1
|
Zhang J, Liu ZH, Wu JL, Ding YT, Ma QG, Hayat W, Liu Y, Wang PJ, Dang Z, Rittmann B. Deconjugation potentials of natural estrogen conjugates in sewage and wastewater treatment plant: New insights from model prediction and on-site investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172071. [PMID: 38554960 DOI: 10.1016/j.scitotenv.2024.172071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/β-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of β-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on β-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/β-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Labora tory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Jia-le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu-Ting Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Peng-Jie Wang
- Shijing Water Purification Branch, Guangzhou Water Purification Co. LTD, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bruce Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe 85287-5701, AZ, United States
| |
Collapse
|
2
|
Luo X, Han S, Wang Y, Du P, Li X, Thai PK. Significant differences in usage of antibiotics in three Chinese cities measured by wastewater-based epidemiology. WATER RESEARCH 2024; 254:121335. [PMID: 38417269 DOI: 10.1016/j.watres.2024.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Antibiotic use, particularly inappropriate use by irrational prescribing or over-the-counter purchases, is of great concern for China as it facilitates the spread of antibiotic resistances. In this study, we applied wastewater-based epidemiology (WBE) to monitor the total consumption of eight common antibiotics in three cities in northern, eastern and southern China. Wastewater samples were successively collected from 17 wastewater treatment plants including weekdays and weekends spanning four seasons between 2019 and 2021. The concentration of antibiotics and their corresponding metabolites showed a significant correlation, confirming the measured antibiotics were actually consumed. Different seasonal trends in antibiotic use were found among the cities. It was more prevalent in the winter in the northern city Beijing, with the high antibiotic consumption attributed to peak influenza occurrence in the city. This is clear evidence of irrational prescription of antibiotics since it's known that antibiotics do little to treat influenza. In terms of overall consumption, Foshan is significantly lower, thanks to warmer climate and higher use of herbal tea as a prevention measure. WBE estimates of antibiotic consumption were relatively comparable with other data sources, with azithromycin as the top antibiotic measured here. The studied cities had higher WBE estimated antibiotics consumption than results of previous studies in the literature. Monitoring antibiotic use in different areas and periods through WBE in combination with complementary information, can better inform appropriate antibiotic guideline policies in various regions and nations.
Collapse
Affiliation(s)
- Xiaozhe Luo
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Sheng Han
- Fujian Water Resource Investment and Development Group Co., Ltd., 350001, Fuzhou, China
| | - Yue Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| |
Collapse
|
3
|
Pang L, He K, Zhang Y, Li P, Lin Y, Yue J. Predicting environmental risks of pharmaceutical residues by wastewater surveillance: An analysis based on pharmaceutical sales and their excretion data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170204. [PMID: 38262535 DOI: 10.1016/j.scitotenv.2024.170204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Pharmaceutical residues are increasingly becoming a significant source of environmental water pollution and ecological risk. This study, leveraging official national pharmaceutical sales statistics, predicts the environmental concentrations of 33 typical pharmaceuticals in the Tianjin area. The results show that 52 % of the drugs have a PEC/MEC (Predicted Environmental Concentration/Measured Environmental Concentration) ratio within the acceptable range of 0.5-2, including atenolol (1.21), carbamazepine (1.22), and sulfamethoxazole (0.91). Among the selected drugs, tetracycline, ciprofloxacin, and acetaminophen had the highest predicted concentrations. The EPI (Estimation Programs Interface) biodegradation model, a tool from the US Environmental Protection Agency, is used to predict the removal efficiency of compounds in wastewater treatment plants. The results indicate that the EPI predictions are acceptable for macrolide antibiotics and β-blockers, with removal rates of roxithromycin, spiramycin, acetaminophen, and carbamazepine being 14.1 %, 61.2 %, 75.1 %, and 44.5 %, respectively. However, the model proved to be less effective for fluoroquinolone antibiotics. The ECOSAR (Ecological Structure-Activity Relationships) model was used to supplement the assessment of the potential impacts of drugs on aquatic ecosystems, further refining the analysis of pharmaceutical environmental risks. By combining the concentration and detection frequency of pharmaceutical wastewater, this study identified 9 drugs with significant toxicological risks and marked another 24 drugs as substances of potential concern. Additionally, this study provides data support for addressing pharmaceutical residues of priority concern in subsequent research.
