1
|
Li Y, Qiu X, Lei Y, Zhou R. G-CSF + plerixafor versus G-CSF alone mobilized hematopoietic stem cells in patients with multiple myeloma and lymphoma: a systematic review and meta-analysis. Ann Med 2024; 56:2329140. [PMID: 38470973 PMCID: PMC10939106 DOI: 10.1080/07853890.2024.2329140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AIM The combination of granulocyte-colony stimulating factor (G-CSF) and plerixafor is one of the approaches for hematopoietic stem cell mobilization in patients with multiple myeloma (MM), non-Hodgkin's lymphoma (NHL), and Hodgkin's lymphoma (HL). This systematic review and meta-analysis aimed to determine the ability of G-CSF + plerixafor to mobilize peripheral blood (PB) CD34+ cells and examine its safety profile. METHODS We performed a database search using the terms 'granulocyte colony stimulating factor', 'G-CSF', 'AMD3100', and 'plerixafor', published up to May 1, 2023. The methodology is described in further detail in the PROSPERO database (CRD42023425760). RESULTS Twenty-three studies were included in this systematic review and meta-analysis. G-CSF + plerixafor resulted in more patients achieving the predetermined apheresis yield of CD34+ cells than G-CSF alone (OR, 5.33; 95%, 4.34-6.55). It was further discovered that G-CSF + plerixafor could mobilize more CD34+ cells into PB, which was beneficial for the next transplantation in both randomized controlled (MD, 18.30; 95%, 8.74-27.85) and single-arm (MD, 20.67; 95%, 14.34-27.00) trials. Furthermore, G-CSF + plerixafor did not cause more treatment emergent adverse events than G-CSF alone (OR, 1.25; 95%, 0.87-1.80). CONCLUSIONS This study suggests that the combination of G-CSF and plerixafor, resulted in more patients with MM, NHL, and HL, achieving the predetermined apheresis yield of CD34+ cells, which is related to the more effective mobilization of CD34+ cells into PB.
Collapse
Affiliation(s)
- Yuyao Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Qiu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yupeng Lei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruixi Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Giordano A, Rovira M, Veny M, Barastegui R, Marín P, Martínez C, Fernández-Avilés F, Suárez-Lledó M, Domènech A, Serrahima A, Lozano M, Cid J, Ordás I, Fernández-Clotet A, Caballol B, Gallego M, Vara A, Masamunt MC, Giner À, Teubel I, Esteller M, Corraliza AM, Panés J, Salas A, Ricart E. Cyclophosphamide-free Mobilisation Increases Safety While Preserving the Efficacy of Autologous Haematopoietic Stem Cell Transplantation in Refractory Crohn's Disease Patients. J Crohns Colitis 2024; 18:1701-1712. [PMID: 38757210 DOI: 10.1093/ecco-jcc/jjae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND AIM Autologous haematopoietic stem cell transplantation [AHSCT] is a therapeutic option for refractory Crohn's disease [CD]. However, high adverse event rates related to chemotherapy toxicity and immunosuppression limit its applicability. This study aims to evaluate AHSCT's safety and efficacy using a cyclophosphamide [Cy]-free mobilisation regimen. METHODS A prospective, observational study included 14 refractory CD patients undergoing AHSCT between June 2017 and October 2022. The protocol involved outpatient mobilisation with G-CSF 12-16 μg/kg/daily for 5 days, and optional Plerixafor 240 μg/d [1-2 doses] if the CD34 + cell count target was unmet. Standard conditioning with Cy and anti-thymocyte globulin was administered. Clinical, endoscopic, and radiological assessments were conducted at baseline and during follow-up. RESULTS All patients achieved successful outpatient mobilisation [seven patients needed Plerixafor] and underwent transplantation. Median follow-up was 106 weeks (interquartile range [IQR] 52-348). No mobilisation-related serious adverse events [SAEs] or CD worsening occurred. Clinical and endoscopic remission rates were 71% and 41.7% at 26 weeks, 64% and 25% at 52 weeks, and 71% and 16.7% at the last follow-up, respectively. The percentage of patients who restarted CD therapy for clinical relapse and/or endoscopic/radiological activity was 14% at 26 weeks, 57% at 52 weeks, and 86% at the last follow-up, respectively. Peripheral blood cell populations and antibody levels post-AHSCT were comparable to Cy-based mobilisation. CONCLUSIONS Cy-free mobilisation is safe and feasible in refractory CD patients undergoing AHSCT. Although relapse occurs in a significant proportion of patients, clinical and endoscopic responses are achieved upon CD-specific therapy reintroduction.
Collapse
Affiliation(s)
- Antonio Giordano
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Montserrat Rovira
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Marisol Veny
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Rebeca Barastegui
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Pedro Marín
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Carmen Martínez
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Francesc Fernández-Avilés
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - María Suárez-Lledó
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Ariadna Domènech
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Anna Serrahima
- Bone Marrow Transplantation Unit, Haematology Department, Institute of Haematology and Oncology Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], University of Barcelona, Josep Carreras Leukaemia Research Foundation, Barcelona, Catalonia, Spain
| | - Miquel Lozano
- Apheresis Unit, Department of Hemotherapy and Hemostasis, ICAMS, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Joan Cid
- Apheresis Unit, Department of Hemotherapy and Hemostasis, ICAMS, Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Catalonia, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Agnés Fernández-Clotet
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Berta Caballol
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Marta Gallego
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Alejandro Vara
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Maria Carme Masamunt
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Àngel Giner
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Iris Teubel
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Anna María Corraliza
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Julian Panés
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Unit, Gastroenterology Department. Hospital Clínic Barcelona, Fundació Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS], Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Martínez-Asensio M, Sàrrias L, Gorjón-de-Pablo G, Fernández-Serrano M, Camaló-Vila J, Gibert A, Puig de la Bellacasa R, Teixidó J, Roué G, Borrell JI, Estrada-Tejedor R. Applying Molecular Modeling to the Design of Innovative, Non-Symmetrical CXCR4 Inhibitors with Potent Anticancer Activity. Int J Mol Sci 2024; 25:9446. [PMID: 39273392 PMCID: PMC11394923 DOI: 10.3390/ijms25179446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The identification of new compounds with potential activity against CXC chemokine receptor type 4 (CXCR4) has been broadly studied, implying several chemical families, particularly AMD3100 derivatives. Molecular modeling has played a pivotal role in the identification of new active compounds. But, has its golden age ended? A virtual library of 450,000 tetraamines of general structure 8 was constructed by using five spacers and 300 diamines, which were obtained from the corresponding commercially available cyclic amines. Diversity selection was performed to guide the virtual screening of the former database and to select the most representative set of compounds. Molecular docking on the CXCR4 crystal structure allowed us to rank the selection and identify those candidate molecules with potential antitumor activity against diffuse large B-cell lymphoma (DLBCL). Among them, compound A{17,18} stood out for being a non-symmetrical structure, synthetically feasible, and with promising activity against DLBCL in in vitro experiments. The focused study of symmetrical-related compounds allowed us to identify potential pre-hits (IC50~20 µM), evidencing that molecular design is still relevant in the development of new CXCR4 inhibitor candidates.
Collapse
Affiliation(s)
- Miquel Martínez-Asensio
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Lluís Sàrrias
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Gema Gorjón-de-Pablo
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, E-08916 Badalona, Spain
| | | | - Judith Camaló-Vila
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Albert Gibert
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Raimon Puig de la Bellacasa
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Jordi Teixidó
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, E-08916 Badalona, Spain
| | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Roger Estrada-Tejedor
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| |
Collapse
|
4
|
Worel N. How to manage poor mobilisers. Transfus Apher Sci 2024; 63:103934. [PMID: 38678982 DOI: 10.1016/j.transci.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Autologous hematopoietic progenitor cell transplantation (ASCT) has been used for more than five decades to treat malignant and non-malignant diseases. Successful engraftment after high-dose chemotherapy relies on the ability to collect sufficient CD34 + hematopoietic progenitor cells (HPCs), typically from peripheral blood after mobilization. Commonly, either granulocyte colony-stimulating factor (G-CSF) alone as a single agent (i.e. steady-state mobilization) or G-CSF after chemotherapy is administered to collect adequate numbers of HPCs (minimum ≥2 × 106 CD34 + cells/kg for one ASCT; optimal up to 5 × 106 CD34 + cells/kg). However, a significant proportion of patients fail successful HPC mobilization, which is commonly defined as a CD34+ cell count below 10-15/µL after at least 4 days of 10 µg/kg b.w. G-CSF alone, or after chemo-mobilization in combination with 5-10 µg/kg b.w. G-CSF. In these situations plerixafor, a chemokine receptor inhibitor (CXCR4) can be used to enhance HPC collection in patients with multiple myeloma and malignant lymphoma whose cells mobilize poorly. Risk factors for poor mobilization have been evaluated and several strategies (e.g. plerixafor to rescue the mobilization approach or pre-emptive use) have been suggested to optimize mobilization, especially in patients at risk. This manuscript discusses the risk factors of poor CD34+ mobilization and summarizes the current strategies to optimize mobilization and HPC collection.
