1
|
Mutegoa E, Sahini MG. Approaches to mitigation of hydrogen sulfide during anaerobic digestion process - A review. Heliyon 2023; 9:e19768. [PMID: 37809492 PMCID: PMC10559078 DOI: 10.1016/j.heliyon.2023.e19768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Anaerobic digestion (AD) is the primary technology for energy production from wet biomass under a limited oxygen supply. Various wastes rich in organic content have been renowned for enhancing the process of biogas production. However, several other intermediate unwanted products such as hydrogen sulfide, ammonia, carbon dioxide, siloxanes and halogens have been generated during the process, which tends to lower the quality and quantity of the harvested biogas. The removal of hydrogen sulfide from wastewater, a potential substrate for anaerobic digestion, using various technologies is covered in this study. It is recommended that microaeration would increase the higher removal efficiency of hydrogen sulfide based on a number of benefits for the specific method. The process is primarily accomplished by dosing smaller amounts of oxygen in the digester, which increases the system's oxidizing capacity by rendering the sulfate reducing bacteria responsible for converting sulfate ions to hydrogen sulfide inactive. This paper reviews physicochemical and biological methods that have been in place to eliminate the effects of hydrogen sulfide from wastewater treated anaerobically and future direction to remove hydrogen sulfide from biogas produced.
Collapse
Affiliation(s)
- Eric Mutegoa
- Department of Chemistry, College of Natural and Mathematical Sciences (CNMS), The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Mtabazi G. Sahini
- Department of Chemistry, College of Natural and Mathematical Sciences (CNMS), The University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| |
Collapse
|
2
|
Oliveros-Muñoz JM, Martínez-Villalba JA, Jiménez-Islas H, Luna-Porres MY, Escamilla-Alvarado C, Ríos-Fránquez FJ. Luus-Jaakola method and ADM1 based optimization of hydrogen sulfide in anaerobic digestion of cow manure. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Lee E, Rout PR, Kyun Y, Bae J. Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. WATER RESEARCH 2020; 182:115965. [PMID: 32673861 DOI: 10.1016/j.watres.2020.115965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 05/25/2023]
Abstract
The control of dissolved methane (CH4) and hydrogen sulfide (H2S) emissions in anaerobic effluents is essential for minimizing the environmental implications of greenhouse gases, odor, and carbon footprint, as well as for preventing energy loss in the form of unrecovered dissolved methane. This study assessed the feasibility of a vacuum degasifier for the removal of CH4 and H2S from staged anaerobic fluidized membrane bioreactor (SAF-MBR) effluent. The optimization results showed that the efficiency of the nozzle fitted degasifiers were superior to the media packed ones. In three-stage vacuum degasifiers at a -0.8 bar vacuum pressure, H2S removal was mostly pH dependent and 88% removal efficiency was achieved with an initial concentration of 13.6 mg/L. Methane removal was dependent primarily on the number of degasifier units, and approximately 94% efficiency was achieved in a three-stage degasifier. Energy balance analysis showed that energy production exceeded the system energy requirements with 0.05-0.07 kWh/m3 of surplus energy. These results provide deep insights into this new technology for simultaneous removal of dissolved CH4 and H2S, which can be referred for potential future applications.
Collapse
Affiliation(s)
- Eunseok Lee
- Department of Environmental Engineering, Inha University, Inharo 100, Michuhol-gu, Incheon, Republic of Korea
| | - Prangya Ranjan Rout
- Department of Environmental Engineering, Inha University, Inharo 100, Michuhol-gu, Incheon, Republic of Korea
| | - Yongduk Kyun
- Department of Environmental Engineering, Inha University, Inharo 100, Michuhol-gu, Incheon, Republic of Korea
| | - Jaeho Bae
- Department of Environmental Engineering, Inha University, Inharo 100, Michuhol-gu, Incheon, Republic of Korea.
