1
|
Gurtowski LA, McLeod SJ, Zetterholm SG, Allison CD, Griggs CS, Gramm J, Wyss K, Tour JM, Sanchez F. Adsorption of aqueous insensitive munitions compounds by graphene nanoplatelets. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136091. [PMID: 39405693 DOI: 10.1016/j.jhazmat.2024.136091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 12/01/2024]
Abstract
Mitigation strategies for potential environmental impacts of insensitive munition (IM) compounds, including 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ), and methylnitroguanidine, (MeNQ) are being considered to enhance sustainability of current or potential IM formulations. Graphene nanoplatelets (GnPs) were investigated for adsorptive removal of each compound. GnPs were characterized to determine surface areas, along with particle size and zeta potential at different pH and ionic strength conditions. Adsorption kinetics and isotherm studies were conducted, comparing results against granular activated carbon (GAC). Ionic strength, pH, and temperature were adjusted to inform impacts on adsorptive behaviors and performance. The results indicated that GnPs adsorbed IM compounds more rapidly than GAC. Additionally, GnPs removed DNAN with greater capacity compared to GAC, likely due to π-π interactions. GnPs removed other compounds via van der Waals forces, while GAC exhibited greater adsorption capacities due to higher surface area. Although negative charges associated with GnPs and dissociated NTO species hindered adsorption, pH and ionic strength did not impact other compounds. Moreover, this study reports the first environmental treatment technique for MeNQ. Overall, these findings suggest that GnPs are a promising treatment technology for IM-laden waters, particularly those with compounds like DNAN where specific interactions enhance removal efficiency.
Collapse
Affiliation(s)
- Luke A Gurtowski
- U S Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; Department of Civil and Environmental Engineering, Vanderbilt University, PMB 351831, 2301 Vanderbilt Place, Nashville, TN 37235-1831, USA.
| | - Sheila J McLeod
- U S Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Sarah Grace Zetterholm
- U S Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Cleveland D Allison
- Department of Chemistry, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA
| | - Chris S Griggs
- U S Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Josh Gramm
- U S Army Engineer Research and Development Center (ERDC) Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Kevin Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Rice Advanced Materials Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Smalley-Curl Institute, NanoCarbon Center, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Florence Sanchez
- Department of Civil and Environmental Engineering, Vanderbilt University, PMB 351831, 2301 Vanderbilt Place, Nashville, TN 37235-1831, USA
| |
Collapse
|
2
|
Deb H, Hasan MK, Islam MZ, Yang S, Zhang Y, Yao J. Deep analysis of adsorption isotherm for rapid sorption of Acid Blue 93 and Reactive Red 195 on reactive graphene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67410-67428. [PMID: 38305963 DOI: 10.1007/s11356-024-31918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Graphene-based adsorbent was prepared by adopting a green synthetic route via the chemical exfoliation of graphite and low-temperature thermal activation. Prepared reactive graphene (RG) was characterized through various techniques, and its adsorption capabilities for textile dye removal were investigated for Acid Blue-93 (AB) and Reactive Red-195 (RR) under different operational conditions. The dye sorption equilibrium and mechanism were comprehensively studied using isotherm and kinetic models and compared statistically to explain the sorption behavior. Results show AB and RR adsorption by RG attains equilibrium in 60 min and 70 min, with a high sorption quantity of 397 mg g-1 and 262 mg g-1 (initial dye concentration of 100 mg L-1), respectively. The dye sorption anticipates that the high surface area (104.52 m2 gm-1) and constructed meso-macroporous features of RG facilitated the interaction between the dye molecules and graphitic skeleton. The R-P isotherm fitted the best of equilibrium data, having the least variance in residuals for both dyes (AB = 0.00031 and RR = 0.00047). The pseudo-second order model best fitted the kinetics of sorption on RG, with chemisorption being the predominant process delimiting step. The overall results promise the dye removal capability of RG to be an efficient adsorbent for azo-based dyes from textile effluents.
