1
|
Ex Vivo Pulmonary Oedema after In Vivo Blast-Induced Rat Lung Injury: Time Dependency, Blast Intensity and Beta-2 Adrenergic Receptor Role. Biomedicines 2022; 10:biomedicines10112930. [PMID: 36428498 PMCID: PMC9687465 DOI: 10.3390/biomedicines10112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (β2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the β-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: β2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats.
Collapse
|
2
|
Zhan B, Shen J. Mitochondria and their potential role in acute lung injury (Review). Exp Ther Med 2022; 24:479. [PMID: 35761815 PMCID: PMC9214601 DOI: 10.3892/etm.2022.11406] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/16/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Biao Zhan
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Jie Shen
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
3
|
In Brief. Curr Probl Surg 2020. [DOI: 10.1016/j.cpsurg.2020.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Mowery NT, Terzian WTH, Nelson AC. Acute lung injury. Curr Probl Surg 2020; 57:100777. [PMID: 32505224 DOI: 10.1016/j.cpsurg.2020.100777] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Nathan T Mowery
- Associate Professor of Surgery, Wake Forest Medical Center, Winston-Salem, NC.
| | | | - Adam C Nelson
- Acute Care Surgery Fellow, Wake Forest Medical Center, Winston-Salem, NC
| |
Collapse
|
6
|
Sluzalska KD, Liebisch G, Ishaque B, Schmitz G, Rickert M, Steinmeyer J. The Effect of Dexamethasone, Adrenergic and Cholinergic Receptor Agonists on Phospholipid Metabolism in Human Osteoarthritic Synoviocytes. Int J Mol Sci 2019; 20:ijms20020342. [PMID: 30650648 PMCID: PMC6359197 DOI: 10.3390/ijms20020342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 01/07/2023] Open
Abstract
Phospholipids (PLs) possess the unique ability to contribute to synovial joint lubrication. The aim of our study was to determine for the first time the effect of dexamethasone and some adrenergic and cholinergic agonists on the biosynthesis and release of PLs from human fibroblast-like synoviocytes (FLS). Osteoarthritic human knee FLS were treated with dexamethasone, terbutaline, epinephrine, carbachol, and pilocarpine, or the glucocorticoid receptor antagonist RU 486. Simultaneously PL biosynthesis was determined through the incorporation of stable isotope-labeled precursors into PLs. Radioactive isotope-labeled precursors were used to radiolabel PLs for the subsequent quantification of their release into nutrient media. Lipids were extracted and quantified using electrospray ionization tandem mass spectrometry or liquid scintillation counting. Dexamethasone significantly decreased the biosynthesis of phosphatidylcholine, phosphatidylethanolamine (PE), PE-based plasmalogen, and sphingomyelin. The addition of RU 486 abolished these effects. A release of PLs from FLS into nutrient media was not recognized by any of the tested agents. None of the adrenergic or cholinergic receptor agonists modulated the PL biosynthesis. We demonstrate for the first time an inhibitory effect of dexamethasone on the PL biosynthesis of FLS from human knees. Moreover, our study indicates that the PL metabolism of synovial joints and lungs are differently regulated.
Collapse
Affiliation(s)
- Katarzyna D Sluzalska
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerhard Liebisch
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Bernd Ishaque
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Gerd Schmitz
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Markus Rickert
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
7
|
Matsumoto T, Kushida H, Matsushita S, Oyama Y, Suda T, Watanabe J, Kase Y, Setou M. Distribution Analysis via Mass Spectrometry Imaging of Ephedrine in the Lungs of Rats Orally Administered the Japanese Kampo Medicine Maoto. Sci Rep 2017; 7:44098. [PMID: 28272490 PMCID: PMC5341069 DOI: 10.1038/srep44098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Maoto, a traditional Japanese Kampo medicine, has been used to treat various respiratory diseases, including respiratory infections and influenza. Ephedrine (EPD), the main ingredient in maoto, is also clinically used to treat respiratory diseases. However, the pharmacokinetics and distribution of EPD in the lungs after the administration of maoto have not been demonstrated. This study aimed to determine the concentrations, distribution, and pharmacokinetics of EPD and its precursor methylephedrine (MEPD) in the lungs of rats orally administered maoto (1 and 4 g/kg). We used liquid chromatography–electrospray ionization-tandem mass spectrometry to measure the ingredient concentrations. Both ingredients were detected in maoto-treated lung homogenates. Next, we examined the distribution of both ingredients in lung sections by using matrix-assisted laser desorption/ionization-mass spectrometry imaging, a powerful tool for the visualization of the distribution of biological molecules. The mass spectrometry imaging analysis detected only EPD and provided the first visual demonstration that EPD is distributed in the alveoli, bronchi, and bronchioles in the lungs of rats orally administered maoto (4 g/kg, three times at 2-h intervals). These results suggest that the pharmacological efficacy of maoto for the amelioration of respiratory symptoms is related to the distribution of EPD in the lung.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Hirotaka Kushida
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Shoko Matsushita
- Department of Cellular &Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshiyuki Oyama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Junko Watanabe
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Yoshio Kase
- Tsumura Research Laboratories, Kampo Scientific Strategies Division, Tsumura &Co., Ibaraki, Japan
| | - Mitsutoshi Setou
- Department of Cellular &Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
8
|
Hydroxysafflor yellow A suppresses oleic acid-induced acute lung injury via protein kinase A. Toxicol Appl Pharmacol 2013; 272:895-904. [PMID: 23933165 DOI: 10.1016/j.taap.2013.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/14/2023]
Abstract
Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO2), carbon dioxide tension, pH, and the PaO2/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22(phox) levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI.