Collapse
Affiliation(s)
- Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University Vienna, Waehringer Guertel 18-29, A-1090 Vienna, Austria.
| |
Collapse
|
5
|
Jantunen E, Turunen A, Varmavuo V, Partanen A. Impact of plerixafor use in the mobilization of blood grafts for autologous hematopoietic cell transplantation. Transfusion 2024; 64:742-750. [PMID: 38407504 DOI: 10.1111/trf.17755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
Plerixafor (PLER), a reversible antagonist of the CXC chemokine receptor type 4, has been in clinical use for mobilization of blood grafts for autologous hematopoietic cell transplantation (AHCT) for about 15 years. Initially PLER was investigated in placebo-controlled trials with the granulocyte colony-stimulating factor (G-CSF) filgrastim. It has also been used in combination with chemotherapy plus G-CSF in patients who had failed a previous mobilization attempt or appeared to mobilize poorly with current mobilization (preemptive use). This review summarizes what is known regarding addition of PLER to standard mobilization regimens. PLER increases mobilization of CD34+ cells, decreases the number of apheresis sessions needed to achieve collection targets and increases the proportion of patients who can proceed to AHCT. It appears also to increase the amount of various lymphocyte subsets in the grafts collected. In general, hematologic recovery after AHCT has been comparable to patients mobilized without PLER, although slower platelet recovery has been observed in some studies of patients who mobilize poorly. In phase III studies, long-term outcome has been comparable to patients mobilized without PLER. This also appears to be the case in patients receiving plerixafor for poor or suboptimal mobilization of CD34+ cells. In practice, PLER is safe and has not been shown to increase tumor cell mobilization.
Collapse
Affiliation(s)
- Esa Jantunen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti Turunen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Ville Varmavuo
- Department of Medicine, Kymenlaakso Central Hospital, Kotka, Finland
| | - Anu Partanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
6
|
Roa-Linares VC, Escudero-Flórez M, Vicente-Manzanares M, Gallego-Gómez JC. Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses 2023; 15:v15030776. [PMID: 36992484 PMCID: PMC10058429 DOI: 10.3390/v15030776] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
The recent COVID-19 crisis has highlighted the importance of RNA-based viruses. The most prominent members of this group are SARS-CoV-2 (coronavirus), HIV (human immunodeficiency virus), EBOV (Ebola virus), DENV (dengue virus), HCV (hepatitis C virus), ZIKV (Zika virus), CHIKV (chikungunya virus), and influenza A virus. With the exception of retroviruses which produce reverse transcriptase, the majority of RNA viruses encode RNA-dependent RNA polymerases which do not include molecular proofreading tools, underlying the high mutation capacity of these viruses as they multiply in the host cells. Together with their ability to manipulate the immune system of the host in different ways, their high mutation frequency poses a challenge to develop effective and durable vaccination and/or treatments. Consequently, the use of antiviral targeting agents, while an important part of the therapeutic strategy against infection, may lead to the selection of drug-resistant variants. The crucial role of the host cell replicative and processing machinery is essential for the replicative cycle of the viruses and has driven attention to the potential use of drugs directed to the host machinery as therapeutic alternatives to treat viral infections. In this review, we discuss small molecules with antiviral effects that target cellular factors in different steps of the infectious cycle of many RNA viruses. We emphasize the repurposing of FDA-approved drugs with broad-spectrum antiviral activity. Finally, we postulate that the ferruginol analog (18-(phthalimide-2-yl) ferruginol) is a potential host-targeted antiviral.
Collapse
Affiliation(s)
- Vicky C Roa-Linares
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Manuela Escudero-Flórez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, 37007 Salamanca, Spain
| | - Juan C Gallego-Gómez
- Molecular and Translation Medicine Group, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
7
|
The effect of preemptive use of plerixafor on stem cell mobilization in patients with lymphoma and multiple myeloma. MARMARA MEDICAL JOURNAL 2023. [DOI: 10.5472/marumj.1244684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
ABSTRACT
Objective: The aim of this study is to investigate the effect of the preemptive use of plerixafor in patients with lymphoma and multiple
myeloma which was administered as a preemptive single dose to the patients who were determined to have a CD34+ cell count of
Collapse
|
8
|
Bongiovanni AR, Zhao P, Inan S, Wiah S, Shekarabi A, Farkas DJ, Watson MN, Wimmer ME, Ruff MR, Rawls SM. Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats. Drug Alcohol Depend 2022; 238:109556. [PMID: 35843139 PMCID: PMC9444981 DOI: 10.1016/j.drugalcdep.2022.109556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Chemokine-opioid crosstalk is a physiological crossroads for influencing therapeutic and adverse effects of opioids. Activation of chemokine receptors, especially CCR2, CCR5 and CXCR4, reduces opioid-induced analgesia by desensitizing OPRM1 receptors. Chemokine receptor antagonists (CRAs) enhance opioid analgesia, but knowledge about how CRAs impact adverse opioid effects remains limited. We examined effects of RAP-103, a multi-CRA orally active peptide analog of "DAPTA", on opioid-derived dependence, reinforcement, and respiratory depression in male rats and on changes in chemokine and OPRM1 (µ opioid) receptor levels in mesolimbic substrates during opioid abstinence. In rats exposed to chronic morphine (75 mg pellet x 7 d), daily RAP-103 (1 mg/kg, IP) treatment reduced the severity of naloxone-precipitated withdrawal responses. For self-administration (SA) studies, RAP-103 (1 mg/kg, IP) reduced heroin acquisition (0.1 mg/kg/inf) and reinforcing efficacy (assessed by motivation on a progressive-ratio reinforcement schedule) but did not impact sucrose intake. RAP-103 (1-3 mg/kg, IP) also normalized the deficits in oxygen saturation and enhancement of respiratory rate caused by morphine (5 mg/kg, SC) exposure. Abstinence from chronic morphine elicited brain-region specific changes in chemokine receptor protein levels. CCR2 and CXCR4 were increased in the ventral tegmental area (VTA), whereas CCR2 and CCR5 were reduced in the nucleus accumbens (NAC). Effects of RAP-103 (1 mg/kg, IP) were focused in the NAC, where it normalized morphine-induced deficits in CCR2 and CCR5. These results identify CRAs as potential biphasic function opioid signaling modulators to enhance opioid analgesia and inhibit opioid-derived dependence and respiratory depression.
Collapse
Affiliation(s)
- Angela R Bongiovanni
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | | | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ng C, Lee KL, Muthiah MD, Wu KX, Chioh FWJ, Tan K, Soon GST, Shabbir A, Loo WM, Low ZS, Chen Q, Tan NS, Ng HH, Dan YY, Cheung C. Endothelial‐immune crosstalk contributes to vasculopathy in nonalcoholic fatty liver disease. EMBO Rep 2022; 23:e54271. [PMID: 35403791 PMCID: PMC9171677 DOI: 10.15252/embr.202154271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
The top cause of mortality in patients with nonalcoholic fatty liver disease (NAFLD) is cardiovascular complications. However, mechanisms of NAFLD‐associated vasculopathy remain understudied. Here, we show that blood outgrowth endothelial cells (BOECs) from NAFLD subjects exhibit global transcriptional upregulation of chemokines and human leukocyte antigens. In mouse models of diet‐induced NAFLD, we confirm heightened endothelial expressions of CXCL12 in the aortas and the liver vasculatures, and increased retention of infiltrated leukocytes within the vessel walls. To elucidate endothelial‐immune crosstalk, we performed immunoprofiling by single‐cell analysis, uncovering T cell intensification in NAFLD patients. Functionally, treatment with a CXCL12‐neutralizing antibody is effective at moderating the enhanced chemotactic effect of NAFLD BOECs in recruiting CD8+ T lymphocytes. Interference with the CXCL12‐CXCR4 axis using a CXCR4 antagonist also averts the impact of immune cell transendothelial migration and restores endothelial barrier integrity. Clinically, we detect threefold more circulating damaged endothelial cells in NAFLD patients than in healthy controls. Our work provides insight into the modulation of interactions with effector immune cells to mitigate endothelial injury in NAFLD.
Collapse
Affiliation(s)
- Chun‐Yi Ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Mark Dhinesh Muthiah
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Medicine National University Health System Singapore Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | | | - Konstanze Tan
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | | | - Asim Shabbir
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Surgery University Surgical Cluster National University Health System Singapore Singapore
| | - Wai Mun Loo
- Department of Medicine National University Health System Singapore Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Sciences Nanyang Technological University Singapore Singapore
| | - Huck Hui Ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
- School of Biological Sciences Nanyang Technological University Singapore Singapore
- Genome Institute of Singapore Agency for Science Technology and Research (A*STAR) Singapore Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Department of Medicine National University Health System Singapore Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Institute of Molecular and Cell Biology Agency for Science Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
10
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2021; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for
hematological malignancies and some nonhematologic diseases. Hematopoietic stem
and progenitor cells (HSPCs) collected from peripheral blood after mobilization
are the primary source to provide HSC transplantation. In most of the cases,
mobilization by the cytokine granulocyte colony-stimulating factor with
chemotherapy, and in some settings, with the CXC chemokine receptor type 4
antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells
(HPCs). However, adequate mobilization is not always successful in a significant
portion of donors. Research is going on to find new agents or strategies to
increase HSC mobilization. Here, we briefly review the history of HSC
transplantation, current mobilization regimens, some of the novel agents that
are under investigation for clinical practice, and our recent findings from
animal studies regarding Notch and ligand interaction as potential targets for
HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center, PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Yu S, Wang W, Albakri M, Yu X, Majihail G, Lim S, Lopilato RK, Ito A, Letterio J, Haltiwanger RS, Zhou L. O-Fucose and Fringe-modified NOTCH1 extracellular domain fragments as decoys to release niche-lodged hematopoietic progenitor cells. Glycobiology 2021; 31:582-592. [PMID: 33351914 PMCID: PMC8176772 DOI: 10.1093/glycob/cwaa113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties. We previously reported that O-fucosylglycans on Notch are required for Notch receptor-ligand engagement controlling hematopoietic stem cell quiescence and retention in the marrow niche. Here, we generated recombinant fragments of NOTCH1 or NOTCH2 extracellular domain carrying the core ligand-binding regions (EGF11-13) either as unmodified forms or as O-fucosylglycan-modified forms. We found that the addition of O-fucose monosaccharide or the Fringe-extended forms of O-fucose to EGF11-13 showed substantial increases in binding to DLL4. Furthermore, the O-fucose and Fringe-extended NOTCH1 EGF11-13 protein displayed much stronger binding to DLL4 than the NOTCH2 counterpart. When assessed in an in vitro 3D osteoblastic niche model, we showed that the Fringe-extended NOTCH1 EGF11-13 fragment effectively released lodged HPC cells with a higher potency than the NOTCH2 blocking antibody. We concluded that O-fucose and Fringe-modified NOTCH1 EGF11-13 protein can be utilized as effective decoys for stem cell niche localized ligands to potentiate HPC egress and improve HPC collection for hematopoietic cell therapy.
