Abstract
Drug treatment is in many cases ineffective. Besides patients who do not respond to the treatment despite receiving expensive drugs, adverse drug reactions (ADRs) as a consequence of the treatment, is estimated to cost the US society 100 billion USD and over 100,000 deaths per year. Pharmacogenetics is the discipline which takes the patient's genetic information of drug transporters, drug metabolizing enzymes and drug receptors into account to allow for an individualized drug therapy leading to optimal choice and dose of the drugs in question. It is believed that much cost for the society can be saved in this manner. Many drug transporters are polymorphic. In addition, the majority of phase I and phase II dependent drug metabolism is carried out by polymorphic enzymes which can cause abolished, quantitatively or qualitatively altered or enhanced drug metabolism. Stable duplication, multiduplication or amplification of active genes, most likely in response to dietary components that have resulted in a selection of alleles with multiple noninducible genes, has been described. Several examples exist where subjects carrying certain alleles suffer from a lack of drug efficacy because of ultrarapid metabolism caused by multiple genes or by induction of gene expression, or, alternatively, adverse effects from the drug treatment as a result of the presence of defective alleles. The information about the role of polymorphic drug receptors for efficiency of drug therapy is more scarce, although promising examples are seen in drug treatment of asthma where the efficiency can be severely enhanced by predictive genotyping of the drug targets. In addition, certain polymorphic genes can be used as markers for optimization of the drug therapy. It is likely that predictive genotyping is of benefit in 10-20% of drug treatment and thereby allows for prevention of causalities as a cause of ADRs and thus improves the health for a significant fraction of the patients. In 15-40% of the cases, the penetrance of genetic polymorphism is of less importance because of the polygenic influence on the outcome of drug treatment and in 50% of the cases, pharmacogenetics would be without influence because of other more important physiological and environmental factors. In the present contribution an overview about our present knowledge how polymorphic genes can influence the drug efficacy is presented. Some emphasis will be given to different forms of cytochrome P450 which are of importance for drug metabolism.
Collapse
Affiliation(s)
- M Ingelman-Sundberg
- Division of Molecular Toxicology, IMM, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|