Collapse
|
9
|
Lafargue M, Xu L, Carlès M, Serve E, Anjum N, Iles KE, Xiong X, Giffard R, Pittet JF. Stroke-induced activation of the α7 nicotinic receptor increases Pseudomonas aeruginosa lung injury. FASEB J 2012; 26:2919-29. [PMID: 22490926 DOI: 10.1096/fj.11-197384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious complications, predominantly pneumonia, are the most common cause of death in the postacute phase of stroke, although the mechanisms underlying the corresponding immunosuppression are not fully understood. We tested the hypothesis that activation of the α7 nicotinic acetylcholine receptor (α7nAChR) pathway is important in the stroke-induced increase in lung injury caused by Pseudomonas aeruginosa pneumonia in mice. Prior stroke increased lung vascular permeability caused by P. aeruginosa pneumonia and was associated with decreased lung neutrophil recruitment and bacterial clearance in mice. Pharmacologic inhibition (methyllycaconitine IC(50): 0.2-0.6 nM) or genetic deletion of the α7nAChR significantly (P<0.05) attenuates the effect of prior stroke on lung injury and mortality caused by P. aeruginosa pneumonia in mice. Finally, pretreatment with PNU-282987, a pharmacologic activator of the α7nAChR (EC(50): 0.2 μM), significantly (P<0.05) increased lung injury caused by P. aeruginosa pneumonia, significantly (P<0.05) decreased the release of KC, a major neutrophil chemokine, and significantly (P<0.05) decreased intracellular bacterial killing by a mouse alveolar macrophage cell line and primary mouse neutrophils. In summary, the α7 nicotinic cholinergic pathway plays an important role in mediating the systemic immunosuppression observed after stroke and directly contributes to more severe lung damage induced by P. aeruginosa.
Collapse
Affiliation(s)
- Mathieu Lafargue
- Department of Anesthesia, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 2010; 23:243-52. [PMID: 20073554 PMCID: PMC3133560 DOI: 10.1089/jamp.2009.0775] [Citation(s) in RCA: 579] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/03/2009] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) remains a significant source of morbidity and mortality in the critically ill patient population. Defined by a constellation of clinical criteria (acute onset of bilateral pulmonary infiltrates with hypoxemia without evidence of hydrostatic pulmonary edema), ALI has a high incidence (200,000 per year in the US) and overall mortality remains high. Pathogenesis of ALI is explained by injury to both the vascular endothelium and alveolar epithelium. Recent advances in the understanding of pathophysiology have identified several biologic markers that are associated with worse clinical outcomes. Phase III clinical trials by the NHLBI ARDS Network have resulted in improvement in survival and a reduction in the duration of mechanical ventilation with a lung-protective ventilation strategy and fluid conservative protocol. Potential areas of future treatments include nutritional strategies, statin therapy, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- University of California, San Francisco, Cardiovascular Research Institute, San Fransicso, California
| | - Michael A. Matthay
- University of California, San Francisco, Departments of Medicine and Anesthesiology, San Fransicso, California
| |
Collapse
|
11
|
McAuley D, Matthay MA. A Role for β2 Agonists in ARDS — The Question Remains Unanswered. J Intensive Care Soc 2009. [DOI: 10.1177/175114370901000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Danny McAuley
- Co-Director of Research, Intensive Care Society, Senior Lecturer and Consultant in Intensive Care Medicine, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University of Belfast
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California at San Francisco
| |
Collapse
|
12
|
Inhaled milrinone attenuates experimental acute lung injury. Intensive Care Med 2008; 35:171-8. [PMID: 18972099 DOI: 10.1007/s00134-008-1344-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 10/11/2008] [Indexed: 12/14/2022]
Abstract
PURPOSE To test whether inhalation of the phosphodiesterase 3 inhibitor milrinone may attenuate experimental acute lung injury (ALI). METHODS In rats, ALI was induced by infusion of oleic acid (OA). After 30 min, milrinone was inhaled either as single dose, or repeatedly in 30 min intervals. In mice, ALI was induced by intratracheal instillation of hydrochloric acid, followed by a single milrinone inhalation. RESULTS Four hours after OA infusion, ALI was evident as lung inflammation, protein-rich edema and hypoxemia. A single inhalation of milrinone attenuated the increase in lung wet-to-dry weight ratio and myeloperoxidase activity, and reduced protein concentration, neutrophil counts and TNF-alpha levels in bronchoalveolar lavage. This effect was further pronounced when milrinone was repeatedly inhaled. In mice with acid-induced ALI, milrinone attenuated hypoxemia and prevented the increase in lung myeloperoxidase activity. CONCLUSIONS Inhalation of aerosolized milrinone may present a novel therapeutic strategy for the treatment of ALI.
Collapse
|
13
|
Kuebler WM. Hitting new barriers in ventilator-induced lung injury. Intensive Care Med 2007; 34:592-4. [PMID: 18087689 DOI: 10.1007/s00134-007-0966-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/13/2007] [Indexed: 11/27/2022]
|
14
|
Folkesson HG, Matthay MA. Alveolar epithelial ion and fluid transport: recent progress. Am J Respir Cell Mol Biol 2006; 35:10-9. [PMID: 16514116 PMCID: PMC2658691 DOI: 10.1165/rcmb.2006-0080sf] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hans G Folkesson
- Department of Physiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, USA
| | | |
Collapse
|