Collapse
Affiliation(s)
- Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaoxing Yu
- Beachwood High School, Beachwood, OH 44122, USA
| | | | - Seunghwan Lim
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel K Lopilato
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Letterio
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Antelo ML, Altuna A, Gimeno JJ, Ferreiro JJ, Amunárriz C, Mateos JJ, Zalba S, Alkorta A, Rifón J, Arroyo JL, Uresandi A, Moreno JA, Nájera MJ, Pinzón S, García A, Vallejo JC. Engraftment after autologous hematopoietic stem cell transplantation in patients mobilized with Plerixafor: A retrospective, multicenter study of a large series of patients. Transfus Apher Sci 2021; 60:103130. [PMID: 33840626 DOI: 10.1016/j.transci.2021.103130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Plerixafor (PLX) appears to effectively enhance hematopoietic stem-cell mobilization prior to autologous hematopoietic stem cell transplantation (auto-HCT). However, the quality of engraftment following auto-HCT has been little explored. Here, engraftment following auto-HCT was assessed in patients mobilized with PLX through a retrospective, multicenter study of 285 consecutive patients. Information on early and 100-day post-transplant engraftment was gathered from the 245 patients that underwent auto-HCT. The median number of PLX days to reach the stem cell collection goal (≥2 × 106 CD34+ cells/kg) was 1 (range 1-4) and the median PLX administration time before apheresis was 11 h (range 1-18). The median number of apheresis sessions to achieve the collection goal was 2 (range 1-5) and the mean number of CD34+ cells collected was 2.95 × 106/kg (range 0-30.5). PLX administration was safe, with only 2 mild and transient gastrointestinal adverse events reported. The median time to achieve an absolute neutrophil count (ANC) >500/μL was 11 days (range 3-31) and the median time to platelet recovery >20 × 103/μL was 13 days (range 5-69). At 100 days after auto-HCT, the platelet count was 137 × 109/L (range 7-340), the ANC was 2.3 × 109/L (range 0.1-13.0), and the hemoglobin concentration was 123 g/L (range 79-165). PLX use allowed auto-HCT to be performed in a high percentage of poorly mobilized patients, resulting in optimal medium-term engraftment in the majority of patients in whom mobilization failed, in this case mainly due to suboptimal peripheral blood CD34+ cell concentration on day +4 or low CD34+ cell yield on apheresis.
Collapse
Affiliation(s)
- M Luisa Antelo
- Servicio de Hematología, Complejo Hospitalario de Navarra (CHN), IdiSNA, Pamplona, Spain.
| | - Ane Altuna
- Servicio de Hematología, Hospital Universitario Donostia, San Sebastián, Spain.
| | - J José Gimeno
- Servicio de Hematología, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - J Javier Ferreiro
- Servicio de Hematología, Hospital Universitario Donostia, San Sebastián, Spain.
| | - Cristina Amunárriz
- Servicio de Hematología, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - J José Mateos
- Servicio de Hematología, Hospital Universitario Cruces, Barakaldo, Spain.
| | - Saioa Zalba
- Servicio de Hematología, Complejo Hospitalario de Navarra (CHN), IdiSNA, Pamplona, Spain.
| | - Aitziber Alkorta
- Servicio de Hematología, Hospital Universitario Donostia, San Sebastián, Spain.
| | - José Rifón
- Servicio de Hematología, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.
| | - J Luis Arroyo
- Servicio de Hematología, Hospital Universitario Marqués de Valdecilla, Santander, Spain.
| | - Amaia Uresandi
- Servicio de Hematología, Hospital Universitario Cruces, Barakaldo, Spain.
| | - J Antonio Moreno
- Servicio de Hematología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
| | - M Josefa Nájera
- Servicio de Hematología, Hospital San Pedro, Logroño, Spain.
| | - Sergio Pinzón
- Servicio de Hematología, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - Alejandro García
- Servicio de Hematología, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - J Carlos Vallejo
- Servicio de Hematología, Hospital Universitario Donostia, San Sebastián, Spain.
| | | |
Collapse
|
13
|
Huynh C, Henrich A, Strasser DS, Boof ML, Al-Ibrahim M, Meyer Zu Schwabedissen HE, Dingemanse J, Ufer M. A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker. Clin Pharmacol Ther 2021; 109:1648-1659. [PMID: 33406277 DOI: 10.1002/cpt.2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022]
Abstract
The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous 14 C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Mike Ufer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
14
|
Fadaka AO, Aruleba RT, Sibuyi NRS, Klein A, Madiehe AM, Meyer M. Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach. J Biomol Struct Dyn 2020; 40:3416-3427. [PMID: 33200673 PMCID: PMC7682381 DOI: 10.1080/07391102.2020.1847197] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exponential increase in cases and mortality of coronavirus disease (COVID-19) has called for a need to develop drugs to treat this infection. Using in silico and molecular docking approaches, this study investigated the inhibitory effects of Pradimicin A, Lamivudine, Plerixafor and Lopinavir against SARS-CoV-2 Mpro. ADME/Tox of the ligands, pharmacophore hypothesis of the co-crystalized ligand and the receptor, and docking studies were carried out on different modules of Schrodinger (2019-4) Maestro v12.2. Among the ligands subjected to ADME/Tox by QikProp, Lamivudine demonstrated drug-like physico-chemical properties. A total of five pharmacophore binding sites (A3, A4, R9, R10, and R11) were predicted from the co-crystalized ligand and the binding cavity of the SARS-CoV-2 Mpro. The docking result showed that Lopinavir and Lamivudine bind with a higher affinity and lower free energy than the standard ligand having a glide score of -9.2 kcal/mol and -5.3 kcal/mol, respectively. Plerixafor and Pradimicin A have a glide score of -3.7 kcal/mol and -2.4 kcal/mol, respectively, which is lower than the co-crystallized ligand with a glide score of -5.3 kcal/mol. Molecular dynamics confirmed that the ligands maintained their interaction with the protein with lower RMSD fluctuations over the trajectory period of 100 nsecs and that GLU166 residue is pivotal for binding. On the whole, present study specifies the repurposing aptitude of these molecules as inhibitors of SARS-CoV-2 Mpro with higher binding scores and forms energetically stable complexes with Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
15
|
Soave M, Heukers R, Kellam B, Woolard J, Smit MJ, Briddon SJ, Hill SJ. Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chem Biol 2020; 27:1250-1261.e5. [PMID: 32610042 PMCID: PMC7573392 DOI: 10.1016/j.chembiol.2020.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023]
Abstract
Camelid single-domain antibody fragments (nanobodies) offer the specificity of an antibody in a single 15-kDa immunoglobulin domain. Their small size allows for easy genetic manipulation of the nanobody sequence to incorporate protein tags, facilitating their use as biochemical probes. The nanobody VUN400, which recognizes the second extracellular loop of the human CXCR4 chemokine receptor, was used as a probe to monitor specific CXCR4 conformations. VUN400 was fused via its C terminus to the 11-amino-acid HiBiT tag (VUN400-HiBiT) which complements LgBiT protein, forming a full-length functional NanoLuc luciferase. Here, complemented luminescence was used to detect VUN400-HiBiT binding to CXCR4 receptors expressed in living HEK293 cells. VUN400-HiBiT binding to CXCR4 could be prevented by orthosteric and allosteric ligands, allowing VUN400-HiBiT to be used as a probe to detect allosteric interactions with CXCR4. These data demonstrate that the high specificity offered by extracellular targeted nanobodies can be utilized to probe receptor pharmacology.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Raimond Heukers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University of Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK; School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University of Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, UK.