Collapse
Affiliation(s)
- Lihao Pang
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai He
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China.
| | - Yuxuan Zhang
- College of Civil Engineering, Sun Yat-Sen University, Guangzhou 51000, China
| | - Penghui Li
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchao Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Junjie Yue
- College of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
4
|
Sims N, Kannan A, Holton E, Jagadeesan K, Mageiros L, Standerwick R, Craft T, Barden R, Feil EJ, Kasprzyk-Hordern B. Antimicrobials and antimicrobial resistance genes in a one-year city metabolism longitudinal study using wastewater-based epidemiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122020. [PMID: 37336345 DOI: 10.1016/j.envpol.2023.122020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
This longitudinal study tests correlations between antimicrobial agents (AA) and corresponding antimicrobial resistance genes (ARGs) generated by a community of >100 k people inhabiting one city (Bath) over a 13 month randomised monitoring programme of community wastewater. Several AAs experienced seasonal fluctuations, such as the macrolides erythromycin and clarithromycin that were found in higher loads in winter, whilst other AA levels, including sulfamethoxazole and sulfapyridine, stayed consistent over the study period. Interestingly, and as opposed to AAs, ARGs prevalence was found to be less variable, which indicates that fluctuations in AA usage might either not directly affect ARG levels or this process spans beyond the 13-month monitoring period. However, it is important to note that weekly positive correlations between individual associated AAs and ARGs were observed where seasonal variability in AA use was reported: ermB and macrolides CLR-clarithromycin and dmCLR-N-desmethyl clarithromycin, aSPY- N-acetyl sulfapyridine and sul1, and OFX-ofloxacin and qnrS. Furthermore, ARG loads normalised to 16S rRNA (gene load per microorganism) were positively correlated to the ARG loads normalised to the human population (gene load per capita), which indicates that the abundance of microorganisms is proportional to the size of human population and that the community size, and not AA levels, is a major driver of ARG levels in wastewater. Comparison of hospital and community wastewater showed higher number of AAs and their metabolites, their frequency of occurrence and concentrations in hospital wastewater. Examples include: LZD-linezolid (used only in severe bacterial infections) and AMX-amoxicillin (widely used, also in community but with very low wastewater stability) that were found only in hospital wastewater. CIP-ciprofloxacin, SMX-sulfamethoxazole, TMP-trimethoprim, MTZ-metronidazole and macrolides were found at much higher concentrations in hospital wastewater while TET-tetracycline and OTC-oxytetracycline, as well as antiretrovirals, had an opposite trend. In contrast, comparable concentrations of resistant genes were observed in both community and hospital wastewater. This supports the hypothesis that AMR levels are more of an endemic nature, developing over time in individual communities. Both hospital and community wastewater had AAs that exceeded PNEC values (e.g. CLR-clarithromycin, CIP-ciprofloxacin). In general, though, hospital effluents had a greater number of quantifiable AAs exceeding PNECs (e.g. SMX-sulfamethoxazole, ERY-erythromycin, TMP-trimethoprim). Hospitals are therefore an important consideration in AMR surveillance as could be high risk areas for AMR.
Collapse
Affiliation(s)
- Natalie Sims
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK
| | - Andrew Kannan
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK
| | | | | | - Leonardos Mageiros
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Ruth Barden
- Wessex Water, Claverton Down Rd, Bath, BA2 7WW, UK
| | - Edward J Feil
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- University of Bath, Department of Chemistry, Bath, BA2 7AY, UK; Centre for Sustainable Circular Technologies, Bath, BA2 7AY, UK.
| |
Collapse
|
5
|
Zhang H, Li K, Zhao X, Zou H, Zhao L, Li X. Occurrence, consumption level, fate and ecotoxicology risk of beta-agonist pharmaceuticals in a wastewater treatment plant in Eastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:481. [PMID: 36930375 DOI: 10.1007/s10661-023-11099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Beta-agonist pharmaceuticals are widely used in humans and livestock for disease treatment, legal or illegal growth promotion in food animals, bodybuilding, weight loss, and sports doping. The occurrence of beta-agonists in wastewater treatment plants and their subsequent environmental impacts require greater attention. This study determined the levels of 12 beta-agonists in a wastewater treatment plant and evaluated their ecotoxicological risks as well as consumption levels and risks to human health. Among the 12 selected beta-agonists, all were detected in wastewater and 11 in sludge. In most cases, the concentrations of beta-agonists were higher in spring than in summer. Their total average daily mass loads per capita in the influent and effluent were 1.35 μg/d/p and 2.11 μg/d/p, respectively. The overall removal efficiencies of individual beta-agonists ranged from -295.3 to 71.2%. Ecotoxicological risk assessment revealed a low risk to daphnid and green algae from the levels of fenoterol and the mixture of 12 selected beta-agonists in the effluent. The daily consumption levels of individual beta-agonists per capita were 0.028-1.200 μg/d/p. Regular monitoring of beta-agonists in municipal sewage systems and their risk assessment based on toxicological data are urgently required in the future.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kefang Li
- Yishui Agricultural and Rural Bureau, Linyi, Shandong, 276499, China
| | - Xiangwei Zhao
- Yishui Agricultural and Rural Bureau, Linyi, Shandong, 276499, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Okoye CO, Nyaruaba R, Ita RE, Okon SU, Addey CI, Ebido CC, Opabunmi AO, Okeke ES, Chukwudozie KI. Antibiotic resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103995. [PMID: 36210048 DOI: 10.1016/j.etap.2022.103995] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic pollution is becoming an increasingly severe threat globally. Antibiotics have emerged as a new class of environmental pollutants due to their expanding usage and indiscriminate application in animal husbandry as growth boosters. Contamination of aquatic ecosystems by antibiotics can have a variety of negative impacts on the microbial flora of these water bodies, as well as lead to the development and spread of antibiotic-resistant genes. Various strategies for removing antibiotics from aqueous systems and environments have been developed. Many of these approaches, however, are constrained by their high operating costs and the generation of secondary pollutants. This review aims to summarize research on the distribution and effects of antibiotics in aquatic environments, their interaction with other emerging contaminants, and their remediation strategy. The ecological risks associated with antibiotics in aquatic ecosystems and the need for more effective monitoring and detection system are also highlighted.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Raphael Nyaruaba
- Center for Biosafety Megascience, Wuhan Institute of Virology, CAS, Wuhan, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Richard Ekeng Ita
- Department of Biological Sciences Ritman University, Ikot Ekpene, Akwa Ibom State, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | - Samuel Ukpong Okon
- Department of Marine Science, Akwa Ibom State University, Mkpat Enin, P.M.B. 1167, Nigeria; Department of Ocean Engineering, Ocean College, Zhejiang University, Zhoushan 316021, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, PR China; Organization of African Academic Doctor, Nairobi, Kenya
| | - Chike C Ebido
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Organization of African Academic Doctor, Nairobi, Kenya.
