1
|
Gül E, Kayaalp N. Modelling of hydrogenotrophic denitrification process in a venturi-integrated membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:945-958. [PMID: 36173672 DOI: 10.1080/09593330.2022.2130827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study is to model a hydrogenotrophic denitrification process in a venturi-integrated submerged membrane bioreactor (MBR) system. The MBR was operated in batch mode using feed concentrations of 100 and 150 mg NO3-N/L. In contrast to most of the denitrification process models that represent the mixed culture with one composite biomass parameter, the biomass was subdivided into two main categories in this modelling study: mainly nitrate-reducing biomass and mainly nitrite-reducing biomass. The determination coefficients (r2) in the range of 0.97-0.99 indicate that the model successfully simulates the concentrations of nitrate- and nitrite-nitrogen in the bioreactor. The maximum specific growth rate of nitrite-reducing biomass (0.06 h-1) was found to be higher than that of nitrate-reducing biomass (0.0002 h-1). Similarly, the growth yield coefficient of nitrite-reducing biomass was higher than that of nitrate-reducing biomass (0.44 vs. 0.31 g biomass/g substrate). The kinetic and stoichiometric coefficients obtained from this modelling study suggest that the limiting step determining the overall conversion rate of hydrogenotrophic denitrification process is the conversion of nitrite to nitrogen gas.
Collapse
Affiliation(s)
- Ertuğrul Gül
- Environmental Health Department, Hakkari University, Hakkari, Turkey
| | - Necati Kayaalp
- Civil Engineering Department, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
2
|
Guerriero G, Mattei MR, Papirio S, Esposito G, Frunzo L. Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification. Sci Rep 2022; 12:7008. [PMID: 35487960 PMCID: PMC9054823 DOI: 10.1038/s41598-022-10944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to develop a mathematical model to assess the effect of soluble microbial products production and external carbon source addition on the performance of a sulfur-driven autotrophic denitrification (SdAD) process. During SdAD, the growth of autotrophic biomass (AUT) was accompanied by the proliferation of heterotrophic biomass mainly consisting of heterotrophic denitrifiers (HD) and sulfate-reducing bacteria (SRB), which are able to grow on both the SMP derived from the microbial activities and on an external carbon source. The process was supposed to occur in a sequencing batch reactor to investigate the effects of the COD injection on both heterotrophic species and to enhance the production and consumption of SMP. The mathematical model was built on mass balance considerations and consists of a system of nonlinear impulsive differential equations, which have been solved numerically. Different simulation scenarios have been investigated by varying the main operational parameters: cycle duration, day of COD injection and quantity of COD injected. For cycle durations of more than 15 days and a COD injection after the half-cycle duration, SdAD represents the prevailing process and the SRB represent the main heterotrophic family. For shorter cycle duration and COD injections earlier than the middle of the cycle, the same performance can be achieved increasing the quantity of COD added, which results in an increased activity of HD. In all the performed simulation even in the case of COD addition, AUT remain the prevailing microbial family in the reactor.
Collapse
Affiliation(s)
- Grazia Guerriero
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy.
| | - Maria Rosaria Mattei
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "R. Caccioppoli", Via Cintia, Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
3
|
Guo G, Li Z, Chen L, Ling Q, Zan F, Isawi H, Hao T, Ma J, Wang Z, Chen G, Lu H. Advances in elemental sulfur-driven bioprocesses for wastewater treatment: From metabolic study to application. WATER RESEARCH 2022; 213:118143. [PMID: 35149365 DOI: 10.1016/j.watres.2022.118143] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Elemental sulfur (S0) is known to be an abundant, non-toxic material with a wide range of redox states (-2 to +6) and may serve as an excellent electron carrier in wastewater treatment. In turn, S0-driven bioprocesses, which employ S0 as electron donor or acceptor, have recently established themselves as cost-effective therefore attractive solutions for wastewater treatment. Numerous related processes have, to date, been developed from laboratory experiments into full-scale applications, including S0-driven autotrophic denitrification for nitrate removal and S0-reducing organic removal. Compared to the conventional activated sludge process, these bioprocesses require only a small amount of organic matter and produce very little sludge. There have been great efforts to characterize chemical and biogenic S0 and related functional microorganisms in order to identify the biochemical pathways, upgrade the bioprocesses, and assess the impact of the operating factors on process performance, ultimately aiming to better understand and to optimize the processes. This paper is therefore a comprehensive overview of emerging S0-driven biotechnologies, including the development of S0-driven autotrophic denitrification and S0-based sulfidogenesis, as well as the associated microbiology and biochemistry. Also reviewed here are the physicochemical characteristics of S0 and the effects that environmental factors such as pH, influent sulfur/nitrate ratio, temperature, S0 particle size and reactor configurations have on the process. Research gaps, challenges of process applications and potential areas for future research are further proposed and discussed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zhaoling Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lei Chen
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qingshan Ling
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Heba Isawi