| |
Collapse
|
16
|
Huynh C, Dingemanse J, Meyer Zu Schwabedissen HE, Sidharta PN. Relevance of the CXCR4/CXCR7-CXCL12 axis and its effect in pathophysiological conditions. Pharmacol Res 2020; 161:105092. [PMID: 32758634 DOI: 10.1016/j.phrs.2020.105092] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The impact of the C-X-C receptor (CXCR) 7 and its close co-player CXCR4 in different physiological and pathophysiological processes has been extensively investigated within the last decades. Following activation by their shared ligand C-X-C ligand (CXCL) 12, both chemokine receptors can induce various routes of cell signaling and/or scavenge CXCL12 from the extracellular environment. This contributes to organ development and maintenance of homeostasis. Alterations of the CXCR4/CXCR7-CXCL12 axis have been detected in diseases such as cancer, central nervous system and cardiac disorders, and autoimmune diseases. These alterations include changes of the expression pattern, distribution, or downstream effects. The progression of the diseases can be regulated in preclinical models by the use of various modulators suggesting that this axis serves as a promising therapeutic target. It is therefore of great interest to investigate CXCR4/CXCR7/CXCL12 modulators in clinical development, with several CXCR4 and CXCL12 modulators such as plerixafor, ulocuplumab, balixafortide, and olaptesed pegol having already reached this stage. An overview is presented of the most important diseases whose outcomes can be positively or negatively regulated by the CXCR4/CXCR7-CXCL12 axis and summarizes preclinical and clinical data of modulators of that axis. Contrary to CXCR4 and CXCL12 modulators, CXCR7 modulators have, thus far, not been extensively studied. Therefore, more (pre)clinical investigations are needed.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland; Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | | | - Patricia N Sidharta
- Idorsia Pharmaceuticals Ltd, Department of Clinical Pharmacology, Hegenheimermattweg 91, 4123 Allschwil, Switzerland.
| |
Collapse
|
17
|
Wang J, Tannous BA, Poznansky MC, Chen H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol Res 2020; 159:105010. [PMID: 32544428 DOI: 10.1016/j.phrs.2020.105010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.
Collapse
Affiliation(s)
- Jingzhe Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Huabiao Chen
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol 2020; 16:11-30. [PMID: 31903790 DOI: 10.1080/17425255.2020.1711884] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Chemokine receptors are important therapeutic targets for the treatment of many human diseases. This study will provide an overview of approved chemokine receptor antagonists and promising candidates in advanced clinical trials.Areas covered: We will describe clinical aspects of chemokine receptor antagonists regarding their clinical efficacy, mechanisms of action, and re-purposed applications.Expert opinion: Three chemokine antagonists have been approved: (i) plerixafor is a small-molecule CXCR4 antagonist that mobilizes hematopoietic stem cells; (ii) maraviroc is a small-molecule CCR5 antagonist for anti-HIV treatment; and (iii) mogamulizumab is a monoclonal-antibody CCR4 antagonist for the treatment of mycosis fungoides or Sézary syndrome. Moreover, phase 3 trials are ongoing to evaluate many potent candidates, including CCR5 antagonists (e.g. leronlimab), dual CCR2/CCR5 antagonists (e.g. cenicriviroc), and CXCR4 antagonists (e.g. balixafortide, mavorixafor, motixafortide). The success of chemokine receptor antagonists depends on the selective blockage of disease-relevant chemokine receptors which are indispensable for disease progression. Although clinical translation has been slow, antagonists targeting chemokine receptors with multifaced functions offer the potential to treat a broad spectrum of human diseases.
Collapse
Affiliation(s)
- Miao Miao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| | - Erik De Clercq
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
| | - Guangdi Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Hunan, China
| |
Collapse
|
19
|
Zheng G, He J, Cai Z, He D, Luo Y, Shi J, Wei G, Sun J, Zheng W. A retrospective study of autologous stem cell mobilization by G-CSF in combination with chemotherapy in patients with multiple myeloma and lymphoma. Oncol Lett 2019; 19:1051-1059. [PMID: 31897218 DOI: 10.3892/ol.2019.11177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/08/2019] [Indexed: 01/18/2023] Open
Abstract
Factors affecting peripheral blood hematopoietic stem cell (PBSC) mobilization and collection were investigated in patients with multiple myeloma (MM) and lymphoma who were undergoing chemotherapy. Clinical data from 128 patients, including 53 MM and 75 malignant lymphoma (7 Hodgkin's lymphoma and 68 non-Hodgkin's lymphoma) cases were retrospectively analyzed. Autologous PBSCs were mobilized using granulocyte-colony stimulating factor (G-CSF) during chemotherapy, and collected using a continuous flow cell separation instrument. The yields of CD34+ cells per kilogram of patient body weight <2.0×106/kg, >2.0×106/kg or >5.0×106/kg were defined as a failure, a success or ideal mobilization, respectively. In MM and lymphoma patients, the success rates of CD34+ cell acquisition were 73.6 (39/53) and 58.7% (44/75), the ideal rates were 43.4 (23/53) and 30.7% (23/75), and the failure rates were 26.4 (14/53) and 41.3% (31/75), respectively. Univariate and multivariate statistical analysis revealed that negative factors for PBSC mobilization in patients with MM were lenalidomide treatment, multiple chemotherapies, incomplete disease remission and low-level blood hemoglobin; in patients with lymphoma, the negative factors were the histological disease type, incomplete disease remission, being beyond the first-line of previous chemotherapy, multiple chemotherapies, chemotherapy with the HyperCVAD-B mobilization scheme, high-dose MTX/Ara-c (methotrexate/cytarabine) treatment, prolonged administration of G-CSF and low-hematocrit levels. In the present study, different factors influencing PBSC mobilization and collection in MM and lymphoma cases were identified. PBSC mobilization yielded sufficient CD34+ cell counts both in MM and lymphoma patients; however, the failure rates were relatively high.
Collapse
Affiliation(s)
- Gaofeng Zheng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Jingsong He
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Donghua He
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Yi Luo
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Jimin Shi
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Jie Sun
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University and First Hospital of Zhejiang Province, Hangzhou, Zhejiang 310001, P.R. China
| |
Collapse
|
20
|
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 2018; 44:51-68. [PMID: 30396776 DOI: 10.1016/j.cytogfr.2018.10.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
CXCL12 is a CXC chemokine that traditionally has been classified as a homeostatic chemokine. It contributes to physiological processes such as embryogenesis, hematopoiesis and angiogenesis. In contrast to these homeostatic functions, increased expression of CXCL12 in general, or of a specific CXCL12 splicing variant has been demonstrated in various pathologies. In addition to this increased or differential transcription of CXCL12, also upregulation of its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) contributes to the onset or progression of diseases. Moreover, posttranslational modification of CXCL12 during disease progression, through interaction with locally produced molecules or enzymes, also affects CXCL12 activity, adding further complexity. As CXCL12, CXCR4 and ACKR3 are broadly expressed, the number of pathologies wherein CXCL12 is involved is growing. In this review, the role of the CXCL12/CXCR4/ACKR3 axis will be discussed for the most prevalent pathologies. Administration of CXCL12-neutralizing antibodies or small-molecule antagonists of CXCR4 or ACKR3 delays disease onset or prevents disease progression in cancer, viral infections, inflammatory bowel diseases, rheumatoid arthritis and osteoarthritis, asthma and acute lung injury, amyotrophic lateral sclerosis and WHIM syndrome. On the other hand, CXCL12 has protective properties in Alzheimer's disease and multiple sclerosis, has a beneficial role in wound healing and has crucial homeostatic properties in general.
Collapse
Affiliation(s)
- Rik Janssens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Abstract
Transplants using peripheral blood hemopoietic stem/progenitor (PBHS) cells are widely performed for the treatment of patients with hematologic disorders in routine practice and clinical trials. Although the process from mobilization to infusion of PBHS cells has been mostly established, optimal conditions for each process remain undetermined. Adverse reactions caused by PBHS cell infusions have not been systematically recorded. In transplants using PBHS cells, a number of problems still exist. In this section, the current status of and future perspectives regarding PBHS cells are described.
Collapse
Affiliation(s)
- Kazuo Muroi
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
22
|
Liotti F, De Pizzol M, Allegretti M, Prevete N, Melillo RM. Multiple anti-tumor effects of Reparixin on thyroid cancer. Oncotarget 2018; 8:35946-35961. [PMID: 28415590 PMCID: PMC5482629 DOI: 10.18632/oncotarget.16412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Expression of IL-8 and its receptors CXCR1 and CXCR2 is a common occurrence in human epithelial thyroid cancer (TC). In human TC samples, IL-8 expression is associated with tumor progression. IL-8 enhances proliferation, survival, motility, and leads to the maintenance of stemness features and tumor-initiating ability of TC cells. Here, we studied the effects of Reparixin (formerly Repertaxin), a small molecular weight CXCR1 and CXCR2 inhibitor, on the malignant phenotype of various TC cell lines. Results Reparixin impaired the viability of epithelial thyroid cancerous cells, but not that of the non-malignant counterpart. Reparixin treatment significantly decreased TC cell survival, proliferation, Epithelial-to-Mesenchymal Transition (EMT) and stemness. CXCR1 and CXCR2 silencing abolished these effects. Reparixin sensitized TC cells to Docetaxel and Doxorubicin in culture. Used as single agent, Reparixin significantly inhibited TC cell tumorigenicity in immunodeficient mice. Finally, Reparixin potentiated the effects of Docetaxel on TC cell xenotransplants in mice. Materials and Methods We assessed the effects of Reparixin on TC cell viability (by growth curves, BrdU incorporation, TUNEL assay), EMT (by RT-PCR, Flow Cytometry, Migration assays), stemness (by RT-PCR, Flow Cytometry, sphere-formation and self-renewal), and tumorigenicity (by xenotransplantation in nude mice). Conclusions The present study suggests that Reparixin, both alone and in combination with classic chemotherapics, represents a novel potential therapeutic strategy for aggressive forms of TC.