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Organization of African Academic Doctor, Nairobi, Kenya; Department of Clinical Medicine, School of Medicine, Jiangsu University 212013, PR China.
| |
Collapse
|
7
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Sierra-Sánchez AG. SARS-CoV-2 pharmaceutical drugs: a critical review on the environmental impacts, chemical characteristics, and behavior of advanced oxidation processes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67604-67640. [PMID: 35930148 PMCID: PMC9362221 DOI: 10.1007/s11356-022-22234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México.
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras CONACYT-IITCA, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de Mexico, C.P 03940, México
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras COMECYT. Consejo Mexiquense de Ciencia Y Tecnología COMECYT, Paseo Colón núm.: 112-A, col. Ciprés, Toluca, Estado de México, C.P. 50120, México
| | - Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| |
Collapse
|
8
|
Gao J, Li L, Duan L, Yang M, Zhou X, Zheng Q, Ou Y, Li Z, Lai FY. Exploring antibiotic consumption between urban and sub-urban catchments using both parent drugs and related metabolites in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154171. [PMID: 35231503 DOI: 10.1016/j.scitotenv.2022.154171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Consumption of antibiotics leads to the dissemination of antimicrobial resistance worldwide. Better knowledge of temporal and spatial consumption of antibiotics helps public health authorities to control their usage and combat antimicrobial resistance. However, measuring antibiotic consumption with population surveys, sales data, and production statistics remains challenging due to the complexity of prescription preference, patient compliance, and direct disposal of unused drugs. With the approach of wastewater-based epidemiology (WBE), this study aims to evaluate the consumption of eight commonly-used antibiotics between developed urban and developing sub-urban catchments in China and to characterise the ratios of parent drugs to metabolites in studying the consumption. Seven parent antibiotics were detected in all the wastewater samples (n = 56), whereas some metabolites were detected sporadically. The ratios of parent chemicals to metabolites varied among locations and were often higher than the ratios in pharmacokinetic studies. Estimated consumption of antibiotics ranged from 3.2 ± 2.0 mg/day/1000 inhabitants for trimethoprim to 28,400 ± 7800 mg/day/1000 inhabitants for roxithromycin in the studied catchments. Higher consumption of sulfapyridine, sulfadiazine and roxithromycin was observed in urban than suburban catchments, while consumption of sulfamethoxazole, norfloxacin, and trimethoprim was higher in suburban than in urban catchments. Using the literature data, we found more than 95% reduction of antibiotic use in an urban catchment. Our study revealed the geographical pattern in antibiotic use across different urban and suburban catchments via WBE, and the potential of monitoring parent-to-metabolite ratios for WBE in estimating antibiotic use. These results provide a basis for health authorities to plan different drug-specific control policies between urban and suburban catchments, and for future WBE studies to be aware of other sources, such as animal husbandry and disposals of unused drugs, that can influence the estimated consumption.
