1
|
Choroba K, Zowiślok B, Kula S, Machura B, Maroń AM, Erfurt K, Marques C, Cordeiro S, Baptista PV, Fernandes AR. Optimization of Antiproliferative Properties of Triimine Copper(II) Complexes. J Med Chem 2024. [PMID: 39496093 DOI: 10.1021/acs.jmedchem.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cu(II) complexes with 2,2':6',2″-terpyridines (terpy) and 2,6-bis(thiazol-2-yl)pyridines (dtpy) with 1- or 2-naphtyl and methoxy-naphtyl were synthesized to elucidate the impact of the triimine core, naphtyl linking mode, and presence of methoxy groups on the antiproliferative activity of [CuCl2(Ln)]. Their antiproliferative effect was analyzed in ovarian (A2780) and colorectal (HCT116) carcinomas and colorectal carcinoma resistant to doxorubicin (HCT116-DoxR) cell lines and in normal human fibroblasts. Among all complexes, the 1- and 2-naphtyl substituted terpy Cu(II) complexes (Cu1a and Cu1b) showed the strongest cytotoxicity, namely, in HCT116-DoxR 2Dcells and were also capable of inducing the loss of cell viability in 3D HCT116-DoxR spheroids. Their intracellular localization, capability to increase reactive oxygen species (ROS), and interaction with DNA (nonintercalative mode) trigger oxidative DNA cleavage leading to cell death by apoptosis and autophagy. Cu1a and Cu1b do not show in vivo toxicity in a chicken embryo and can interact with bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Bartosz Zowiślok
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Sławomir Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Anna M Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Cristiana Marques
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Departamento de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Sandra Cordeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Departamento de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Departamento de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Departamento de Ciências da Vida, NOVA School of Science and Technology, UCIBIO, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
2
|
Dai X, Han Y, Jiao H, Shi F, Rabeah J, Brückner A. Aerobic Oxidative Synthesis of Formamides from Amines and Bioderived Formyl Surrogates. Angew Chem Int Ed Engl 2024; 63:e202402241. [PMID: 38567831 DOI: 10.1002/anie.202402241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 05/16/2024]
Abstract
Herein we present a new strategy for the oxidative synthesis of formamides from various types of amines and bioderived formyl sources (DHA, GLA and GLCA) and molecular oxygen (O2) as oxidant on g-C3N4 supported Cu catalysts. Combined characterization data from EPR, XAFS, XRD and XPS revealed the formation of single CuN4 sites on supported Cuphen/C3N4 catalysts. EPR spin trapping experiments disclosed ⋅OOH radicals as reactive oxygen species and ⋅NR1R2 radicals being responsible for the initial C-C bond cleavage. Control experiments and DFT calculations showed that the successive C-C bond cleavage in DHA proceeds via a reaction mechanism co-mediated by ⋅NR1R2 and ⋅OOH radicals based on the well-equilibrated CuII and CuI cycle. Our catalyst has much higher activity (TOF) than those based on noble metals.
Collapse
Affiliation(s)
- Xingchao Dai
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Yunyan Han
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
3
|
Kim V, Lee DW, Noh HR, Lee J, Kim TH, Park J, Kim JY, Lim SH. Copper-Based Two-Dimensional Metal-Organic Frameworks for Fenton-like Photocatalytic Degradation of Methylene Blue under UV and Sunlight Irradiation. Inorg Chem 2024; 63:8832-8845. [PMID: 38687621 DOI: 10.1021/acs.inorgchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
To efficiently degrade organic pollutants, photocatalysts must be effective under both ultraviolet (UV) radiation and sunlight. We synthesized a series of new metal-organic frameworks by using mild hydrothermal conditions. These frameworks incorporate three distinct bipyridyl ligands: pyrazine (pyr), 4,4'-bipyridine (bpy), and 1,2-bis(4-pyridyl)ethane (bpe). The resulting compounds are denoted as [Cu(pyz)(H2O)2MF6], [Cu(bpy)2(H2O)2]·MF6, and [Cu(bpe)2(H2O)2]·MF6·H2O [M = Zr (1, 3, and 5) and Hf (2, 4, and 6)]. All six compounds exhibited a two-dimensional crystal structure comprising infinitely nonintersecting linear chains. Compound 3 achieved 100% degradation of methylene blue (MB) after 8 min under UV irradiation and 100 min under natural sunlight in the presence of H2O2 as the electron acceptor. For compound 5, 100% MB degradation was achieved after 120 min under sunlight and 10 min under UV light. Moreover, reactive radical tests revealed that the dominant species involved in photocatalytic degradation are hydroxyl (•OH), superoxide radicals (•O2-), and photogenerated holes (h+). The photodegradation process followed pseudo-first-order kinetics, with photodegradation rate constants of 0.362 min-1 (0.039 min-1) for 3 and 0.316 min-1 (0.033 min-1) for 5 under UV (sunlight) irradiation. The developed photocatalysts with excellent activity and good recyclability are promising green catalysts for degrading organic pollutants during environmental decontamination.
