1
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
2
|
Mofijur M, Hasan MM, Ahmed SF, Djavanroodi F, Fattah IMR, Silitonga AS, Kalam MA, Zhou JL, Khan TMY. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122889. [PMID: 37972679 DOI: 10.1016/j.envpol.2023.122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Emerging contaminants (ECs) are increasingly recognized as threats to human health and ecosystems. This review evaluates advanced analytical methods, particularly mass spectrometry, for detecting ECs and understanding their toxicity, transformation pathways, and environmental distribution. Our findings underscore the reliability of current techniques and the potential of upcoming methods. The adverse effects of ECs on aquatic life necessitate both in vitro and in vivo toxicity assessments. Evaluating the distribution and degradation of ECs reveals that they undergo physical, chemical, and biological transformations. Remediation strategies such as advanced oxidation, adsorption, and membrane bioreactors effectively treat EC-contaminated waters, with combinations of these techniques showing the highest efficacy. To minimize the impact of ECs, a proactive approach involving monitoring, regulations, and public education is vital. Future research should prioritize the refining of detection methods and formulation of robust policies for EC management.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - I M R Fattah
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - A S Silitonga
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - M A Kalam
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - John L Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Schreiber F, Donato FF, Kemmerich M, Zanella R, Camargo ER, Avila LAD. Efficiency of home water filters on pesticide removal from drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122936. [PMID: 37979648 DOI: 10.1016/j.envpol.2023.122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Water pollution via natural and anthropogenic activities has become a global problem, which can lead to short and long-term impacts on humans' health and the ecosystems. Substantial amounts of individual or mixtures of organic pollutants move into the surface water via point and non-point source contamination. Some of these compounds are known to be toxic and difficult to remove from water sources, thus affecting their quality. Moreover, environmental regulations in high-income countries have become very strict for drinking water treatment over the past decades, especially regarding pesticides. This study aimed to evaluate the efficiency of different residential water treatments to remove 13 pesticides with distinct physicochemical characteristics from the drinking water. Nine water treatments were used: four membrane filters, an activated carbon filter, ultraviolet radiation, reverse osmosis, ion exchange resins, and ozonation. The trial was performed with tap water contaminated with an environmental concentration of 13 pesticides. According to the results, activated carbon and reverse osmosis were 100% efficient for pesticide removal, followed by ion exchange resins and ultraviolet radiation. Membrane filters, in general, showed low efficiency and should, therefore, not be used for this purpose.
Collapse
Affiliation(s)
- Fábio Schreiber
- Laboratory of Environmental Fate of Herbicide, Department of Crop Protection, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil; F.S. Farm Limited, Itaí District, Ijuí, RS, 98717-000, Brazil
| | - Filipe Fagan Donato
- Laboratory of Pesticides Residues Analysis, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS, 97105-000, Brazil; Education Department of the Polytechnic College, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS, 97105-000, Brazil
| | - Magali Kemmerich
- Laboratory of Environmental Fate of Herbicide, Department of Crop Protection, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil; Laboratory of Pesticides Residues Analysis, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS, 97105-000, Brazil; Federal University of Pampa, Chromatography and Food Analysis Research Group, Itaqui, RS, 97650-000, Brazil
| | - Renato Zanella
- Laboratory of Pesticides Residues Analysis, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS, 97105-000, Brazil
| | - Edinalvo Rabaioli Camargo
- Laboratory of Environmental Fate of Herbicide, Department of Crop Protection, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil
| | - Luis Antonio de Avila
- Laboratory of Environmental Fate of Herbicide, Department of Crop Protection, Federal University of Pelotas, Capão do Leão, RS, 96160-000, Brazil; Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
4
|
Puri M, Gandhi K, Kumar MS. Emerging environmental contaminants: A global perspective on policies and regulations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117344. [PMID: 36736081 DOI: 10.1016/j.jenvman.2023.117344] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Emerging contaminants include many synthetic or natural substances, such as pharmaceuticals and personal care products, hormones, and flame retardants that are not often controlled or monitored in the environment. The consumption or use of these substances is on an ever-rising trend, which dangerously increases their prevalence in practically all environmental matrices. These contaminants are present in low environmental concentrations and cause severe effects on human health and the biota. The present review analyzed 2012-2022 years papers via PubChem, science direct, National Center for Biotechnology Information, web of science on the legislations and policies of emerging contaminants globally. A state-of-the-art review of several studies in the literature focus on examining and evaluating the emerging contaminants and the frameworks adopted by developed and developing countries to combat the release of emerging contaminants and form footprints towards water sustainability which includes water availability, usage patterns, generation and pollution management, the health of aquatic systems, and societal vulnerability. The paper aims to provide a comprehensive view of current global policies and framework regarding evaluating and assessing the chemicals, in light of being a threat to the environment and biota. The review also highlights the future global prospects, including current governmental activities and emerging contaminant policy measures. The review concludes with suggestions and way forward to control the inventory and disposal of emerging contaminants in the environment.
