1
|
Chang Y, Liu Q, Zhou Z, Ding Y, Yang M, Xu W, Chen K, Zhang Q, Wang Z, Li H. Can Statin Treatment Reduce the Risk of Hepatocellular Carcinoma? A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2021; 19:1533033820934881. [PMID: 32552476 PMCID: PMC7307281 DOI: 10.1177/1533033820934881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Whether statins can reduce the incidence of cancers has been an interesting
topic in recent years. This meta-analysis aimed to determine the
relationship between statin treatment with the risk of hepatocellular
carcinoma. Methods: Studies published up to July 2019 were screened from databases. The data from
approved studies were pooled. Random-effects or fixed-effects model was used
to calculate the relative risk with 95% CIs in the overall group and
subgroups. Sensitivity and meta-regression analyses were performed, and
publication bias was evaluated. Results: A total of 18 studies involving 1 611 596 patients were included in this
meta-analysis. The overall result showed a significantly reduced risk of
hepatocellular carcinoma (relative risk = 0.54, 95% CI: 0.42-0.66) in statin
users. In comparison to the risk in nonstatin users, the risk of
hepatocellular carcinoma was reduced in all subgroups. The dose of statins
and their pharmacokinetics can partly explain the heterogeneity in the
overall meta-analysis (I2 = 94.6%, P = .000). A dose-dependent effect of
statin use for the reduced risk of hepatocellular carcinoma was found. Conclusions: Findings from this meta-analysis support that statin use can significantly
reduce the incidence of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Qinyu Liu
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Zidong Zhou
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Yuping Ding
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Mei Yang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Wei Xu
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China
| | - Qing Zhang
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China.,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, China
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, China.,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, Tianjin, China
| |
Collapse
|
2
|
Kuo TT, Huang YB, Hsieh CJ. Consumption and market share of cholesterol-lowering drugs in high-risk patients before and after the release of the 2013 ACC/AHA cholesterol guidelines: a retrospective observational study. BMJ Open 2020; 10:e036769. [PMID: 33444173 PMCID: PMC7682459 DOI: 10.1136/bmjopen-2020-036769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE We examined the use of cholesterol-lowering drugs in Taiwan in high-risk patients before and after the release of the 2013 American College of Cardiology and the American Heart Association (ACC/AHA) cholesterol guidelines. DESIGN Retrospective observational study. SETTING Kaohsiung Chang Gung Memorial Hospital database, Kaohsiung City, Taiwan. PARTICIPANTS Outpatients aged ≥20 years with atherosclerosis cardiovascular disease, familial hypercholesterolaemia and diabetes. PRIMARY AND SECONDARY OUTCOME MEASURES Data on brand and generic names, use and dosage of cholesterol-lowering drugs in 2012 and 2015 were compiled and the total amount used was calculated. Differences in usage and market share were compared. Usage rates of single and fixed-dose combination (FDC) products were compared. RESULTS The number of patients receiving ambulatory care increased from 36 367 in 2012 to 41 807 in 2015. Single (3 679 979-4 568 086 tablets) and FDC (540 522-572 954 tablets) product use increased from 2012 to 2015, respectively. Statins were the most commonly prescribed medications in 2012 (71.14%) and 2015 (72.91%). The average monthly consumption of statin among high-risk patients in 2012 was 269 948.8 tablets, and it increased significantly to 343 975.3 tablets in 2015. The average monthly consumption of pitavastatin was 34 113.4 tablets in 2015, which was significantly higher than 0 in 2012. Conversely, the highest decline was observed for fluvastatin use, with the average monthly consumption being 38 754.3 tablets in 2015, which was significantly lower than 45 929.8 tablets consumed in 2012. Regarding FDC therapy for cholesterol-lowering drugs, Vytorin (ezetimibe 10 mg + simvastatin 20 mg) use was the highest among all FDCs in 2015. CONCLUSIONS The 2013 ACC/AHA cholesterol guidelines likely promoted the use of fixed-dose, high-intensity and moderate-intensity monotherapy and FDC therapy statins in high-risk groups, and this was consistent with the use of high-intensity or moderate-intensity statins in the present study. Furthermore, these changes were associated with increased effectiveness and reduced adverse effects.