Collapse
Affiliation(s)
- Hridam Deb
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Md Khalid Hasan
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Md Zahidul Islam
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Shujuan Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yong Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Juming Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
| |
Collapse
|
3
|
Shaha CK, Karmaker S, Saha TK. Efficient adsorptive removal of levofloxacin using sulfonated graphene oxide: Adsorption behavior, kinetics, and thermodynamics. Heliyon 2024; 10:e40319. [PMID: 39641076 PMCID: PMC11617717 DOI: 10.1016/j.heliyon.2024.e40319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Water pollution by antibiotic residues poses a potential threat to environmental and human health. Graphene-based materials are highly stable, recyclable and effective adsorbents for efficiently removing antibiotics from polluted water. In this study, the adsorption behavior of levofloxacin onto sulfonated graphene oxide (SGO) was investigated by varying the contact period, solution pH, adsorbent quantity, levofloxacin concentration, inorganic ions, and solution temperature. Spectroscopic and microscopic techniques were employed to confirm the adsorptive interaction between levofloxacin and SGO. The adsorption process was most accurately characterized by the pseudo-second-order kinetic model and the Langmuir isotherm model, as indicated by their high correlation coefficients (R 2) and low root-mean-square error (RMSE) values. The maximal quantity of levofloxacin that can be adsorbed onto SGO was determined to be 1250 μmol/g at pH 4 and 25 °C using the Langmuir model. Thermodynamic studies reveal that the process of levofloxacin adsorption onto SGO is endothermic and spontaneous in nature. Taking into consideration the results of adsorption, desorption and regeneration studies, it is proposed that SGO can be applied as an economic viable agent for the adsorptive removal of levofloxacin from the aqueous environment.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka, 1349, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
4
|
Shaha CK, Mahmud MAA, Saha S, Karmaker S, Saha TK. Efficient removal of sparfloxacin antibiotic from water using sulfonated graphene oxide: Kinetics, thermodynamics, and environmental implications. Heliyon 2024; 10:e33644. [PMID: 39040378 PMCID: PMC11261116 DOI: 10.1016/j.heliyon.2024.e33644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Pharmaceutical contamination poses a significant threat to global health. Due to their high solubility in water, antibiotics are difficult to remove. This study produced and used sulfonated graphene oxide (SGO) to adsorb sparfloxacin from aquatic environments. UV-Visible, Fourier transform infrared (FTIR), X-ray diffraction (XRD), XPS, SEM, TEM, EDX, particle size, Thermogravimetric analysis (TGA), and acid-base titration were used to characterize synthesized SGO particles. The BET technique determined SGO's surface area (32.25 m2/g). The calculated pHPZC of SGO was 2.5. Sparfloxacin adsorption onto SGO was analyzed using adsorption duration, medium pH, adsorbent dosages, antibiotic concentration, cations, and solution temperature. The pseudo-second-order kinetic model better described experimental kinetic data than the pseudo-first-order and Elovich models. Equilibrium isotherm data supported the Langmuir model, revealing a peak absorption capacity of 1428.57 μmol/g at 25 °C. The kinetic and isotherm models' applicability was assessed using error analysis. A thermodynamic analysis revealed an endothermic, spontaneous adsorption process with a change in entropy (ΔS) of 114.15 J/mol K and enthalpy (ΔH) of 8.44 kJ/mol. A regeneration analysis showed that SGO adsorption efficiency topped 86.4 % after five cycles.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | | | - Sudipta Saha
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
5
|
Jain M, Sai Kiran P, Ghosal PS, Gupta AK. Development of microbial fuel cell integrated constructed wetland (CMFC) for removal of paracetamol and diclofenac in hospital wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118686. [PMID: 37536238 DOI: 10.1016/j.jenvman.2023.118686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Hospital wastewater management has become a significant concern across the globe due to the presence of pharmaceutically active compounds (PhACs) and other toxic substances, which can potentially disrupt ecosystems. The presence of recalcitrant PhACs in hospital wastewater increases the difficulty level for conventional wastewater treatment systems. Furthermore, incorporating advanced oxidation-based treatment systems increase capital and operation costs. To reduce treatment costs, low-cost innovative technology, i.e., composite constructed wetland and microbial fuel cell system (CMFC), has been developed for higher treatment efficiency of PhACs in hospital wastewater along with simultaneous bioelectricity generation as an additional outcome. In this study, influencing operating parameters, such as initial chemical oxygen demand (COD), electrode spacing, and substrate-to-water-depth ratio, were optimized for two plant species: water hyacinth (WH) and duckweed (DW). The optimized systems were run in batch and continuous mode for WH-CMFC and DW-CMFC to treat synthetic hospital wastewater with paracetamol and diclofenac, and the bioelectricity generation was monitored. DW-CMFC system depicted better treatment efficiency and voltage generation as compared to WH-CMFC. In continuous mode, the DW-CMFC system exhibited a removal of 95.3% COD, 97.1% paracetamol, and 87.5% diclofenac. WH-CMFC and DW-CMFC achieved power densities of around 21.26 mW/m2 and 42.93 mW/m2, respectively. The fate of PhACs during and after treatment and toxicity analysis of the transformation products formed were also carried out. Higher bio-electricity generation and efficient wastewater treatment of the DW-CMFC make it a sustainable option for hospital wastewater management.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