Collapse
Affiliation(s)
- Viktoriya Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong Woo Lee
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Hye Ran Noh
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeongmook Lee
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tae-Hyeong Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Junghwan Park
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong-Yun Kim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Ho Lim
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
- Department of Nuclear Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Sk S, Bandyopadhyay S, Sarkar C, Das I, Gupta A, Sadangi M, Mondal S, Banerjee M, Vijaykumar G, Behera JN, Konar S, Mandal S, Bera M. Unraveling Multicopper [Cu 3] and [Cu 6] Clusters with Rare μ 3-Sulfato and Linear μ 2-Oxido-Bridges as Potent Antibiofilm Agents against Multidrug-Resistant Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:2423-2449. [PMID: 38478915 DOI: 10.1021/acsabm.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(μ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(μ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a μ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear μ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare μ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.
Collapse
Affiliation(s)
- Sujan Sk
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Arindam Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Sadangi
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Soma Mondal
- Department of Microbiology, College of Medicine & Jawaharlal Nehru Memorial (JNM) Hospital, WBUHS, Nadia, Kalyani, West Bengal 741235, India
| | - Malabika Banerjee
- Cristália Produtos Químicos Farmacêuticos Limited, Rodovia Itapira, Sao Paulo CEP 13970-970, Brazil
| | - Gonela Vijaykumar
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education & Research, An OCC of Homi Bhabha National Institute, Khurda, Bhubaneswar, Odisha 752050, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
5
|
Mittra I. Exploiting the damaging effects of ROS for therapeutic use by deactivating cell-free chromatin: the alchemy of resveratrol and copper. Front Pharmacol 2024; 15:1345786. [PMID: 38455966 PMCID: PMC10917901 DOI: 10.3389/fphar.2024.1345786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Cell-free chromatin particles (cfChPs) that circulate in blood, or those that are released locally from dying cells, have myriad pathological effects. They can horizontally transfer themselves into healthy cells to induce DNA damage and activate inflammatory and apoptotic pathways. It has been proposed that repeated and lifelong assault on healthy cells by cfChPs may be the underlying cause of ageing and multiple age related disorders including cancer. The damaging effects of cfChPs can be minimized by deactivating them via the medium of ROS generated by admixing the nutraceuticals resveratrol (R) and copper (Cu). The antioxidant R acts as a pro-oxidant in the presence of Cu by its ability to catalyse the reduction of Cu(II) to Cu(I) with the generation of ROS via a Fenton-like reaction which can deactivate extra-cellular cfChPs. This perspective article explores the possibility of using the damaging potential of ROS for therapeutic purposes. It discusses the ability of ROS generating nutraceuticals R-Cu to deactivate the extracellular cfChPs without damaging effects on the genomic DNA. As cfChPs play a key role in activation of various disease associated pathways, R-Cu mediated deactivation of these pathways may open up multiple novel avenues for therapy. These findings have considerable translational implications which deserve further investigation by the way of well-designed randomised clinical trials.