Collapse
Affiliation(s)
- Tzu-Tsen Kuo
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yaw-Bin Huang
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Jung Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pao Chien Hospital, Pingtung, Taiwan
| |
Collapse
|
3
|
Evaluation of the Pharmacokinetic Drug-Drug Interaction between Micronized Fenofibrate and Pitavastatin in Healthy Volunteers. Pharmaceutics 2020; 12:pharmaceutics12090869. [PMID: 32932576 PMCID: PMC7557955 DOI: 10.3390/pharmaceutics12090869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022] Open
Abstract
Dyslipidemia is a major risk factor for development of atherosclerosis and cardiovascular disease (CVD). Effective lipid-lowering therapies has led to CVD risk reduction. This study evaluated the possible pharmacokinetic interactions between fenofibrate, a peroxisome proliferators-activated receptors α agonist, and pitavastatin, a 3-hydoxy-3-methylglutaryl-coenzyme A reductase inhibitor, in healthy Korean subjects. The study design was an open-label, randomized, multiple-dose, three-period, and six-sequence crossover study with a 10-day washout in 24 healthy volunteers. It had three treatments: 160 mg of micronized fenofibrate once daily for 5 days; 2 mg of pitavastatin once daily for 5 days; and 160 mg of micronized fenofibrate with 2 mg of pitavastatin for 5 days. Serial blood samples were collected at scheduled intervals for up to 48 h after the last dose in each period to determine the steady-state pharmacokinetics of both drugs. Plasma concentrations of fenofibric acid and pitavastatin were measured using a validated high-performance liquid chromatography with the tandem mass spectrometry method. A total of 24 subjects completed the study. Pitavastatin, when co-administered with micronized fenofibrate, had no effect on the Cmax,ss and AUCτ,ss of fenofibric acid. The Cmax,ss and AUCτ,ss of pitavastatin were increased by 36% and 12%, respectively, when co-administered with fenofibrate. Combined treatment with pitavastatin and micronized fenofibrate was generally well tolerated without serious adverse events. Our results demonstrated no clinically significant pharmacokinetic interactions between micronized fenofibrate and pitavastatin when 160 mg of micronized fenofibrate and 2 mg of pitavastatin are co-administered. The treatments were well tolerated during the study, with no serious adverse events.
Collapse
|
4
|
Mizus MC, Tiniakou E. Lipid-lowering Therapies in Myositis. Curr Rheumatol Rep 2020; 22:70. [PMID: 32845379 PMCID: PMC7986053 DOI: 10.1007/s11926-020-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The use of lipid-lowering therapies in patients with idiopathic inflammatory myopathies (IIM) is complicated and there are no guidelines for diagnosing, monitoring, or treating atherosclerotic cardiovascular disease (ASCVD) in this group of patients. RECENT FINDINGS The use of lipid-lowering therapies, especially statins, is recommended in patients with increased risk for ASCVD, which includes patients with inflammatory diseases, based on recent American College of Cardiology/American Heart Association (ACC/AHA) guidelines for ASCVD management. There is accumulating evidence that patients with IIM are at increased risk for ASCVD, similar to other inflammatory diseases. Lipid-lowering therapies have side effects that may be pronounced or confounding in myositis patients, potentially limiting their use. Statins are specifically contraindicated in patients with anti 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) antibodies. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to be safe and potentially beneficial in patients with IIM. Here, we propose a framework for (1) ASCVD risk assessment and treatment based on ACC/AHA ASCVD primary prevention guidelines; (2) myositis disease monitoring while undergoing lipid-lowering therapy; and (3) management of statin intolerance, including, indications for the use of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Marisa C Mizus
- Department of Medicine, Division of Rheumatology, Mason Lord, Center Tower, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, Baltimore, MD, 21224, USA.