Collapse
Affiliation(s)
- Federica Liotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| | | | | | - Nella Prevete
- Dipartimento di Scienze Mediche Traslazionali, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR "G. Salvatore", Naples, Italy
| | - Rosa Marina Melillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy.,Istituto di Endocrinologia ed Oncologia Sperimentale del CNR "G. Salvatore", Naples, Italy
| |
Collapse
|
23
|
Claes S, D'huys T, Van Hout A, Schols D, Van Loy T. A Kinetic Fluorescence-based Ca2+ Mobilization Assay to Identify G Protein-coupled Receptor Agonists, Antagonists, and Allosteric Modulators. J Vis Exp 2018. [PMID: 29553532 DOI: 10.3791/56780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are of great importance to the pharmaceutical industry as they are involved in many human diseases and include well-validated targets for therapeutic intervention. Discovery of lead compounds, including small synthetic molecules, that specifically inhibit the receptor's function, is an important initial step in drug development and relies on sensitive, specific, and robust cell-based assays. Here, we describe a kinetic cellular assay with a fluorescent readout primarily designed to identify receptor-specific antagonists that inhibit the intracellular Ca2+ release evoked upon the activation of the CXC chemokine receptor 4 (CXCR4) by its endogenous ligand, the CXC chemokine ligand 12 (CXCL12). A key advantage of this method is that it also enables screening of compounds endowed with intrinsic agonistic properties (i.e., compounds eliciting an increase in intracellular Ca2+ concentration in the absence of CXCL12) or compounds modulating the receptor's function via interaction with allosteric binding sites (i.e., positive and negative allosteric modulators (PAMs and NAMs, respectively)). On the down side, autofluorescent compounds might interfere with the assay's readout, thereby hampering reliable data interpretation. Most likely this assay can be implemented, with minimal adaptations, as a generic drug discovery assay for many other GPCRs of which the activation leads to a release of intracellular Ca2+.
Collapse
Affiliation(s)
- Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven
| | - Thomas D'huys
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven
| | - Anneleen Van Hout
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven;
| |
Collapse
|
24
|
Fadini GP, DiPersio JF. Diabetes mellitus as a poor mobilizer condition. Blood Rev 2017; 32:184-191. [PMID: 29132746 DOI: 10.1016/j.blre.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation in an effective and curative therapy for numerous hematological malignancies. Mobilization of HSCs from bone marrow (BM) to peripheral blood (PB) followed by apheresis is the gold standard for obtaining HSCs for both autologous and allogeneic stem cell transplantation. After administration of granulocyte-colony stimulating factor (G-CSF), up to 30% of patients fail to mobilize "optimal" numbers of HSCs required for engraftment. This review summarizes the current experimental and clinical evidence that diabetes mellitus is a risk factor for poor mobilization. Diabetes causes a profound remodeling of the HSC niche, resulting in impaired release of HSCs. Experimental studies indicate that hyperglycemia hampers regulation of CXCL12 and clinical studies suggest that diabetes impairs HSC mobilization especially in response to G-CSF, but less to plerixafor. Understanding further the biochemical alterations in the diabetic BM will provide insights into future therapeutic strategies to reverse the so-called "diabetic stem cell mobilopathy".
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, 35128 Padova, Italy; Venetian Institute of Molecular Medicine, 35128 Padova, Italy.
| | - John F DiPersio
- Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
25
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
26
|
Partanen A, Valtola J, Ropponen A, Vasala K, Penttilä K, Ågren L, Pyörälä M, Nousiainen T, Selander T, Mäntymaa P, Pelkonen J, Varmavuo V, Jantunen E. Preemptive plerixafor injection added to pegfilgrastim after chemotherapy in non-Hodgkin lymphoma patients mobilizing poorly. Ann Hematol 2017; 96:1897-1906. [PMID: 28879595 DOI: 10.1007/s00277-017-3123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/27/2017] [Indexed: 12/15/2022]
Abstract
Filgrastim is usually combined with chemotherapy to mobilize hematopoietic progenitor cells in non-Hodgkin lymphoma (NHL) patients. Limited information is available on the efficacy of a preemptive plerixafor (PLER) injection in poor mobilizers after chemotherapy and pegfilgrastim. In this prospective study, 72 patients with NHL received chemotherapy plus pegfilgrastim, and 25 hard-to-mobilize patients received also PLER. The usefulness and efficacy of our previously developed algorithm for PLER use in pegfilgrastim-containing mobilization regimen were evaluated as well as the graft cellular composition, hematological recovery, and outcome after autologous stem cell transplantation (auto-SCT) according to the PLER use. A median 3.4-fold increase in blood CD34+ cell counts was achieved after the first PLER dose. The minimum collection target was achieved in the first mobilization attempt in 66/72 patients (92%) and 68 patients (94%) proceeded to auto-SCT. An algorithm for PLER use was fulfilled in 76% of the poor mobilizers. Absolute numbers of T-lymphocytes and NK cells were significantly higher in the PLER group, whereas the number of CD34+ cells collected was significantly lower. Early neutrophil engraftment was slower in the PLER group, otherwise hematological recovery was comparable within 12 months from auto-SCT. No difference was observed in survival according to the PLER use. Chemotherapy plus pegfilgrastim combined with preemptive PLER injection is an effective and convenient approach to minimize collection failures in NHL patients intended for auto-SCT. A significant effect of PLER on the graft cellular composition was observed, but no difference in outcome after auto-SCT was detected.
Collapse
Affiliation(s)
- A Partanen
- Department of Medicine, Kuopio University Hospital, P.O.B. 100, 70029 KYS, Kuopio, Finland.
| | - J Valtola
- Department of Medicine, Kuopio University Hospital, P.O.B. 100, 70029 KYS, Kuopio, Finland
| | - A Ropponen
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
| | - K Vasala
- Department of Oncology, Central Hospital of Central Finland, Jyväskylä, Finland
| | - K Penttilä
- Department of Medicine, Central Hospital of Savonlinna, Savonlinna, Finland
- The Finnish Medicines Agency, Kuopio, Finland
| | - L Ågren
- Department of Medicine, North Karelia Central Hospital, Joensuu, Finland
| | - M Pyörälä
- Department of Medicine, Kuopio University Hospital, P.O.B. 100, 70029 KYS, Kuopio, Finland
| | - T Nousiainen
- Department of Medicine, Kuopio University Hospital, P.O.B. 100, 70029 KYS, Kuopio, Finland
| | - T Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - P Mäntymaa
- Laboratory Center of Eastern Finland, Kuopio, Finland
| | - J Pelkonen
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
- Laboratory Center of Eastern Finland, Kuopio, Finland
| | - V Varmavuo
- Department of Medicine, Kymenlaakso Central Hospital, Kotka, Finland
| | - E Jantunen
- Department of Medicine, Kuopio University Hospital, P.O.B. 100, 70029 KYS, Kuopio, Finland
| |
Collapse
|
27
|
Wang W, Yu S, Myers J, Wang Y, Xin WW, Albakri M, Xin AW, Li M, Huang AY, Xin W, Siebel CW, Lazarus HM, Zhou L. Notch2 blockade enhances hematopoietic stem cell mobilization and homing. Haematologica 2017; 102:1785-1795. [PMID: 28729299 PMCID: PMC5622863 DOI: 10.3324/haematol.2017.168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - William W Xin
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ming Li
- Biostatistics and Bioinformatics Core Facility, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA .,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Christian W Siebel
- Department of Molecular Biology Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
28
|
Douglas KW, Gilleece M, Hayden P, Hunter H, Johnson PRE, Kallmeyer C, Malladi RK, Paneesha S, Pawson R, Quinn M, Raj K, Richardson D, Robinson S, Russell N, Snowden J, Sureda A, Tholouli E, Thomson K, Watts M, Wilson KM. UK consensus statement on the use of plerixafor to facilitate autologous peripheral blood stem cell collection to support high-dose chemoradiotherapy for patients with malignancy. J Clin Apher 2017. [PMID: 28631842 DOI: 10.1002/jca.21563] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plerixafor is a CXC chemokine receptor (CXCR4) antagonist that mobilizes stem cells in the peripheral blood. It is indicated (in combination with granulocyte-colony stimulating factor [G-CSF]) to enhance the harvest of adequate quantities of cluster differentiation (CD) 34+ cells for autologous transplantation in patients with lymphoma or multiple myeloma whose cells mobilize poorly. Strategies for use include delayed re-mobilization after a failed mobilization attempt with G-CSF, and rescue or pre-emptive mobilization in patients in whom mobilization with G-CSF is likely to fail. Pre-emptive use has the advantage that it avoids the need to re-schedule the transplant procedure, with its attendant inconvenience, quality-of-life issues for the patient and cost of additional admissions to the transplant unit. UK experience from 2 major centers suggests that pre-emptive plerixafor is associated with an incremental drug cost of less than £2000 when averaged over all patients undergoing peripheral blood stem cell (PBSC) transplant. A CD34+ cell count of <15 µl-1 at the time of recovery after chemomobilization or after four days of G-CSF treatment, or an apheresis yield of <1 × 106 CD34+ cells/kg on the first day of apheresis, could be used to predict the need for pre-emptive plerixafor.