Collapse
Affiliation(s)
- Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lei Duan
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiuda Zheng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba 4102, Australia
| | - Yingjuan Ou
- College of Rosources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden
| |
Collapse
|
9
|
Han S, Wang Z, Huang H, Wang T, Zhou Z, Bai Y, Du P, Li X. Estimating antibiotics use in major cities in China through wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154116. [PMID: 35219670 DOI: 10.1016/j.scitotenv.2022.154116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics have been widely used for disease treatment and may pose adverse effects on human health due to increasing presence of antibiotic-resistant genes in environment. Therefore, it is important to understand antibiotic use in a specific region or country. China is a major producer of antibiotic and has a large number of consumers. In this work, wastewater samples were collected from 76 wastewater treatment plants in 31 major cities covering all of the geographic regions of China. Concentrations of eight metabolites of sulfonamide, quinolone and macrolide antibiotics were determined. The consumption levels of corresponding antibiotics were estimated based on wastewater-based epidemiology (WBE) approach. Desmethyl ofloxacin, desethylene norfloxacin, desmethyl azithromycin and N4-acetyl sulfamethoxazole were detected in all or the overwhelming majority of wastewater samples. The estimated ∑8Antibiotics consumption levels ranged from 275.1 ± 139.4 mg/1000 inh/d (Nanchang) to 3860.9 ± 1332.3 mg/1000 inh/d (Harbin) with a mean level of 1170.0 ± 452.1 mg/1000 inh/d. Quinolones accounted for the highest proportion (74.3%, national average contribution) in the total consumption level, with norfloxacin being the dominant one (38.4%), followed by ofloxacin (29.1%) and ciprofloxacin (6.8%). The ∑8Antibiotics consumption level in northern China (1517.0 ± 1022.8 mg/1000 inh/d) was statistically higher than the level in southern China (1060.7 ± 989.1 mg/1000 inh/d) (t-test, p < 0.05). In contrast, no significant difference was found between eastern (1256.2 ± 1105.1 mg/1000 inh/d) and western China (988.3 ± 474.5 mg/1000 inh/d) (t-test, p > 0.05). The overview of antibiotics consumption derived from this work can serve as a baseline to assess the implementation of related plans/policies in China.
Collapse
Affiliation(s)
- Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing 210098, PR China
| | - Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Ting Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Zilei Zhou
- Hubei Provincial Academy of Eco-environmental Sciences, Wuhan 430070, PR China
| | - Ya Bai
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, PR China.
| |
Collapse
|
10
|
Niu X, Liu C, Li L, Han X, Chang C, Li P, Chen J. High specific surface area N-doped activated carbon from hydrothermal carbonization of shaddock peel for the removal of norfloxacin from aqueous solution. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2964-2979. [PMID: 35638799 DOI: 10.2166/wst.2022.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel N-doped activated carbon (NAC) derived from shaddock peel was investigated to remove norfloxacin (NFX) from aqueous solution. The Box-Behnken central composite design (BBD) was used to optimize the preparation conditions of NAC. The specific surface area of NAC was 2,481.81 m2 g-1, which was obtained at 1,106 K activation temperature, 2.4 h residence time, and 2.3:1 mass ratio of KOH to hydrochar. Moreover, the equilibrium data were perfectly represented by Langmuir and Koble-Corrigan isotherms, and the adsorption process was precisely described by the pseudo-second-order kinetic model. Besides, the adsorption of NFX on NAC was mainly controlled by π-π electron-donor-acceptor (EDA) interaction, hydrophobic effect, hydrogen-bonding, electrostatic interaction and Lewis acid-base effect. The maximum monolayer adsorption capacity of NFX was 746.29 mg g-1 at 298 K, implying that NAC was a promising adsorbent for the removal of NFX from aqueous solution.
Collapse
Affiliation(s)
- Xinyong Niu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Chenglin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Lin Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Xiuli Han
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Chun Chang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| | - Pan Li
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Junying Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China E-mail:
| |
Collapse
|
11
|
Sosa-Hernández JE, Rodas-Zuluaga LI, López-Pacheco IY, Melchor-Martínez EM, Aghalari Z, Limón DS, Iqbal HMN, Parra-Saldívar R. Sources of antibiotics pollutants in the aquatic environment under SARS-CoV-2 pandemic situation. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 4:100127. [PMID: 38620862 PMCID: PMC8423433 DOI: 10.1016/j.cscee.2021.100127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
During the last decades, the growth of concern towards different pollutants has been increasing due to population activities in large cities and the great need for food production by the agri-food industry. The effects observed in specific locations have shown the impact over the environment in air, soil and water. Specifically, the current pandemic of COVID-19 has brought into the picture the intensive use of different medical substances to treat the disease and population intensive misuse. In particular, the use of antibiotics has increased during the last 20 years with few regulations regarding their excessive use and the disposal of their residues from different sources. Within this review, an overview of sources of antibiotics to aquatic environments was done along with its impact to the environment and trophic chain, and negative effects of human health due prolonged exposure which endanger the environment, population health, water, and food sustainability. The revision indicates the differences between sources and its potential danger due toxicity, and accumulation that prevents water sustainability in the long run.