| | - Eleni Tiniakou
- Department of Medicine, Division of Rheumatology, Mason Lord, Center Tower, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Liu S, Wu D, Sun X, Fan Y, Zha R, Jalali A, Teli M, Sano T, Siegel A, Sudo A, Agarwal M, Robling A, Li BY, Yokota H. Mechanical stimulations can inhibit local and remote tumor progression by downregulating WISP1. FASEB J 2020; 34:12847-12859. [PMID: 32744779 DOI: 10.1096/fj.202000713rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022]
Abstract
Mechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Meghana Teli
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Orthopedic Surgery, Mie University, Mie, Japan
| | - Amanda Siegel
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University, Mie, Japan
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexander Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Integrated Nanosystems Development Institute, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Mechanical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Wang J, Liu J, Song X, Fu C. Simultaneous Determination of Telmisartan and Pitavastatin Calcium in Intestinal Perfusate by HPLC: Application to Intestinal Absorption Interaction Study. Pharm Nanotechnol 2020; 8:313-322. [PMID: 32515316 DOI: 10.2174/2211738508666200607181727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypertension and hypercholesterolemia are two main physiological risk factors of cardiovascular disease, and commonly occur in combination. Multicompound combination therapy is rational for the treatment of concurrent hypertension and hypercholesterolemia, while telmisartan and pitavastatin calcium can be used as a potential drug combination. OBJECTIVE The aim of this paper is to study the intestinal absorption and absorption interaction of telmisartan and pitavastatin calcium. METHODS An HPLC method was developed and validated to determine telmisartan and pitavastatin calcium in intestinal perfusate simultaneously. The in situ single-pass perfusion in rats was utilized to investigate the effects of concentrations, intestinal segment (duodenum, jejunum, ileum and colon) and co-administrated drugs on absorption. RESULTS The effective permeability coefficient and the absorption rate constant of telmisartan were higher in the duodenum as compared to other intestinal segments. However, the intestinal absorption of pitavastatin calcium was not segmental dependent. The effective permeability coefficient and absorption rate constant have no significant difference among three concentrations of telmisartan, pitavastatin calcium individually and their combination. CONCLUSION The results showed that telmisartan and pitavastatin calcium were transported passively, and telmisartan and pitavastatin calcium could be absorbed well in all intestinal segments. The intestinal absorption parameters revealed the absence of any intestinal absorption interaction when co-administered. Lay Summary: Co-administration of telmisartan and pitavastatin calcium can provide a potential therapeutic strategy for the treatment of concurrent hypertension and hypercholesterolemia. We are investigating the intestinal interaction of these two drugs in rats using the developed HPLC method and in situ single-pass perfusion technology. We will calculate some parameters after administrating two types of drugs either separately or together, which help reflect changes regarding intestinal absorption and penetration. Compared with telmisartan and pitavastatin calcium administrated separately, if parameters significantly change after co-administration, it proves the existence of the intestinal interactions. Moreover, the results might contribute to clinic drug monitoring.