Collapse
Affiliation(s)
- Mehak Puri
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kavita Gandhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Carneiro FE, Grott SC, Israel NG, Bitschinski D, Abel G, Alves TC, de Albuquerque CAC, da Silva EB, de Almeida EA. Influence of temperature on the biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) to 2-hydroxyatrazine exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106468. [PMID: 36870175 DOI: 10.1016/j.aquatox.2023.106468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The influence of temperature (25 and 32 °C) on the biomarker responses of bullfrog tadpoles (Lithobates catesbeianus) to different concentrations of the atrazine metabolite 2-hydroxyatrazine (2-HA, 0, 10, 50 and 200 ng.L-1, 16 days), was evaluated. Temperature affected the activities of superoxide dismutase, glutathione S-transferase and acetylcholinesterase. The activities of catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase and carboxylesterase presented no alterations. Frequencies of micronuclei and nuclear abnormalities were also not altered. 2-HA decreased SOD activity at 25 °C and caused histopathological changes in the liver and the kidney at both temperatures, with the kidney being more affected by the combination of higher temperature and 2-HA exposure, presenting glomerular shrinkage and an increase in Bowman's space. Our results indicate that at environmentally relevant concentrations, 2-HA can cause changes in biomarker responses as well as in the morphology of liver and kidney in L. catesbeianus tadpoles. Temperature has an important influence on biomarker response and histopathological alterations.
Collapse
Affiliation(s)
| | - Suelen Cristina Grott
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | - Daiane Bitschinski
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Gustavo Abel
- Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil
| | - Thiago Caique Alves
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil
| | | | | | - Eduardo Alves de Almeida
- Environmental Engineering Post-Graduation Program, University of Blumenau, Blumenau, SC, Brazil; Department of Natural Science, University of Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
6
|
Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation. World J Microbiol Biotechnol 2023; 39:110. [PMID: 36905533 DOI: 10.1007/s11274-023-03562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Conventional textile effluent treatments cannot remove methylene blue, a mutagenic azo dye, and an endocrine disruptor, that remains in the drinking water after conventional water treatment. However, the spent substrate from Lentinus crinitus mushroom cultivation, a waste, could be an attractive alternative to remove persistent azo dyes in water. The objective of this study was to assess the methylene blue biosorption by spent substrate from L. crinitus mushroom cultivation. The spent substrate obtained after mushroom cultivation had been characterized by the point of zero charge, functional groups, thermogravimetric analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Moreover, the spent substrate biosorption capacity was determined in function of pH, time, and temperature. The spent substrate had a point of zero charge value of 4.3 and biosorbed 99% of methylene blue in pH from 3 to 9, with the highest biosorption in the kinetic assay of 15.92 mg g- 1, and in the isothermal assay of 120.31 mg g- 1. Biosorption reached equilibrium at 40 min after mixing and best fitted the pseudo-second-order model. Freundlich model best fitted the isothermal parameters and each 100 g spent substrate biosorbed 12 g dye in an aqueous solution. The spent substrate of L. crinitus cultivation is an effective biosorbent of methylene blue and an alternative to removing this dye from water, adding value to the mushroom production chain, and supporting the circular economy.
Collapse
|
7
|
Santiago MR, Salvo LM, Badaró-Pedroso C, Costa EMF. Single and mixed exposure to distinct groups of pesticides suggests endocrine disrupting properties of imidacloprid in zebrafish embryos. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:217-228. [PMID: 36861322 DOI: 10.1080/03601234.2023.2184158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.
Collapse
Affiliation(s)
- Magda Regina Santiago
- Center of Research and Development of Environmental Protection of the Biological Institute, APTA, São Paulo, Brazil
| | - Lígia Maria Salvo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Elaine Maria Frade Costa
- Chief of Developmental Endocrinology Unit, Clinicas' Hospital University of Sao Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
8
|
Lopes RH, Silva CRDV, Silva ÍDS, Salvador PTCDO, Heller L, Uchôa SADC. Worldwide Surveillance Actions and Initiatives of Drinking Water Quality: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:559. [PMID: 36612879 PMCID: PMC9819457 DOI: 10.3390/ijerph20010559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
This study identified and mapped worldwide surveillance actions and initiatives of drinking water quality implemented by government agencies and public health services. The scoping review was conducted between July 2021 and August 2022 based on the Joanna Briggs Institute method. The search was performed in relevant databases and gray literature; 49 studies were retrieved. Quantitative variables were presented as absolute and relative frequencies, while qualitative variables were analyzed using the IRaMuTeQ software. The actions developed worldwide and their impacts and results generated four thematic classes: (1) assessment of coverage, accessibility, quantity, and drinking water quality in routine and emergency situations; (2) analysis of physical-chemical and microbiological parameters in public supply networks or alternative water supply solutions; (3) identification of household water contamination, communication, and education with the community; (4) and investigation of water-borne disease outbreaks. Preliminary results were shared with stakeholders to favor knowledge dissemination.
Collapse
Affiliation(s)
- Rayssa Horacio Lopes
- Graduation Program in Collective Health, Federal University of Rio Grande do Norte, Natal 59064-630, Brazil
| | | | - Ísis de Siqueira Silva
- Graduation Program in Collective Health, Federal University of Rio Grande do Norte, Natal 59064-630, Brazil
| | | | - Léo Heller
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-009, Brazil
| | | |
Collapse
|