Collapse
Affiliation(s)
| | | | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Daniel Salas Limón
- Servicios de Agua y Drenaje de Monterrey, Coordinador Interinstitucional del Agua, Matamoros 1717 Poniente, Monterrey, Nuevo Leon, Mexico
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Civil. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | |
Collapse
|
12
|
Archer E, Volschenk M, Brocker L, Wolfaardt GM. A two-year study of emerging micro-pollutants and drugs of abuse in two Western Cape wastewater treatment works (South Africa). CHEMOSPHERE 2021; 285:131460. [PMID: 34265704 DOI: 10.1016/j.chemosphere.2021.131460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the occurrence and fate of fourteen contaminants of emerging concern (CECs) at two South African wastewater treatment works (WWTW). Daily loads of the drug targets were calculated in the aqueous phase of influent- and effluent wastewater to evaluate their fate at the treatment works, along with population-normalised daily loads in raw influent wastewater to identify community-wide substance use patterns in the two study areas. Environmental risk characterisation of the CECs at WWTW effluent discharge was done using conventional risk quotient (RQ) estimations. A significant reduction of most CECs was observed at both WWTW locations, except for some that have been previously recorded to persist through various WWTW processes globally, including the illicit drug methaqualone that was reported here for the first time to evaluate its fate during wastewater treatment, substance use trends, and potential toxicological risk. Moderate-to high-RQs were estimated for several target CECs during the sampling period for both treatment facilities. The results presented here suggest the need for a multi-disciplinary approach to WWTW monitoring of CECs and highlight the need for further refinement of risk assessment approaches to mitigate recalcitrant- or pseudo-persistent CECs in wastewater discharge. Such refinement should include: (1) identifying the potential ecological risk on a wider range of sentinel indicators, (2) interaction of CECs with various biochemical pathways (including sub-lethal toxicity responses), (3) identifying the persistence and toxicological risks of breakdown products and (4) partitioning of CECs in the aqueous environment and/or bioaccumulation in freshwater biota.
Collapse
Affiliation(s)
- Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Mercia Volschenk
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa; City of Cape Town Municipality, Scientific Services, Athlone, Cape Town, 7764, South Africa
| | - Ludwig Brocker
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gideon M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
13
|
Han S, Li X, Huang H, Wang T, Wang Z, Fu X, Zhou Z, Du P, Li X. Simultaneous Determination of Seven Antibiotics and Five of Their Metabolites in Municipal Wastewater and Evaluation of Their Stability under Laboratory Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010640. [PMID: 34682386 PMCID: PMC8535447 DOI: 10.3390/ijerph182010640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023]
Abstract
The selection and spread of antibiotic resistance poses risks to public health by reducing the therapeutic potential of antibiotics against human pathogens. Wastewater-based epidemiology (WBE) is potentially the most reliable approach to estimate antibiotics use. Previous WBE studies used parent antibiotics as biomarkers, which may lead to overestimation since parent antibiotics may be directly disposed of. Using metabolites as biomarkers can avoid this drawback. This study developed a simultaneous solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry method for analyzing 12 antibiotics and human metabolites in wastewater to help assess health risk. Optimum conditions were achieved using a PEP cartridge at pH 3.0. The extraction efficiencies were 73.3~95.4% in influent and 72.0~102.7% in effluent for most of the target analytes. Method detection limit ranged from 0.1 to 1.5 ng/L for influent wastewater and 0.03 to 0.7 ng/L for effluent wastewater. A stability experiment showed that sulfonamide parents and their metabolites were stable at 4 °C, −20 °C and −80 °C, while macrolides metabolites were more stable than their corresponding parents at 4 °C and −20 °C. Finally, the method was applied to measure these analytes in wastewater samples collected from three Beijing WWTPs and to derive apparent removal rates. All metabolites were detected in wastewater samples with concentrations ranging from 1.2 to 772.2 ng/L in influent, from <MDL to 235.6 ng/L in effluent. The apparent removal rates of five metabolites were above 72.6%. These results set a solid foundation for applying WBE to evaluate antibiotics use and its public health effects.
Collapse
Affiliation(s)
- Sheng Han
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Xinyue Li
- Development Research Center, Ministry of Water Resources of China, Beijing 100036, China;
| | - Hongmei Huang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Ting Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing 210098, China;
| | - Xiaofang Fu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
| | - Zilei Zhou
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China;
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China;
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (S.H.); (H.H.); (T.W.); (X.F.)
- Correspondence:
| |
Collapse
|
14
|
Boogaerts T, Ahmed F, Choi PM, Tscharke B, O'Brien J, De Loof H, Gao J, Thai P, Thomas K, Mueller JF, Hall W, Covaci A, van Nuijs ALN. Current and future perspectives for wastewater-based epidemiology as a monitoring tool for pharmaceutical use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148047. [PMID: 34323839 DOI: 10.1016/j.scitotenv.2021.148047] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The medical and societal consequences of the misuse of pharmaceuticals clearly justify the need for comprehensive drug utilization research (DUR). Wastewater-based epidemiology (WBE) employs the analysis of human metabolic excretion products in wastewater to monitor consumption patterns of xenobiotics at the population level. Recently, WBE has demonstrated its potential to evaluate lifestyle factors such as illicit drug, alcohol and tobacco consumption at the population level, in near real-time and with high spatial and temporal resolution. Up until now there have been fewer WBE studies investigating health biomarkers such as pharmaceuticals. WBE publications monitoring the consumption of pharmaceuticals were systematically reviewed from three databases (PubMed, Web of Science and Google Scholar). 64 publications that reported population-normalised mass loads or defined daily doses of pharmaceuticals were selected. We document that WBE could be employed as a complementary information source for DUR. Interest in using WBE approaches for monitoring pharmaceutical use is growing but more foundation research (e.g. compound-specific uncertainties) is required to link WBE data to routine pharmacoepidemiologic information sources and workflows. WBE offers the possibility of i) estimating consumption of pharmaceuticals through the analysis of human metabolic excretion products in wastewater; ii) monitoring spatial and temporal consumption patterns of pharmaceuticals continuously and in near real-time; and iii) triangulating data with other DUR information sources to assess the impacts of strategies or interventions to reduce inappropriate use of pharmaceuticals.