Collapse
Affiliation(s)
- Junying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Juan Liu
- Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Chunmei Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zhang D, Xi M, Chen L, Huang Y, Mao P. PTX3 in serum induces renal mesangial cell proliferation but has no effect on apoptosis. Exp Ther Med 2018; 15:1193-1198. [PMID: 29434706 PMCID: PMC5774436 DOI: 10.3892/etm.2017.5521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the effect of pentraxin 3 (PTX3) on the regulation of proliferation and apoptosis in human glomerular mesangial cells (HMCs). Small interfering (si)RNA was designed and synthesized to inhibit the expression of endogenous PTX3, and the effects on the proliferation and apoptosis of HMCs were detected by flow cytometry and an MTT assay. Western blot analysis was used to detect the activation of mitogen-activated protein kinase (MAPK) proteins in HMCs with PTX3 knockdown. Three siRNAs targeting PTX3 were individually transfected into HMCs for 48 h, and reverse-transcription quantitative PCR demonstrated that the relative mRNA expression of PTX3 was significantly decreased in all groups by up to 79.62% of that in the control group (P<0.05). Following transfection with PTX3-siRNA, the viability of an HMC line was significantly decreased in comparison with that of a control group transfected with scrambled siRNA. However, PTX3-siRNA did not significantly effect early and late apoptotic cell populations in HMCs compared with those in the control. Endogenous PTX3 interference was found to significantly decrease p38 MAPK, extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase phosphorylation. In conclusion, silencing of PTX3, inhibited the proliferation of HMCs via MAPK pathways, but exerted no effect on the apoptosis of HMCs.
Collapse
Affiliation(s)
- Danhuan Zhang
- Department of Nephrology, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Minhui Xi
- Department of Nephrology, Pudong New Area People's Hospital, Shanghai 201200, P.R. China
| | - Lingyun Chen
- Department of Nephrology, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Yanping Huang
- Department of Nephrology, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Peiju Mao
- Department of Nephrology, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
8
|
Drakopoulou M, Toutouzas K, Stathogiannis K, Synetos A, Trantalis G, Tousoulis D. Managing the lipid profile of coronary heart disease patients. Expert Rev Cardiovasc Ther 2016; 14:1263-1271. [PMID: 27552726 DOI: 10.1080/14779072.2016.1221341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Lipid profile management is even more critical in patients treated for secondary prevention, since patients with established coronary heart disease are at higher risk of developing events. Current guidelines encourage lifestyle modification and patient engagement in disease prevention. However, the American College of Cardiology/American Heart Association guidelines seem to differ considerably from their predecessors, having an impact on clinical practice of lipid management. Area covered: This review article discusses and provides a summary of the current recommendations for lipid profile management in patients with coronary heart disease, with a view to present lifestyle modification and novel treatment strategies, and to indicate areas of dispute among recent guidelines. Expert commentary: Existing controversies between current guidelines concerning treatment goals and therapeutic decisions may have potential implications on the clinical management of patients. In the meantime, we eagerly wait for the results of randomized controlled trials evaluating promising, potent, safe and prolonged drugs that are in progress.
Collapse
Affiliation(s)
- Maria Drakopoulou
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| | - Konstantinos Toutouzas
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| | - Konstantinos Stathogiannis
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| | - Andreas Synetos
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| | - George Trantalis
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| | - Dimitrios Tousoulis
- a First Department of Cardiology , Medical School of Athens University, Hippokration Hospital , Athens , Greece
| |
Collapse
|
9
|
Effect of high-potency statins on HbA1c in patients with or without diabetes mellitus. J Pharm Health Care Sci 2016; 2:8. [PMID: 26998342 PMCID: PMC4799528 DOI: 10.1186/s40780-016-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Background The increased risk of new-onset diabetes with statin use, including high-potency statins, is well known. However, the effects of high-potency statins on HbA1c are unclear. A retrospective cohort study was conducted to examine the effect of high-potency statins on HbA1c in patients with or without diabetes. The study enrolled new statin users identified via the electronic healthcare database of the general hospital in Japan. Methods Following identification of all individuals (n = 4,672) who had been prescribed a lipid lowering drug at least once between January 1, 2010 and July 31, 2014, new statin users were selected (n = 1,136). Patients were excluded if they had been prescribed treatment with a statin within the preceding 6-month period. HbA1c levels before and during high-potency statin treatment were compared using the dependent t-test. In addition, the hazard ratio for the incidence of diabetes with high-potency statin treatment was estimated, using low-potency statins as a reference. Results In patients with diabetes (n = 153), mean HbA1c (%) levels significantly increased by 0.4 % after high-potency statin use (7.57 ± 1.58; p = 0.0002) compared to baseline (7.18 ± 1.37). Similarly, HbA1c (%) levels significantly increased from 5.78 ± 0.38 to 5.92 ± 0.45 (p < 0.0001) after high-potency statin use in patients without diabetes (n = 165). Furthermore, a trend toward an increase in HbA1c was found for all of the high-potency statins irrespective of a history of diabetes. Conclusions The use of high-potency statins may increase HbA1c levels in patients with or without diabetes.