Collapse
Affiliation(s)
- Kenneth W Douglas
- Clinical Apheresis Unit, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Maria Gilleece
- Yorkshire Blood and Marrow Transplant Programme, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Patrick Hayden
- Haematology Department, St James's Hospital, Dublin, Ireland
| | - Hannah Hunter
- Haematology Department, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Peter R E Johnson
- Department of Haematology, Western General Hospital, Edinburgh, United Kingdom
| | - Charlotte Kallmeyer
- Department of Haematology, Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust, Lincoln, United Kingdom
| | - Ram K Malladi
- Centre for Clinical Haematology, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Shankara Paneesha
- Department of Haematology, Heart of England NHS Foundation Trust, Birmingham, United Kingdom
| | - Rachel Pawson
- Tissue Services and Cell Banking, NHS Blood and Transplant, Bristol, United Kingdom
| | - Michael Quinn
- Department of Haematology, Belfast NHS Trust, Belfast, United Kingdom
| | - Kavita Raj
- Haematological Cancer Services, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Deborah Richardson
- Department of Haematology, University Hospital Southampton, Southampton, United Kingdom
| | - Stephen Robinson
- Bristol Haematology Unit, University Hospitals Bristol, Bristol, United Kingdom
| | - Nigel Russell
- Clinical Haematology, Nottingham University Hospital, Nottingham, United Kingdom
| | - John Snowden
- Department of Haematology, Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Anna Sureda
- Department of Haematology, Institut Catalá d'Oncologia, Barcelona, Spain
| | - Eleni Tholouli
- HSC Transplant Services, Department of Haematology, Central Manchester University Hospitals, Manchester, United Kingdom
| | - Kirsty Thomson
- Department of Clinical Haematology, University College Hospitals, London, United Kingdom
| | - Mike Watts
- Wolfson Cellular Therapies Unit, University College Hospitals, London, United Kingdom
| | - Keith M Wilson
- Department of Haematology, Cardiff & Vale University Health Board, Cardiff, United Kingdom
| |
Collapse
|
29
|
DiGiusto DL, Cannon PM, Holmes MC, Li L, Rao A, Wang J, Lee G, Gregory PD, Kim KA, Hayward SB, Meyer K, Exline C, Lopez E, Henley J, Gonzalez N, Bedell V, Stan R, Zaia JA. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16067. [PMID: 27900346 PMCID: PMC5102145 DOI: 10.1038/mtm.2016.67] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 11/09/2022]
Abstract
Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5) is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC). The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical) safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov).
Collapse
Affiliation(s)
- David L DiGiusto
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Paula M Cannon
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | | | - Lijing Li
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Anitha Rao
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Jianbin Wang
- Sangamo BioSciences Inc , Richmond, California, USA
| | - Gary Lee
- Sangamo BioSciences Inc , Richmond, California, USA
| | | | | | | | | | - Colin Exline
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Evan Lopez
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Jill Henley
- Department of Molecular Microbiology & Immunology, University of Southern California's Keck School of Medicine , Los Angeles, California, USA
| | - Nancy Gonzalez
- Laboratory of Cellular Medicine, City of Hope , Duarte, California, USA
| | - Victoria Bedell
- Cytogenetics Core Laboratory, City of Hope , Duarte, California, USA
| | - Rodica Stan
- Center for Gene Therapy, Hematological Malignancies and Stem Cell Transplantation Institute, City of Hope , Duarte, California, USA
| | - John A Zaia
- Center for Gene Therapy, Hematological Malignancies and Stem Cell Transplantation Institute, City of Hope , Duarte, California, USA
| |
Collapse
|
30
|
Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft LEM, Kinstrie R, Guitart AV, Dunn K, Abraham SA, Sansom O, Michie AM, Machesky L, Kranc KR, Graham GJ, Pellicano F, Holyoake TL. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016; 128:371-83. [PMID: 27222476 PMCID: PMC4991087 DOI: 10.1182/blood-2015-08-661785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/12/2016] [Indexed: 01/13/2023] Open
Abstract
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal.
Collapse
Affiliation(s)
- Amy Sinclair
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Park
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mansi Shah
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark Drotar
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Calaminus
- Centre for Cardiovascular and Metabolic Research, University of Hull, Hull, United Kingdom
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ross Kinstrie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amelie V Guitart
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheela A Abraham
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen Sansom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Machesky
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Kamil R Kranc
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Pellicano
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
31
|
Jantunen E, Varmavuo V, Valtola J. Plerixafor injection: a hematopoietic stem cell mobilizer in non-Hodgkin lymphoma and multiple myeloma. Expert Rev Hematol 2016; 9:723-32. [DOI: 10.1080/17474086.2016.1208082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Puig de la Bellacasa R, Gibert A, Planesas JM, Ros-Blanco L, Batllori X, Badía R, Clotet B, Esté J, Teixidó J, Borrell JI. Nitrogen positional scanning in tetramines active against HIV-1 as potential CXCR4 inhibitors. Org Biomol Chem 2016; 14:1455-1472. [DOI: 10.1039/c5ob02419f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The paradigm, derived from bicyclams, by which it is necessary to use the p-phenylene moiety as the central core in order to achieve high HIV-1 antiviral activities has been reexamined for structures 4.
Collapse
Affiliation(s)
| | - Albert Gibert
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| | - Jesús M. Planesas
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| | - Laia Ros-Blanco
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| | - Xavier Batllori
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| | - Roger Badía
- AIDS Research Institute IrsiCaixa
- Hospital Universitari Germans Trias i Pujol
- Universitat Autonoma de Barcelona
- 08916 Badalona
- Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa
- Hospital Universitari Germans Trias i Pujol
- Universitat Autonoma de Barcelona
- 08916 Badalona
- Spain
| | - José Esté
- AIDS Research Institute IrsiCaixa
- Hospital Universitari Germans Trias i Pujol
- Universitat Autonoma de Barcelona
- 08916 Badalona
- Spain
| | - Jordi Teixidó
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| | - José I. Borrell
- Grup d'Enginyeria Molecular
- Institut Químic de Sarrià
- Universitat Ramon Llull
- E-08017 Barcelona
- Spain
| |
Collapse
|
33
|
Disruption of Anti-tumor T Cell Responses by Cancer-Associated Fibroblasts. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2016. [DOI: 10.1007/978-3-319-42223-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Bouyssou JMC, Ghobrial IM, Roccaro AM. Targeting SDF-1 in multiple myeloma tumor microenvironment. Cancer Lett 2015; 380:315-8. [PMID: 26655999 DOI: 10.1016/j.canlet.2015.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a type of B-cell malignancy that remains incurable to date. The bone marrow (BM) microenvironment plays a crucial role in MM progression. The chemokine SDF-1 (CXCL12) is an important actor of the BM microenvironment that has the ability to regulate numerous processes related to its malignant transformation during MM development. The activity of SDF-1 is mainly mediated by its specific receptor CXCR4, which is expressed at the surface of MM cells and various other BM cell types. Current treatments available for MM patients mainly target tumor cells but have limited effects on the BM microenvironment. In this context, SDF-1 and CXCR4 represent ideal targets for the normalization of the MM-supportive BM microenvironment. The present review focuses on the activity of SDF-1 in the MM BM microenvironment and the current efforts carried out to target the SDF-1/CXCR4 axis for treatment of MM.
Collapse
Affiliation(s)
- Juliette M C Bouyssou
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA; INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA
| | - Aldo M Roccaro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, 450 Brookline Avenue, HIM 246, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Virmani P, Zain J, Rosen ST, Myskowski PL, Querfeld C. Hematopoietic Stem Cell Transplant for Mycosis Fungoides and Sézary Syndrome. Dermatol Clin 2015; 33:807-18. [DOI: 10.1016/j.det.2015.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Xie F, Li X, Bao M, Guo R, Zhang C, Wu A, Yue Y, Guan Y, Wang Y. Plerixafor may treat intractable post-herpetic neuralgia. Med Hypotheses 2015; 85:491-3. [PMID: 26175195 DOI: 10.1016/j.mehy.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/04/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022]
Abstract
Varicella-zoster virus (VZV) causes varicella (chicken pox) and establishes latency in ganglia. A reactivation of latent VZV leads to herpes zoster (shingles). Herpes zoster often causes herpetic pain that can last for months or years after the rash has healed. Prolonged herpetic pain is defined as post-herpetic neuralgia (PHN). There is an unmet need to explore novel therapeutic approaches for intractable PHN. Postmortem studies have shown that VZV induces neuro-inflammation and damage to the ganglia and spinal cord. These pathological changes may be critical factors resulting in PHN. Accumulated evidence suggests that stem cells may alleviate neuropathic pain in animal models through immunomodulatory actions and neuronal repair. Unfortunately, exogenous stem cell transplantation has limited clinical use due to safety concerns, immune rejection, and complications. Pharmacological mobilization of endogenous bone marrow stem cells may overcome these obstacles. Plerixafor is a SDF-1/CXCR4 axis blocker which can stimulate the release of stem cells from the bone marrow into blood circulation. We propose a hypothesis that endogenous stem cells mobilized by plerixafor may relieve the symptoms of PHN. If so, it may represent a novel approach for the treatment of intractable PHN.