| |
Collapse
|
4
|
Hauduc H, Wadhawan T, Johnson B, Bott C, Ward M, Takács I. Incorporating sulfur reactions and interactions with iron and phosphorus into a general plant-wide model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:26-34. [PMID: 30816859 DOI: 10.2166/wst.2018.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfur causes many adverse effects in wastewater treatment and sewer collection systems, such as corrosion, odours, increased oxygen demand, and precipitate formation. Several of these are often controlled by chemical addition, which will impact the subsequent wastewater treatment processes. Furthermore, the iron reactions, resulting from coagulant addition for chemical P removal, interact with the sulfur cycle, particularly in the digester with precipitate formation and phosphorus release. Despite its importance, there is no integrated sulfur and iron model for whole plant process optimization/design that could be readily used in practice. After a detailed literature review of chemical and biokinetic sulfur and iron reactions, a plant-wide model is upgraded with relevant reactions to predict the sulfur cycle and iron cycle in sewer collection systems, wastewater and sludge treatment. The developed model is applied on different case studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Imre Takács
- Dynamita SARL, 7 LD Eoupe, Nyons, France E-mail:
| |
Collapse
|
5
|
Donoso-Bravo A, Constanza Sadino-Riquelme M, Díaz I, Muñoz R. Mathematical modelling of in-situ microaerobic desulfurization of biogas from sewage sludge digestion. BIOTECHNOLOGY REPORTS 2018; 20:e00293. [PMID: 30568887 PMCID: PMC6288047 DOI: 10.1016/j.btre.2018.e00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/31/2018] [Accepted: 11/16/2018] [Indexed: 11/21/2022]
Abstract
An extension of the ADM1 model for the microaeration process is proposed. The model was tested with data from pilot scale digester operated for 200 d. Results indicate that the model can be used to predict the digester behavior. The addition of a retention parameter for the SOB improved the model performance.
Microaeration can be used to cost-effectively remove in-situ H2S from the biogas generated in anaerobic digesters. This study is aimed at developing and validating an extension of the Anaerobic Digestion Model n°1 capable of incorporating the main phenomena which occurs during microaeration. This innovative model was implemented and tested with data from a pilot scale digester microaerated for ∼ 200 d. The results showed that despite the model’s initial ability to predict the digester’s behavior, its predicted performance was improved by calibrating the most influential parameters. The model’s prediction potential was largely enhanced by adding retention parameters that account for the activity of sulfide oxidizing bacteria retained inside the anaerobic digester, which have been consistently shown to be responsible for a large share of the H2S removed.
Collapse
|
6
|
Pokorna-Krayzelova L, Bartacek J, Vejmelkova D, Alvarez AA, Slukova P, Prochazka J, Volcke EI, Jenicek P. The use of a silicone-based biomembrane for microaerobic H2S removal from biogas. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Pokorna-Krayzelova L, Mampaey KE, Vannecke TP, Bartacek J, Jenicek P, Volcke EI. Model-based optimization of microaeration for biogas desulfurization in UASB reactors. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Montalvo S, Prades H, González M, Pérez P, Guerrero L, Huiliñir C. ANAEROBIC DIGESTION OF WASTEWATER WITH HIGH SULFATE CONCENTRATION USING MICRO-AERATION AND NATURAL ZEOLITES. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160334s20150261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - H. Prades
- Universidad de Santiago de Chile, Chile
| | | | - P. Pérez
- Universidad de Santiago de Chile, Chile
| | - L. Guerrero
- Universidad Técnica Federico Santa María, Chile
| | | |
Collapse
|
9
|
Purwantini E, Torto-Alalibo T, Lomax J, Setubal JC, Tyler BM, Mukhopadhyay B. Genetic resources for methane production from biomass described with the Gene Ontology. Front Microbiol 2014; 5:634. [PMID: 25520705 PMCID: PMC4253957 DOI: 10.3389/fmicb.2014.00634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022] Open
Abstract
Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing “gold standards” for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/).
Collapse
Affiliation(s)
- Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Jane Lomax
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory Hinxton, UK
| | - João C Setubal
- Department of Biochemistry, Universidade de São Paulo São Paulo, Brazil ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Center for Genome Research and Biocomputing, Oregon State University Corvallis, OR, USA
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University Blacksburg, VA, USA ; Department of Biological Sciences, Virginia Polytechnic Institute and State University Blacksburg, VA, USA
| |
Collapse
|
10
|
Nghiem LD, Manassa P, Dawson M, Fitzgerald SK. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. BIORESOURCE TECHNOLOGY 2014; 173:443-447. [PMID: 25306445 DOI: 10.1016/j.biortech.2014.09.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
This study aims to evaluate the use of oxidation reduction potential (ORP) to regulate the injection of a small amount of oxygen into an anaerobic digester for reducing H2S concentration in biogas. The results confirm that micro-oxygen injection can be effective for controlling H2S formation during anaerobic digestion without disturbing the performance of the digester. Biogas production, composition, and the removal of volatile solids (VS) and chemical oxygen demand (COD) were monitored to assessment the digester's performance. Six days after the start of the micro-oxygen injection, the ORP values increased to between -320 and -270 mV, from the natural baseline value of -485 mV. Over the same period the H2S concentration in the biogas decreased from over 6000 ppm to just 30 ppm. No discernible changes in the VS and COD removal rates, pH and alkalinity of the digestate or in the biogas production or composition were observed.