- Desert Research Center, Water Resources and Desert Soils Division, Egyptian Desalination Research Center of Excellence (EDRC), Cairo, Egypt
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Kostrytsia A, Papirio S, Khodzhaev M, Morrison L, Collins G, Lens PNL, Ijaz UZ, Esposito G. Biofilm carrier type affects biogenic sulfur-driven denitrification performance and microbial community dynamics in moving-bed biofilm reactors. CHEMOSPHERE 2022; 287:131975. [PMID: 34454228 DOI: 10.1016/j.chemosphere.2021.131975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Autotrophic denitrification with biosulfur (ADBIOS) provides a sustainable technological solution for biological nitrogen removal from wastewater driven by biogenic S0, derived from biogas desulfurization. In this study, the effect of different biofilm carriers (conventional AnoxK™ 1 and Z-200 with a pre-defined maximum biofilm thickness) on ADBIOS performance and microbiomics was investigated in duplicate moving bed-biofilm reactors (MBBRs). The MBBRs were operated parallelly in continuous mode for 309 days, whilst gradually decreasing the hydraulic retention time (HRT) from 72 to 21 h, and biosulfur was either pumped in suspension (days 92-223) or supplied in powder form. Highest nitrate removal rates were approximately 225 (±11) mg/L·d and 180 (±7) mg NO3--N/L·d in the MBBRs operated with K1 and Z-200 carriers, respectively. Despite having the same protected surface area for biofilm development in each MBBR, the biomass attached onto the K1 carrier was 4.8-fold more than that on the Z-200 carrier, with part of the biogenic S0 kept in the biofilm. The microbial communities of K1 and Z-200 biofilms could also be considered similar at cDNA level in terms of abundance (R = 0.953 with p = 0.042). A relatively stable microbial community was formed on K1 carriers, while the active portion of the microbial community varied significantly over time in the MBBRs using Z-200 carriers.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043, Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Murod Khodzhaev
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N L Lens
- IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, United Kingdom.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
5
|
Acosta-Cordero L, Carrera-Chapela F, Montalvo S, Guerrero L, Palominos N, Borja R, Huiliñir C. Modeling of the effect of zeolite concentration on the biological nitrification process in the presence of sulfide and organic matter. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:123-135. [PMID: 33507138 DOI: 10.1080/10934529.2020.1852011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The evaluation of the nitrification kinetics in the simultaneous presence of sulfide and organic matter using zeolite as improver was the main goal of this work. According to the sensitivity and collinearity analyses, five parameters were the most sensitive in the model, whose calibrated values were: μ max, AOB = 0.02642 ± 0.002 h-1; μ max, NOB = 0.3307 ± 0.416 h-1; K S,NOB = 1.65·10-6 ± 2.85·10-6 mgHNO2-N/L; k S2 = 0.8213 ± 0.076 and n = 0.6537 ± 0.030. A good fit between the experimental data and the model's results including the effect of zeolite on the kinetic parameters was obtained, with Theil inequality coefficient values between 0.109 and 0.007 for all the variables studied, with all of these values lower than 0.3. Thus, the model proposed is robust and can simulate the nitrification process in the presence of sulfide and organic matter when zeolite was used as improver.
Collapse
Affiliation(s)
| | - Fabio Carrera-Chapela
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Silvio Montalvo
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| | - Lorna Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Nicolás Palominos
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| | - Rafael Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide - Edificio 46, Sevilla, Spain
| | - Cesar Huiliñir
- Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Huiliñir C, Acosta L, Yanez D, Montalvo S, Esposito G, Retamales G, Levicán G, Guerrero L. Elemental sulfur-based autotrophic denitrification in stoichiometric S 0/N ratio: Calibration and validation of a kinetic model. BIORESOURCE TECHNOLOGY 2020; 307:123229. [PMID: 32247270 DOI: 10.1016/j.biortech.2020.123229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The inclusion of S0 hydrolysis in a kinetic model of autotrophic denitrification has been recently proposed; however the model has not been calibrated or validated yet. Thus, a new methodology was developed and applied to calibrate and validate this kinetic model for the first time. An inoculum adapted from a poultry wastewater treatment plant at stoichiometric S0/NO3- ratio was used. The model was calibrated with batch data (initial nitrate concentrations of 50 and 6.25 mg NO3--N/L) at an S0/N ratio = 2.29 mg S/mg N and validated with seven different batch data. The sensitivity analysis showed that the most sensitive parameters are related to S0 hydrolysis. The kinetic model was successfully calibrated with the new methodology and validated, with Theil inequality coefficient values lower than 0.21. Thus, the proposed model and methodology were proved to be well suited for the simulation of elemental sulfur-based autotrophic denitrification in batch systems.
Collapse
Affiliation(s)
- C Huiliñir
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile.
| | - L Acosta
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - D Yanez
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - S Montalvo
- Laboratorio de Biotecnología Ambiental, Departamento de Ingeniería Química, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - G Retamales
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - G Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Lib. Bdo. O Higgins 3363, Santiago, Chile
| | - L Guerrero
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| |
Collapse
|