Collapse
Affiliation(s)
- Indraneel Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Navi Mumbai, India
| |
Collapse
|
6
|
Ferrer M, Pham AN, Waite TD. Kinetic Modeling Assisted Analysis of Vitamin C-Mediated Copper Redox Transformations in Aqueous Solutions. J Phys Chem A 2023; 127:10663-10680. [PMID: 38081796 DOI: 10.1021/acs.jpca.3c05736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The kinetics of oxidation of micromolar concentrations of ascorbic acid (AA) catalyzed by Cu(II) in solutions representative of biological and environmental aqueous systems has been investigated in both the presence and absence of oxygen. The results reveal that the reaction between AA and Cu(II) is a relatively complex set of redox processes whereby Cu(II) initially oxidizes AA yielding the intermediate ascorbate radical (A•-) and Cu(I). The rate constant for this reaction was determined to have a lower limit of 2.2 × 104 M-1 s-1. Oxygen was found to play a critical role in mediating the Cu(II)/Cu(I) redox cycle and the oxidation reactions of AA and its oxidized forms. Among these processes, the oxidation of the ascorbate radical by molecular oxygen was identified to play a key role in the consumption of ascorbic acid, despite being a slow reaction. The rate constant for this reaction (A • - + O 2 → DHA + O 2 • - ) was determined for the first time with a calculated value of 54 ± 8 M-1 s-1. The kinetic model developed satisfactorily describes the Cu/AA/O2 system over a range of conditions including different concentrations of NaCl (0.2 and 0.7 M) and pH (7.4 and 8.1). Appropriate adjustments to the rate constant for the reaction between Cu(I) and O2 were found to account for the influence of the chloride ions and pH on the kinetics of the process. Additionally, the presence of Cu(III) as the primary oxidant resulting from the interaction between Cu(I) and H2O2 in the Cu(II)/AA system was confirmed, along with the coexistence of HO•, possibly due to an equilibrium established between Cu(III) and HO•.
Collapse
Affiliation(s)
- Maximiliano Ferrer
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Gu Y, Sun Y, Zheng W. Novel strategy for copper precipitation from cupric complexes wastewater: Catalytic oxidation or reduction self-decomplexation? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131183. [PMID: 36966623 DOI: 10.1016/j.jhazmat.2023.131183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Cupric (Cu(II)) complexes in industrial wastewater are responsible for the failure of conventional alkaline precipitation, but the properties of cuprous (Cu(I)) complexes at alkaline circumstance have not been focused. This report proposed a novel strategy for the remediation of Cu(II)-complexed wastewater by coupling alkaline precipitation with green benign reductant, namely, hydroxylamine hydrochloride (HA). This remediation process (HA-OH) exhibits superior Cu removal efficiency that cannot be achieved with the same dosage of oxidants (3 mM). The possibility of Cu(I) activated O2 catalysis and self-decomplexation precipitation were investigated, and the results identified that 1O2 was generated from Cu(II)/Cu(I) cycle, but it was insufficient to annihilate organic ligands. Cu(I) self-decomplexation was the dominate mechanism of Cu removal. For real industrial wastewater, HA-OH process can realize the efficient Cu2O precipitation and Cu recovery. This novel strategy utilized intrinsic pollutant in wastewater without introducing other metals, complicated materials, and expensive equipment, broadening the insight for the remediation of Cu(II)-complexed wastewater.
Collapse
Affiliation(s)
- Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Xia L, Chen M, Dong C, Liu F, Huang H, Feng W, Chen Y. Spatiotemporal Ultrasound-Driven Bioorthogonal Catalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209179. [PMID: 36529698 DOI: 10.1002/adma.202209179] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Bioorthogonal chemistry, referring to the rapid and selective synthesis of imaging and/or therapeutic molecules in live animals via transition metal-mediated non-natural chemical transformation without disrupting endogenous reactions, has greatly expanded the tools and techniques for biomedicine. However, owing to safety concerns associated with metal toxicity, selectivity, sensitivity and stability, efficient bioorthogonal reactions that can be reliably executed in complex biological environments remain challenging. In this study, an intelligent, versatile bioorthogonal catalyst based on ultrasmall poly(acrylic acid)-modified copper nanocomplexes (Cu@PAA NCs) to achieve high spatiotemporal catalytic efficacy is established. The catalytic activity of the Cu@PAA NCs can be reversibly regulated via valence state interconversion between Cu(II) and Cu(I) under exogenous ultrasound irradiation, promoting off-target prodrug activation in lesion sites through the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Moreover, ultrasound-triggered electron-hole separation endows the Cu@PAA NCs with robust sonosensitizing ability for sonodynamic therapy. Furthermore, the Cu@PAA NCs exhibit enhanced contrast in magnetic resonance and photoacoustic imaging. Notably, the renal-clearable Cu@PAA NCs exhibit intrinsically benign biocompatibility. This spatiotemporally ultrasound-mediated bioorthogonal catalysis not only expands the repertoire of in situ therapeutic agents but also provides a new avenue for disease theranostics.