Collapse
Affiliation(s)
- Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Patrick Manassa
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marcia Dawson
- Sydney Water Corporation, Parramatta, NSW 2124, Australia
| | | |
Collapse
|
11
|
Krayzelova L, Bartacek J, Kolesarova N, Jenicek P. Microaeration for hydrogen sulfide removal in UASB reactor. BIORESOURCE TECHNOLOGY 2014; 172:297-302. [PMID: 25270045 DOI: 10.1016/j.biortech.2014.09.056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 06/03/2023]
Abstract
The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge.
Collapse
Affiliation(s)
- Lucie Krayzelova
- Department of Water Technology and Environmental Engineering, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.
| | - Jan Bartacek
- Department of Water Technology and Environmental Engineering, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Nina Kolesarova
- Department of Chemical and Environmental Engineering, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Pavel Jenicek
- Department of Water Technology and Environmental Engineering, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
Ramos I, Pérez R, Fdz-Polanco M. The headspace of microaerobic reactors: sulphide-oxidising population and the impact of cleaning on the efficiency of biogas desulphurisation. BIORESOURCE TECHNOLOGY 2014; 158:63-73. [PMID: 24583216 DOI: 10.1016/j.biortech.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
O2-limiting/microaerobic conditions were applied in order to control the H2S content of biogas. The S(0)-rich deposits found all over the headspace of two pilot reactors (R1 and R2) as a result of operating under such conditions for 7 and 15 months (respectively) were sampled and removed. After restarting micro-oxygenation, H2S-free biogas was rapidly obtained, and the O2 demand of R2 decreased. This highlighted the need for a cleaning interval of less than 14 months in order to minimise the micro-oxygenation cost. The H2S removed from R2 after approximately 1 month was recovered from its headspace as S(0), thus indicating that the biogas desulphurisation did not take place at the liquid interface. Denaturing gradient gel electrophoresis indicated that the composition, species richness and size of the sulphide-oxidising bacteria population depended on the location, and, more specifically, moisture availability, and indicated increasing species richness over time. Additionally, a possible succession was estimated.
Collapse
Affiliation(s)
- I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - R Pérez
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| | - M Fdz-Polanco
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
13
|
Ramos I, Pérez R, Fdz-Polanco M. Microaerobic desulphurisation unit: a new biological system for the removal of H₂S from biogas. BIORESOURCE TECHNOLOGY 2013; 142:633-640. [PMID: 23774222 DOI: 10.1016/j.biortech.2013.05.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
A new biotechnology for the removal of H2S from biogas was devised. The desulphurisation conditions present in microaerobic digesters were reproduced inside an external chamber called a microaerobic desulphurisation unit (MDU). A 10 L-unit was inoculated with 1L of digested sludge in order to treat the biogas produced in a pilot digester. During the 128 d of research under such conditions, the average removal efficiency was 94%. The MDU proved to be robust against fluctuations in biogas residence time (57-107 min), inlet H2S concentration (0.17-0.39% v/v), O2/H2S supplied ratio (17.3-1.4 v/v), and temperature (20-35°C). Microbiological analysis confirmed the presence of at least three genera of sulphide-oxidising bacteria. Approximately 60% of all the H2S oxidised was recovered from the bottom of the system in the form of large solid S(0) sheets with 98% w/w of purity. Therefore, this system could become a cost-effective alternative to the conventional biotechniques for biogas desulphurisation.
Collapse
Affiliation(s)
- I Ramos
- Department of Chemical Engineering and Environmental Technology, Escuela de Ingenierías Industriales, Sede Dr. Mergelina, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | | | | |
Collapse
|