Collapse
Affiliation(s)
- Tim Boogaerts
- Toxicological Centre, University of Antwerp, Belgium, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Fahad Ahmed
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; Water Unit, Health Protection Branch, Prevention Division, Queensland Health, GPO Box 48, Brisbane, QLD 4001, Australia
| | - Benjamin Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Hans De Loof
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Phong Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Kevin Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia
| | - Wayne Hall
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, 20 Cornwall St, Woolloongabba, QLD 4102, Australia; Centre for Youth Substance Abuse, University of Queensland, 17 Upland Road, Woolloongabba, QLD 4102, Australia
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Belgium, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Centre, University of Antwerp, Belgium, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
15
|
Wan YP, Liu ZH, Liu Y. Veterinary antibiotics in swine and cattle wastewaters of China and the United States: Features and differences. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1516-1529. [PMID: 33586826 DOI: 10.1002/wer.1534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Veterinary antibiotics (VAs) have been widely used in livestock for disease prevention, treatment, and growth promotion. This study compared top 20 VAs in Chinese and US swine and cattle wastewater with published literatures. The sulfonamides (SAs) were found to be predominant, accounting for 62% of the top 20 VAs in Chinese swine wastewater, while tetracyclines (TCs) contributed to about 68.7% of the 18 VAs in US swine wastewater. The average concentration of the 20 major VAs in Chinese swine wastewater was estimated to be 1145 μg/L against 253.6 μg/L in the United States. On the other hand, the five major VAs in Chinese cattle wastewater were identified to be oxytetracycline, nafcillin, apramycin, lincomycin, and amikacin, while monensin was found to be dominant in US cattle wastewater. The average concentration of the top 20 VAs in Chinese and US cattle wastewaters were found to be 54.6 and 46.2 μg/L, respectively. These analyses suggested that VAs were probably over-used in Chinese swine industry, eventually causing the development and spreading of antibiotic resistant-bacteria and genes, which should be paid with attention. PRACTITIONER POINTS: Major veterinary antibiotics (VAs) in swine and cattle wastewater were identified. Top 20 VAs in swine and cattle wastewater of China and the United States were compared. VAs concentration in Chinese swine wastewater was 4.52 times that in the United States. VAs concentration in Chinese cattle wastewater was 1.18 times that of the United States.
Collapse
Affiliation(s)
- Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, Singapore, Singapore
- School of Civil and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
CuNiN@C coupled with peroxymonosulfate as efficient catalytic system for the removal of norfloxacin by adsorption and catalysis. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117476] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Wang X, Cong Z, Huang W, Li C. Molecular characterization of Streptococcus pneumoniae isolated from pediatric patients in Shanghai, China. Pediatr Pulmonol 2020; 55:2135-2141. [PMID: 32470194 DOI: 10.1002/ppul.24877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a major cause of bacterial infection among infants and young children with high morbidity and mortality. The serotype distribution of S. pneumoniae varies with geography, time, age, and disease. AIM We aimed to investigate the current status of molecular characteristics of S. pneumoniae strains isolated from pediatric patients in Shanghai, China. METHODS Between 2016 and 2018, 73 clinical S. pneumoniae isolates were characterized by capsular serotype, multilocus sequence typing, antibiotic susceptibility, and resistant genes. RESULTS The most common serotypes were 19F (39.7%), 19A (16.4%), 6A (11.0%), 14 (9.6%), and 6B (8.2%). The coverage rates of the 7-, 10- and 13-valent pneumococcal conjugate vaccines were 64.4%, 64.4%, and 91.8%, respectively. The five predominant sequence types were ST271 (37.0%), ST320 (19.2%), ST3173 (11.0%), ST876 (6.8%), and ST81 (4.1%), which were mainly associated with serotypes 19F, 19A, 6A, 14, and 23F, respectively. The rates of resistance to penicillin and ceftriaxone were 21.9% and 39.7%, respectively. All strains displayed resistance to macrolides, 54.8% of which possessed both erm(B) and mef(A/E) genes, and 41.1% carried the erm(B) gene alone. Tn2010 (41.1%) was the most common transposon. CONCLUSIONS Clonal complex 271 (Taiwan19F-14 clone) played a dominant role in the dissemination of pneumococcal isolates. The prevalent serotypes indicated a lack of the 7-valent pneumococcal conjugate vaccine, which has not been included in national immunization programs in mainland China. The high rate of macrolide resistance made the empirical use of macrolides alone not suitable for treating pediatric pneumococcal disease.