Collapse
Affiliation(s)
- Lili Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, China
| | - Feipeng Liu
- Shaanxi Key Laboratory of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Synthesis of Selenium-based BOPHY Sensor for Imaging of Cu(II) in Living HeLa Cells. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Iwasaki Y, Manabe R, Kimoto M, Fukuda M, Mase N, Miyazawa M, Hosokawa K, Kamei J. Copper-Induced Interactions of Caffeic Acid and Sinapic Acid to Generate New Compounds in Artificial Biological Fluid Conditions. Antioxidants (Basel) 2022; 11:antiox11071307. [PMID: 35883798 PMCID: PMC9311897 DOI: 10.3390/antiox11071307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Active ingredients may be ingested through foods, and they can cause several interactions in the human body. Although drug–drug or drug–food interactions are evaluated before the approval of medicines, several functional food interactions are not well-documented because of the wide range of possible combinations of interactions. In this study, we examined the chemical reactions between hydroxycinnamic acids (HCAs), a group of polyphenols, and metal ions in artificial gastric juice or artificial intestinal fluid. Caffeic acid (CaA) and sinapic acid (SA) reacted with copper ions under artificial intestinal fluid conditions and produced new compounds. The triple interactions of CaA or SA with iron and copper ions were also examined. Relative to the initial compounds, CaA and SA derivatives produced by condensation exhibited an increased antioxidant and a decreased prooxidant activity. This study revealed a new food ingredient interaction pattern in which new compounds are produced under biological conditions.
Collapse
Affiliation(s)
- Yusuke Iwasaki
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
- Correspondence:
| | - Rie Manabe
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mika Kimoto
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mao Fukuda
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Narumi Mase
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Mako Miyazawa
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Kotomi Hosokawa
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
| | - Junzo Kamei
- Laboratory of Biopharmaceutics and Analytical Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (R.M.); (M.K.); (M.F.); (N.M.); (M.M.); (K.H.); (J.K.)
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
11
|
Parsekar S, Paliwal K, Haldar P, Antharjanam PKS, Kumar M. Synthesis, Characterization, Crystal Structure, DNA and HSA Interactions, and Anticancer Activity of a Mononuclear Cu(II) Complex with a Schiff Base Ligand Containing a Thiadiazoline Moiety. ACS OMEGA 2022; 7:2881-2896. [PMID: 35097283 PMCID: PMC8792924 DOI: 10.1021/acsomega.1c05750] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 05/07/2023]
Abstract
A mononuclear Cu(II) complex [Cu(HL)(o-phen)]·H2O (1) [H3L =, o-phen = 1,10-phenanthroline] was isolated from methanol, and its X-ray single-crystal structure was determined. Frozen glass X-band EPR of 1 in dimethylformamide (DMF) at LNT showed a spectrum that is characteristic of a monomeric tetragonal character with g ∥ = 2.164, g ⊥ = 2.087, A ∥ = 19.08 mT, and A ⊥ ≤ 4 mT. Electronic spectroscopic studies using calf thymus DNA (CT-DNA) showed strong binding affinity of 1 as reflected from its intrinsic binding constant (K b) value of 2.85 × 105 M-1. Competitive behavior of 1 with ethidium bromide (EB) displayed intercalative binding of DNA (K app = 1.3 × 106 M-1). The compound displayed significant oxidative cleavage of pUC19 DNA. The interaction between HSA and complex 1 was examined by employing fluorescence and electronic absorption spectroscopic experiments. The secondary and tertiary structures of HSA were found to be altered as suggested by three-dimensional (3D) fluorescence experiments. The affinity of 1 to bind to HSA was found to be strong as indicated from its value of the binding constant (K a = 2.89 × 105 M-1). Intrinsic fluorescence of the protein was found to be reduced through a mechanism of static quenching as suggested from the k q (2.01 × 1013 M-1 s-1) value, the bimolecular quenching constant. The Förster resonance energy transfer (FRET) process may also be accounted for such a high k q value. The r value (2.85 nm) calculated from FRET theory suggested that the distance between complex 1 (acceptor) and HSA (donor) is quite close. Complex 1 primarily bound to HSA in subdomain IIA as suggested by molecular docking studies. IC50 values (0.80 and 0.43 μM, respectively) obtained from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with HeLa and MCF7 cells suggested remarkable in vitro anticancer activity of 1. Nuclear dual staining assays revealed that cell death occurred via apoptosis in HeLa cells and reactive oxygen species (ROS) accumulation caused apoptosis induction. On treatment with a 5 μM dose of 1 in HeLa cells, the cell population significantly increased in the G2/M phase, while it was decreased in G0/G1 and S phases as compared to the control, clearly indicating G2/M phase arrest.