6
|
Ansari MAH, Khan ME, Mohammad A, Baig MT, Chaudary A, Tauqeer M. Application of nanocomposites in wastewater treatment. NANOCOMPOSITES-ADVANCED MATERIALS FOR ENERGY AND ENVIRONMENTAL ASPECTS 2023:297-319. [DOI: 10.1016/b978-0-323-99704-1.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Wang D, Ge H. Preparation and characterization of polyethyleneimine functionalized magnetic graphene oxide as high uptake and fast removal for Hg (II). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:1373-1387. [PMID: 36178812 DOI: 10.2166/wst.2022.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyethyleneimine functionalized magnetic graphene oxide adsorbent (PEI-mGO) was synthesized by introducing polyethyleneimine onto Fe3O4/graphene oxide. The structures and morphologies of PEI-mGO was identified by using Fourier-tranform infrared (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) methods. Quantities of bar-like Fe3O4 nanoparticles were observed on the surfaces of PEI-mGO. The adsorption of PEI-mGO for Cu(II), Pb(II), Hg(II), Co(II) and Cd(II) was compared. The adsorption results indicated that PEI-mGO showed higher uptake for Hg(II) than the other ions. The influence of various variables for the adsorption of Hg(II) on PEI-mGO was explored. The adsorption kinetics and isotherm could be described well by the pseudo-second-order and Langmuir models. The maximal uptake of PEI-mGO for Hg(II) from Langmuir model was 857.3 mg g-1, which was higher than that reported previously. The adsorption removal was a fast and endothermic process governed by the chemical process. The uptake increased with increasing temperature. PEI-mGO showed an excellent performance for removal of Hg(II) with 93.3% removal efficiency from simulated wastewater. Adsorption-desorption cycled experiments indicated that PEI-mGO could be recycled. PEI-mGO could be easily separated from the adsorbed solution by using a magnet. Hence, this novel adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
Affiliation(s)
- Deqi Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| | - Huacai Ge
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China E-mail:
| |
Collapse
|
8
|
Liu M, Zheng J, Wang L, Hu Z, Lan S, Rao W, Liu Y, Xie Y, Yu C. Ultrafast and selective adsorption of anionic dyes with amine-functionalized glucose-based adsorbents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Tran DT, Nguyen TH, Doan TH, Dang VC, Nghiem LD. Removal of direct blue 71 and methylene blue from water by graphene oxide: effects of charge interaction and experimental parameters. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Dinh-Trinh Tran
- VNU Key Lab. of Advanced Materials for Green Growth, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Thi-Hanh Nguyen
- Faculty of Environmental Science, University of Science, Vietnam National University, Thanh Xuan, Hanoi, Vietnam
| | - Thi-Hoa Doan
- VNU Key Lab. of Advanced Materials for Green Growth, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Viet-Cuong Dang
- VNU Key Lab. of Advanced Materials for Green Growth, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Long D. Nghiem
- Centre for Technology in Water and Wastewate, University of Technology Sydney, NSW, Australia
| |
Collapse
|
10
|
Ali J, Li Y, Shang E, Wang X, Zhao J, Mohiuddin M, Xia X. Aggregation of graphene oxide and its environmental implications in the aquatic environment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Rahman A, Harunsani MH, Tan AL, Khan MM. Zinc oxide and zinc oxide-based nanostructures: biogenic and phytogenic synthesis, properties and applications. Bioprocess Biosyst Eng 2021; 44:1333-1372. [PMID: 33661388 DOI: 10.1007/s00449-021-02530-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are considered as very significant and essential material due to its multifunctional properties, stability, low cost and wide usage. Many green and biogenic approaches for ZnO NPs synthesis have been reported using various sources such as plants and microorganisms. Plants contain biomolecules that can act as capping, oxidizing and reducing agents that increase the rate of reaction and stabilizes the NPs. This review emphasizes and compiles different types of plants and parts of plant used for the synthesis of ZnO and its potential applications at one place. The influence of biogenic and phytogenic synthesized ZnO on its properties and possible mechanisms for its fabrication has been discussed. This review also highlights the potential applications and future prospects of phytogenic synthesized ZnO in the field of energy production and storage, sun light harvesting, environmental remediation, and biological applications.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|