Collapse
Affiliation(s)
- Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhilei Cong
- Department of Emergency, Huashan Hospital, Fudan University, Shanghai, China
| | - Weichun Huang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cong Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Hutinel M, Huijbers PMC, Fick J, Åhrén C, Larsson DGJ, Flach CF. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. ACTA ACUST UNITED AC 2020; 24. [PMID: 31530345 PMCID: PMC6749774 DOI: 10.2807/1560-7917.es.2019.24.37.1800497] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IntroductionThe occurrence of antibiotic resistance in faecal bacteria in sewage is likely to reflect the current local clinical resistance situation.AimThis observational study investigated the relationship between Escherichia coli resistance rates in sewage and clinical samples representing the same human populations.MethodsE. coli were isolated from eight hospital (n = 721 isolates) and six municipal (n = 531 isolates) sewage samples, over 1 year in Gothenburg, Sweden. An inexpensive broth screening method was validated against disk diffusion and applied to determine resistance against 11 antibiotics in sewage isolates. Resistance data on E. coli isolated from clinical samples from corresponding local hospital and primary care patients were collected during the same year and compared with those of the sewage isolates by linear regression.ResultsE. coli resistance rates derived from hospital sewage and hospital patients strongly correlated (r2 = 0.95 for urine and 0.89 for blood samples), as did resistance rates in E. coli from municipal sewage and primary care urine samples (r2 = 0.82). Resistance rates in hospital sewage isolates were close to those in hospital clinical isolates while resistance rates in municipal sewage isolates were about half of those measured in primary care isolates. Resistance rates in municipal sewage isolates were more stable between sampling occasions than those from hospital sewage.ConclusionOur findings provide support for development of a low-cost, sewage-based surveillance system for antibiotic resistance in E. coli, which could complement current monitoring systems and provide clinically relevant antibiotic resistance data for countries and regions where surveillance is lacking.
Collapse
Affiliation(s)
- Marion Hutinel
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Patricia Maria Catharina Huijbers
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Christina Åhrén
- Swedish Strategic Program against Antimicrobial Resistance (Strama), Region Västra Götaland, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dan Göran Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
A multi-residue method by supercritical fluid chromatography coupled with tandem mass spectrometry method for the analysis of chiral and non-chiral chemicals of emerging concern in environmental samples. Anal Bioanal Chem 2020; 412:5563-5581. [PMID: 32648103 PMCID: PMC7413908 DOI: 10.1007/s00216-020-02780-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023]
Abstract
This manuscript presents the development, validation and application of a multi-residue supercritical fluid chromatography coupled with tandem mass spectrometry method for the analysis of 140 chiral and non-chiral chemicals of emerging concern in environmental samples, with 81 compounds being fully quantitative, 14 semi-quantitative and 45 qualitative, validated according to European Medicine Agency (EMA) guidelines (European Medicines Agency 2019). One unified LC-MS method was used to analyse all analytes, which were split into three injection methods to ensure sufficient peak resolution. The unified method provided an average of 113% accuracy and 4.5% precision across the analyte range. Limits of detection were in the range of 35 pg L−1–0.7 μg L−1, in both river water and wastewater, with an average LOD of 33 ng L−1. The method was combined with solid-phase extraction and applied in environmental samples, showing very good accuracy and precision, as well as excellent chromatographic resolution of a range of chiral enantiomers including beta-blockers, benzodiazepines and antidepressants. The method resulted in quantification of 75% of analytes in at least two matrices, and 56% in the trio of environmental matrices of river water, effluent wastewater and influent wastewater, enabling its use in monitoring compounds of environmental concern, from their sources of origin through to their discharge into the environment.
Collapse
|
20
|
Wang H, Liu ZH, Zhang J, Huang RP, Yin H, Dang Z. Human exposure of bisphenol A and its analogues: understandings from human urinary excretion data and wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3247-3256. [PMID: 31838679 DOI: 10.1007/s11356-019-07111-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
This work evaluated human exposure to bisphenol A (BPA) and its analogues based on human urinary excretion data and wastewater-based epidemiology (WBE). The results showed that the world's average human daily intake ranked from high to low is in order of bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol P (BPP), bisphenol AP (BPAP), bisphenol B (BPB), bisphenol Z (BPZ), and bisphenol AF (BPAF), and their corresponding human daily intakes are 2.53, 0.68, 0.60, 0.41, 0.36, 0.29, 0.24, and 0.06 μg/p/day, respectively. BPA is clearly the dominant bisphenol for human exposure. However, the results also showed that humans have been widely exposed to BPA analogues as well. Many BPA analogues showed similar estrogenic activities to those of BPA; therefore, the adverse effects of BPA and its analogues on humans should be comprehensively evaluated. The nominal exposure levels obtained based on wastewater-based epidemiology ranked high to low are in order of BPA (513.73 μg/p/day), BPF (10.20 μg/p/day), BPS (5.21 μg/p/day), BPP (1.15 μg/p/day), BPZ (0.66 μg/p/day), BPB (0.61 μg/p/day), BPAF (0.58 μg/p/day), and BPAP (0.35 μg/p/day). The world's human average daily intakes of BPA and its analogues are only 0.5-47.9% of the intakes of their corresponding human nominal exposures. This study suggests that other sources rather human excretions are important origins in municipal wastewater, which indicates that the WBE method based on parent compounds is inappropriate for evaluations of human daily intakes of BPA and its analogues, neither for other industrial compounds that have multiple important sources. Three main important sources of BPA and its analogues in municipal wastewater are likely effluents of industrial wastewater, discharges of hospital wastewater, and landfill leachates. To decrease discharges of BPA and its analogues to the natural environment, any mixing of industrial and hospital wastewater as well as landfill leachates in municipal wastewater is not favorable.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ri-Ping Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