Collapse
Affiliation(s)
- Sidhali
U. Parsekar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Kumudini Paliwal
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Paramita Haldar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| | | | - Manjuri Kumar
- Department
of Chemical Engineering, Birla Institute
of Technology and Science-Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
12
|
Direct Interaction of ATP7B and LC3B Proteins Suggests a Cooperative Role of Copper Transportation and Autophagy. Cells 2021; 10:cells10113118. [PMID: 34831341 PMCID: PMC8625360 DOI: 10.3390/cells10113118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport. Using in silico prediction, we found that ATP7B contains a number of potential binding sites for LC3, a central protein in the autophagy pathway, the so-called LC3 interaction regions (LIRs). The conserved LIR3, located at the C-terminal end of ATP7B, was found to directly interact with LC3B in vitro. Replacing the two conserved hydrophobic residues W1452 and L1455 of LIR3 significantly reduced interaction. Furthermore, autophagy was induced in normal human hepatocellular carcinoma cells (HepG2) leading to enhanced colocalization of ATP7B and LC3B on the autophagosome membranes. By contrast, HepG2 cells deficient of ATP7B (HepG2 ATP7B-/-) showed autophagy deficiency at elevated copper condition. This phenotype was complemented by heterologous ATP7B expression. These findings suggest a cooperative role of ATP7B and LC3B in autophagy-mediated copper clearance.
Collapse
|
13
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
14
|
Duan J, Pang SY, Wang Z, Zhou Y, Gao Y, Li J, Guo Q, Jiang J. Hydroxylamine driven advanced oxidation processes for water treatment: A review. CHEMOSPHERE 2021; 262:128390. [PMID: 33182154 DOI: 10.1016/j.chemosphere.2020.128390] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Hydroxylamine (HA) driven advanced oxidation processes (HAOPs) for water treatment have attracted extensive attention due to the acceleration of reactive intermediates generation and the improvement on the elimination effectiveness of target contaminants. In this review, HAOPs were categorized into three parts: (1) direct reaction of HA with oxidants (e.g., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), ozone (O3), ferrate (Fe(VI)), periodate (IO4-)); (2) HA driven homogeneous Fenton/Fenton-like system (Fe(II)/peroxide/HA system, Cu(II)/O2/HA system, Cu(II)/peroxide/HA system, Ce(IV)/H2O2/HA system); (3) HA driven heterogeneous Fe/Cu-Fenton/Fenton-like system (iron-bearing material/peroxide/HA system, copper-bearing material/peroxide/HA system, bimetallic composite/peroxide/HA system). Degradation efficiency of the target pollutant, reactive intermediates, and effective pH range of various HAOPs were summarized. Further, corresponding reaction mechanism was elaborated. For the direct reaction of HA with oxidants, improvement of pollutants degradation was achieved through the generation of secondary reactive intermediates which had higher reactivity compared with the parent oxidant. For HA driven homogeneous and heterogeneous Fe/Cu-Fenton/Fenton-like system, improvement of pollutants degradation was achieved mainly via the acceleration of redox cycle of Fe(III)/Fe(II) or Cu(II)/Cu(I) and subsequent generation of reactive intermediates, which avoided the drawbacks of classical Fenton/Fenton-like system. In addition, HA driven homogeneous Fe/Cu-Fenton/Fenton-like system with heterogeneous counterpart were compared. Further, formation of oxidation products from HA in various HAOPs was summarized. Finally, the challenges and prospects in this field were discussed.
Collapse
Affiliation(s)
- Jiebin Duan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Zhen Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Zhou
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yuan Gao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Juan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qin Guo
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|