Collapse
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mengmeng Bao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chen Zhang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
37
|
Wang L, Du F, Zhang HM, Zhang WJ, Wang HX. Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone. ACTA ACUST UNITED AC 2015; 48:736-42. [PMID: 26108099 PMCID: PMC4541694 DOI: 10.1590/1414-431x20154558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/20/2015] [Indexed: 01/21/2023]
Abstract
Four cycles of chemotherapy are required to assess responses of multiple myeloma (MM)
patients. We investigated whether circulating endothelial progenitor cells (cEPCs)
could be a biomarker for predicting patient response in the first cycle of
chemotherapy with bortezomib and dexamethasone, so patients might avoid ineffective
and costly treatments and reduce exposure to unwanted side effects. We measured cEPCs
and stromal cell-derived factor-1α (SDF-1α) in 46 MM patients in the first cycle of
treatment with bortezomib and dexamethasone, and investigated clinical relevance
based on patient response after four 21-day cycles. The mononuclear cell fraction was
analyzed for cEPC by FACS analysis, and SDF-1α was analyzed by ELISA. The study
population was divided into 3 groups according to the response to chemotherapy: good
responders (n=16), common responders (n=12), and non-responders (n=18). There were no
significant differences among these groups at baseline day 1 (P>0.05). cEPC levels
decreased slightly at day 21 (8.2±3.3 cEPCs/μL) vs day 1 (8.4±2.9
cEPCs/μL) in good responders (P>0.05). In contrast, cEPC levels increased
significantly in the other two groups (P<0.05). SDF-1α changes were closely
related to changes in cEPCs. These findings indicate that change in cEPCs at day 21
in the first cycle might be considered a noninvasive biomarker for predicting a later
response, and extent of change could help decide whether to continue this costly
chemotherapy. cEPCs and the SDF-1α/CXCR4 axis are potential therapeutic targets for
improved response and outcomes in MM patients.
Collapse
Affiliation(s)
- L Wang
- Tongji Medical College, The Central Hospital of Wuhan, Department of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - F Du
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H M Zhang
- Tongji Medical College, The Central Hospital of Wuhan, Department of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - W J Zhang
- Tongji Medical College, The Central Hospital of Wuhan, Department of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - H X Wang
- Tongji Medical College, The Central Hospital of Wuhan, Department of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Affiliation(s)
- Erik De Clercq
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven , Leuven , Belgium
| |
Collapse
|
39
|
Liesveld J. Plerixafor: potential role in acute leukemia therapy. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
41
|
Kindwall-Keller T. Peripheral stem cell collection: From leukocyte growth factor to removal of catheter. J Clin Apher 2014; 29:199-205. [DOI: 10.1002/jca.21329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/01/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Tamila Kindwall-Keller
- Division of Hematology/Oncology; University of Virginia, Stem Cell Transplant Program, Emily Couric Clinical Cancer Center; Charlottesville Virginia
| |
Collapse
|
42
|
Shen W, Hu XM, Liu YN, Han Y, Chen LP, Wang CC, Song C. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J Neuroinflammation 2014; 11:75. [PMID: 24735601 PMCID: PMC3996502 DOI: 10.1186/1742-2094-11-75] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/03/2014] [Indexed: 12/26/2022] Open
Abstract
Background Previous studies have demonstrated that chemokine CXCL12 and its receptor CXCR4 are critical for pain sensitization, but the mechanisms involved are not clear. In this study, we investigated the specific cellular mechanisms of CXCL12/CXCR4 chemokine signaling in the development and maintenance of bone cancer pain after tumor cell implantation (TCI). Methods TCI in the tibial cavity of rats was used to establish a bone cancer pain model. Mechanical allodynia and thermal hyperalgesia were determined by measuring the paw withdrawal threshold and latency, respectively. The protein expression and cellular localization of CXCL12 and CXCR4 were detected by western blot and immunofluorescence staining. The sensitization of neurons, activation of astrocytes and microglia were examined by observing the immunofluorescence intensity of c-Fos, GFAP and IBA1. Results Our results demonstrated that CXCL12 was upregulated in a time-related manner, both in the dorsal root ganglia and spinal cord after TCI. Spinal CXCL12 was predominately expressed in astrocytes, and an intrathecal injection of astrocyte metabolic inhibitor fluorocitrate or selective JNK inhibitor SP600125 abolished TCI-induced CXCL12 production. A single intrathecal injection of a CXCL12 neutralizing antibody (10 μg/10 μl) at day 10 after TCI transiently reversed bone cancer pain in a dose-dependent manner. Whereas repetitive intrathecal administration of a CXCL12 neutralizing antibody (10 μg/10 μl, once a day from day 3 to 5 after TCI) significantly delayed the onset of TCI-induced pain behaviors for nearly five days. Spinal CXCR4 was also upregulated after TCI and colocalized with neurons, astrocytes and microglia. Blocking CXCR4 suppressed TCI-induced activation of neurons, astrocytes and microglia in the spinal cord at day 14. Repeated intrathecal administration of AMD3100 (5 μg/10 μl, once a day for three days) significantly delayed and suppressed the initiation and persistence of bone cancer pain in the early phase (at day 5, 6 and 7 after TCI) and in the late phase (at day 12, 13 and 14 after TCI) of bone cancer, respectively. Conclusions Taken together, these results demonstrate that CXCL12/CXCR4 signaling contributed to the development and maintenance of bone cancer pain via sensitizing neurons and activating astrocytes and microglia. Additionally, this chemokine signaling may be a potential target for treating bone cancer pain.
Collapse
Affiliation(s)
| | - Xue-Ming Hu
- Department of Pain Medicine, The Affiliated Hospital of Xuzhou Medical College, 99 Huaihai West Road, Xuzhou 221002, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
43
|
Jantunen E, Varmavuo V. Plerixafor for mobilization of blood stem cells in autologous transplantation: an update. Expert Opin Biol Ther 2014; 14:851-61. [PMID: 24673120 DOI: 10.1517/14712598.2014.902927] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION About 99% of all autologous transplants are now performed with blood stem cells. G-CSF alone or combined with chemotherapy have been used to mobilize CD34(+) cells. Plerixafor is a novel drug used for mobilization purposes. AREAS COVERED We have evaluated recent data in regard to plerixafor use in predicted or proven poor mobilizers. In addition, we have looked for preemptive strategies to optimize the use of this expensive drug. Also cost-efficacy issues and effects of plerixafor on graft composition and post-transplant outcomes will be discussed. EXPERT OPINION Plerixafor added to G-CSF is superior than G-CSF alone for mobilization of CD34(+) cells. This combination is also efficient in patients who have failed a previous mobilization attempt with other methods or in patients with risk factors for poor mobilization. Addition of plerixafor to G-CSF or chemotherapy plus G-CSF mobilization in patients who appear to mobilize poorly is under active investigation and algorithms for a preemptive use of this expensive agent have been proposed. Grafts collected after plerixafor appear to contain more lymphoid cells than the grafts collected without it. Whether this affects post-transplant outcomes such as immune reconstitution and risk of relapse needs to be evaluated.
Collapse
Affiliation(s)
- Esa Jantunen
- University of Eastern Finland, Clinical Medicine , Kuopio , Finland
| | | |
Collapse
|
44
|
Unraveling stem cell and progenitor subsets in autologous grafts according to methods of mobilization: implications for prediction of hematopoietic recovery. Cytotherapy 2014; 16:392-401. [PMID: 24424268 DOI: 10.1016/j.jcyt.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AIMS In the autologous setting, granulocyte colony-stimulating factor (G-CSF) (G), or, when failing, G plus plerixafor (G+P), are common regimens for mobilization of stem cells into peripheral blood. To delineate mobilization effects on graft composition and hematopoietic recovery, we compared contents of stem cells and progenitor cells in products of G+P- and G patients. Paired samples of G+P patients and prior insufficient G mobilization were available for analyses. METHODS Subset analyses of grafts were performed by flow cytometry and myeloid colony-forming assay. In search of new markers to ascertain graft quality, we determined the fractions of aldehyde dehydrogenase bright (ALDH(br)) cells. RESULTS G grafts contained higher percentages of CD34+ cells, CD34+CD38- cells, and committed progenitors (CD34+CD38+) compared with G+P grafts. A detailed characterization of the mobilized CD34+ cell subset showed higher percentages of CD38- among the CD34+ cells of the G+P group (P = 0.032). In contrast, the CD34+ cell subset in G grafts was characterized by a higher percentage of ALDH(br) cells (P < 0.0001). Studying engraftment and day +100 graft function the G and G+P transplanted patients were comparable with respect to neutrophils, whereas in platelets they differed. In the prediction of engraftment and hematopoietic recovery, the dose of infused ALDH(br) cells correlated best to both platelet (r = 0.565, P = 0.002) and neutrophil reconstitution (r = 0.366, P = 0.06). CONCLUSIONS Besides showing dissimilar distributions of CD34+CD38- cells and progenitors in G and G+P grafts, this study further designated ALDH(br) as a promising marker in determination and prediction of graft quality and hematopoietic recovery.