21
|
Xiao Y, Shao XT, Tan DQ, Yan JH, Pei W, Wang Z, Yang M, Wang DG. Assessing the trend of diabetes mellitus by analyzing metformin as a biomarker in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:281-287. [PMID: 31229825 DOI: 10.1016/j.scitotenv.2019.06.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
According to International Diabetes Federation estimates, China has the highest rate of diabetes in the world. To monitor the prevalence of diabetes mellitus (DM) in near real-time, a first-line medication for the treatment of type 2 diabetes, metformin, was used. Wastewater-based epidemiology (WBE) was applied to estimate the consumption of metformin in Dalian from 2015 to 2018. Quantification of metformin was undertaken using solid-phase extraction (SPE) and N-methyl-bis (trifluoroacetamide) derivatization prior to GC-MS analysis. The concentrations of metformin in eleven wastewater treatment plants (WWTPs) ranged from 1.7 μg/L to 239.0 μg/L, with an average value of 68.3 μg/L. For metformin consumption, there was a gradual increase from 12.1 mg/d/capita in 2015 to 28.4 mg/d/capita in 2018. Meanwhile, the prevalence of metformin in the Dalian population ranged from 1.6% in 2015 to 3.8% in 2018. Similarly, the prevalence of DM showed an increasing trend from 12.2% in 2015 to 21.6% in 2018, which is consistent with the data predicted by traditional surveys (15.2-19.8%). Additionally, the prevalence of DM in 2015 estimated based on WBE was 12.2%, which agreed with the results from the traditional survey (12.3%). These results indicated that the proposed method provided a feasible way to reveal the prevalence of DM through metformin monitoring by the WBE approach.
Collapse
Affiliation(s)
- Yang Xiao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China.
| | - Ji-Hao Yan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Meng Yang
- Dalian Environmental Monitoring Center, 58 Lianshan Street, Shahekou District 116023, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, Liaoning 116026, China.
| |
Collapse
|
22
|
A new paradigm in public health assessment: Water fingerprinting for protein markers of public health using mass spectrometry. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Yuan SF, Liu ZH, Yin H, Dang Z, Wu PX, Zhu NW, Lin Z. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:815-821. [PMID: 30759607 DOI: 10.1016/j.scitotenv.2018.10.417] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Antibiotics have drawn much attention as their wide usage in humans and animals may result in microbial resistance, which is a huge threat to humans' health. Studies on the occurrence and removals of antibiotics in wastewater treatment plants have been widely performed, but very few covered their main acetylated metabolites. This study developed an effective analytical method for the trace determination of four sulfonamides and three acetylated metabolites in municipal wastewaters, which was validated by linearity (R2 > 0.995), sensitivity (limit of quantification, LOQ < 0.78 ng/L), recovery (77.7%-148.1%) and precision (relative standard deviation, RSD < 9.6%). All sulfonamides and their acetylated metabolites were detected in municipal wastewaters including influent, primary settling tank and effluent. Removal performances of sulfapyridine (SP), sulfadiazine (SDZ), sulfamethoxazole (SMZ), and N4-acetyl sulfadiazine (AC-SDZ) in the municipal wastewater treatment plant were moderate or excellent, whereas the corresponding removals of sulfamethazine (SM2), N4-acetyl sulfapyridine (AC-SP), and N4-acetyl sulfamethazine (AC-SM2) were poor. The calculated poor removal of SM2 might be attributed to its fluctuation in raw wastewater, whereas the poor removals of AC-SP and AC-SM2 may be due to re-transformation from their parent sulfonamides. Our results showed that monitoring of acetylated sulfonamides in municipal wastewater is important for two reasons. One is that acetylated metabolites are good biomarkers for wastewater-based epidemiology when they are combined with their corresponding parent sulfonamides. The other is that the potential risk of sulfonamides in effluent to the natural environment cannot be accurately evaluated unless their acetylated metabolites are also accounted. This report is the first to address the potential risk of acetylated sulfonamides in effluent of wastewater treatment plants.
Collapse
Affiliation(s)
- Su-Fen Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ping-Xiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Neng-Wu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, Guangdong, China
| |
Collapse
|
24
|
Liu ZH, Yin H, Lin Z, Dang Z. Sulfate-reducing bacteria in anaerobic bioprocesses: basic properties of pure isolates, molecular quantification, and controlling strategies. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1437783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ze-hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, People’s Republic of China
- Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, People’s Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, People’s Republic of China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|