Collapse
|
10
|
Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3863726. [PMID: 26788247 PMCID: PMC4691632 DOI: 10.1155/2016/3863726] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023]
Abstract
Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia.
Collapse
|
11
|
Ferreira TS, Lanzetti M, Barroso MV, Rueff-Barroso CR, Benjamim CF, de Brito-Gitirana L, Porto LC, Valença SS. Oxidative stress and inflammation are differentially affected by atorvastatin, pravastatin, rosuvastatin, and simvastatin on lungs from mice exposed to cigarette smoke. Inflammation 2015; 37:1355-65. [PMID: 24609836 DOI: 10.1007/s10753-014-9860-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our aim was to investigate the effects of four different statins on acute lung inflammation induced by cigarette smoke (CS). C57BL/6 male mice were divided into a control group (sham-smoked) and mice exposed to CS from 12 cigarettes/day for 5 days. Mice exposed to CS were grouped and treated with vehicle (i.p.), atorvastatin (10 mg/kg), pravastatin (10 mg/kg), rosuvastatin (5 mg/kg), or simvastatin (20 mg/kg). Treatment with statins differentially improved the pulmonary response when compared to the CS group. Atorvastatin and pravastatin demonstrated slightly effects on inflammation and oxidative stress. Rosuvastatin demonstrated the best anti-inflammatory effect, whereas simvastatin demonstrated the best antioxidant response.
Collapse
Affiliation(s)
- Thiago Santos Ferreira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Statins are widely used and have been proven to be effective in the prevention of atherosclerotic vascular disease events, primarily by reducing plasma low-density lipoprotein cholesterol concentrations. Although statins are generally well tolerated and present an excellent safety profile, adverse effects from muscle toxicity and liver enzyme abnormalities may occur in some patients. Myopathy and rhabdomyolysis are rare with statin monotherapy at the approved dose ranges, but the risk increases with use of higher doses, interacting drugs and genetic predisposition. Asymptomatic increases in liver transaminases with statin treatment do not seem to be associated with an increased risk of liver disease. Therefore, statin treatment can be safely used in patients with mild to moderately abnormal liver tests that are potentially attributable to nonalcoholic fatty liver disease and can improve liver tests and reduce cardiovascular morbidity in this group of patients. The risks of other unfavorable effects such as the slightly increased risk of new-onset diabetes and potentially increased risk of haemorrhagic stroke are much smaller than the cardiovascular benefits with the use of statins.
Collapse
Affiliation(s)
- Miao Hu
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Bernard M Y Cheung
- Division of Clinical Pharmacology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Brian Tomlinson
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
13
|
Barrios V, Escobar C, Zamorano JL. Searching the place of pitavastatin in the current treatment of patients with dyslipidemia. Expert Rev Cardiovasc Ther 2014; 11:1597-612. [DOI: 10.1586/14779072.2013.844546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
The administration of pitavastatin augments creatinine clearance associated with reduction in oxidative stress parameters: acute and early effects. Clin Exp Nephrol 2012; 17:240-7. [DOI: 10.1007/s10157-012-0689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
|
15
|
Han KH, Kim HJ, Kim JJ. Cost-effectiveness of the Use of Statins in the Korean Population. J Lipid Atheroscler 2012. [DOI: 10.12997/jla.2012.1.2.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ki-Hoon Han
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Jin Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Joong Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|