Collapse
|
45
|
Holland JD, Györffy B, Vogel R, Eckert K, Valenti G, Fang L, Lohneis P, Elezkurtaj S, Ziebold U, Birchmeier W. Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep 2013; 5:1214-27. [PMID: 24290754 DOI: 10.1016/j.celrep.2013.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/21/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022] Open
Abstract
Prognosis for patients with estrogen-receptor (ER)-negative basal breast cancer is poor, and chemotherapy is currently the best therapeutic option. We have generated a compound-mutant mouse model combining the activation of β-catenin and HGF (Wnt-Met signaling), which produced rapidly growing basal mammary gland tumors. We identified the chemokine system CXCL12/CXCR4 as a crucial driver of Wnt-Met tumors, given that compound-mutant mice also deficient in the CXCR4 gene were tumor resistant. Wnt-Met activation rapidly expanded a population of cancer-propagating cells, in which the two signaling systems control different functions, self-renewal and differentiation. Molecular therapy targeting Wnt, Met, and CXCR4 in mice significantly delayed tumor development. The expression of a Wnt-Met 322 gene signature was found to be predictive of poor survival of human patients with ER-negative breast cancers. Thus, targeting CXCR4 and its upstream activators, Wnt and Met, might provide an efficient strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Jane D Holland
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Balázs Györffy
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Semmelweis University, Bókay u. 53-54, 1083 Budapest, Hungary; Institute for Pathology, Charité Medical University, Charitéplatz 1, 10117 Berlin, Germany
| | - Regina Vogel
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Klaus Eckert
- Experimental Pharmacology & Oncology (EPO), Robert-Roessle-Strasse 10, 13122 Berlin, Germany
| | - Giovanni Valenti
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Liang Fang
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Philipp Lohneis
- Institute for Pathology, Charité Medical University, Charitéplatz 1, 10117 Berlin, Germany
| | - Sefer Elezkurtaj
- Institute for Pathology, Charité Medical University, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Ziebold
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Walter Birchmeier
- Department of Cancer Research, Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Strasse 10, 13125 Berlin, Germany.
| |
Collapse
|
46
|
Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 2013; 5:2898-919. [PMID: 24284880 PMCID: PMC3856421 DOI: 10.3390/v5112898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/10/2023] Open
Abstract
Over the past 15 years we have been investigating an alternative approach to treating HIV-1/AIDS, based on the creation of a disease-resistant immune system through transplantation of autologous, gene-modified (HIV-1-resistant) hematopoietic stem and progenitor cells (GM-HSPC). We propose that the expression of selected RNA-based HIV-1 inhibitors in the CD4+ cells derived from GM-HSPC will protect them from HIV-1 infection and results in a sufficient immune repertoire to control HIV-1 viremia resulting in a functional cure for HIV-1/AIDS. Additionally, it is possible that the subset of protected T cells will also be able to facilitate the immune-based elimination of latently infected cells if they can be activated to express viral antigens. Thus, a single dose of disease resistant GM-HSPC could provide an effective treatment for HIV-1+ patients who require (or desire) an alternative to lifelong antiretroviral chemotherapy. We describe herein the results from several pilot clinical studies in HIV-1 patients and our strategies to develop second generation vectors and clinical strategies for HIV-1+ patients with malignancy who require ablative chemotherapy as part of treatment and others without malignancy. The important issues related to stem cell source, patient selection, conditioning regimen and post-infusion correlative studies become increasingly complex and are discussed herein.
Collapse
|
47
|
Milone G, Martino M, Spadaro A, Leotta S, Di Marco A, Scalzulli P, Cupri A, Di Martina V, Schinocca E, Spina E, Tripepi G. Plerixafor on-demand combined with chemotherapy and granulocyte colony-stimulating factor: significant improvement in peripheral blood stem cells mobilization and harvest with no increase in costs. Br J Haematol 2013; 164:113-23. [PMID: 24138497 DOI: 10.1111/bjh.12606] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/28/2013] [Indexed: 12/23/2022]
Abstract
To date, no prospective study on Plerixafor 'on-demand' in combination with chemotherapy and granulocyte colony-stimulating factor (G-CSF) has been reported. We present an interim analysis of the first prospective study in which Plerixafor was administered on-demand in patients affected by multiple myeloma and lymphoma who received high dose cyclophosphamide or DHAP (dexamethasone, cytarabine, cisplatin) plus G-CSF to mobilize peripheral blood stem cells (PBSC). One hundred and two patients were evaluable for response. A cohort of 240 patients receiving the same mobilizing chemotherapy was retrospectively studied. Failure to mobilize CD34(+) cells in peripheral blood was reduced by 'on-demand' strategy compared to conventional mobilization; from 13·0 to 3·0% (P = 0·004). Failure to harvest CD34(+) cells 2 × 10(6) /kg decreased from 20·9 to 4·0% (P = 0·0001). The on-demand Plerixafor strategy also resulted in a lower rate of mobilization failure (P = 0·03) and harvest failure (P = 0·0008) when compared to a 'bias-adjusted set of controls'. Evaluation of economic costs of the two strategies showed that the overall cost of the two treatments were comparable when salvage mobilizations were taken into account. When in combination with cyclophosphamide or DHAP plus G-CSF, the 'on-demand' use of Plerixafor showed, in comparison to conventionally treated patients, a significant improvement in mobilization of PBSC with no increase in overall cost.
Collapse
Affiliation(s)
- Giuseppe Milone
- Programma di Trapianto Emopoietico, Azienda Ospedaliera Policlinico Vittorio Emanuele, Catania, Italy; Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Reed DM, Foldes G, Harding SE, Mitchell JA. Stem cell-derived endothelial cells for cardiovascular disease: a therapeutic perspective. Br J Clin Pharmacol 2013; 75:897-906. [PMID: 22703602 DOI: 10.1111/j.1365-2125.2012.04361.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023] Open
Abstract
Stem cell therapy and organ regeneration are therapeutic approaches that will, we suggest, become mainstream for the treatment of human disease. Endothelial cells, which line the luminal surface of every vessel in the body, are essential components in any organ regeneration programme. There are a number of potentially therapeutic endothelial cell types, including embryonic, adult progenitor and induced pluripotent stem cell-derived endothelial cells, as well as host vascular cells. The features (benefits as well as disadvantages) of each cell type that make them potentially useful in therapy are important to consider. The field of stem cell biology is well developed in terms of protocols for generating endothelium. However, where there is a distinct and urgent unmet need for knowledge concerning how the endothelial cells from these different sources function as endothelium and how susceptible they may be to inflammation and atherosclerosis. Furthermore, where stem cells have been used in clinical trials there is little commonality in protocols for deriving the cells (and thereby the specific phenotype of cells used), administering the cells, dosing the cells and/or in assessing efficacy attributed to the cells themselves. This review discusses these and other issues relating to stem cell-derived endothelial cells in cell therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Daniel M Reed
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
49
|
Schultheiß C, Abe P, Hoffmann F, Mueller W, Kreuder AE, Schütz D, Haege S, Redecker C, Keiner S, Kannan S, Claasen JH, Pfrieger FW, Stumm R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus 2013; 23:1345-58. [PMID: 23929505 DOI: 10.1002/hipo.22180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
Neurogenesis in the adult dentate gyrus (DG) generates new granule neurons that differentiate in the inner one-third of the granule cell layer (GCL). The migrating precursors of these neurons arise from neural stem cells (NSCs) in the subgranular zone (SGZ). Although it is established that pathological conditions, including epilepsy and stroke, cause dispersion of granule neuron precursors, little is known about the factors that regulate their normal placement. Based on the high expression of the chemokine CXCL12 in the adult GCL and its role in guiding neuronal migration in development, we addressed the function of the CXCL12 receptor CXCR4 in adult neurogenesis. Using transgenic reporter mice, we detected Cxcr4-GFP expression in NSCs, neuronal-committed progenitors, and immature neurons of adult and aged mice. Analyses of hippocampal NSC cultures and hippocampal tissue by immunoblot and immunohistochemistry provided evidence for CXCL12-promoted phosphorylation/activation of CXCR4 receptors in NSCs in vivo and in vitro. Cxcr4 deletion in NSCs of the postnatal or mature DG using Cre technology reduced neurogenesis. Fifty days after Cxcr4 ablation in the mature DG, the SGZ showed a severe reduction of Sox2-positive neural stem/early progenitor cells, NeuroD-positive neuronal-committed progenitors, and DCX-positive immature neurons. Many immature neurons were ectopically placed in the hilus and inner molecular layer, and some developed an aberrant dendritic morphology. Only few misplaced cells survived permanently as ectopic neurons. Thus, CXCR4 signaling maintains the NSC pool in the DG and specifies the inner one-third of the GCL as differentiation area for immature granule neurons.
Collapse
Affiliation(s)
- Clara Schultheiß
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Langhammer S. Rationale for the design of an oncology trial using a generic targeted therapy multi‑drug regimen for NSCLC patients without treatment options (Review). Oncol Rep 2013; 30:1535-41. [PMID: 23877481 PMCID: PMC3810357 DOI: 10.3892/or.2013.2631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/05/2013] [Indexed: 01/07/2023] Open
Abstract
Despite more than 70 years of research concerning medication for cancer treatment, the disease still remains one of the leading causes of mortality worldwide. Many cancer types lead to death within a period of months to years. The original class of chemotherapeutics is not selective for tumor cells and often has limited efficacy, while treated patients suffer from adverse side‑effects. To date, the concept of tumor‑specific targeted therapy drugs has not fulfilled its expectation to provide a key for a cure. Today, many oncology trials are designed using a combination of chemotherapeutics with targeted therapy drugs. However, these approaches have limited outcomes in most cancer indications. This perspective review provides a rationale to combine targeted therapy drugs for cancer treatment based on observations of evolutionary principles of tumor development and HIV infections. In both diseases, the mechanisms of immune evasion and drug resistance can be compared to some extent. However, only for HIV is a breakthrough treatment available, which is the highly active antiretroviral therapy (HAART). The principles of HAART and recent findings from cancer research were employed to construct a hypothetical model for cancer treatment with a multi‑drug regimen of targeted therapy drugs. As an example of this hypothesis, it is proposed to combine already marketed targeted therapy drugs against VEGFRs, EGFR, CXCR4 and COX2 in an oncology trial for non‑small cell lung cancer patients without further treatment options.
Collapse
|