1
|
Allabakshi SM, Srikar PSNSR, Gomosta S, Gangwar RK, Maliyekkal SM. Treatment of textile dyes in a photo-surface dielectric barrier discharge hybrid reactor: Unraveling the degradation mechanisms. CHEMOSPHERE 2024; 368:143775. [PMID: 39571945 DOI: 10.1016/j.chemosphere.2024.143775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The study demonstrates the unprecedented ability of UV-C integrated surface dielectric barrier discharge (photo-SDBD) in the rapid removal of azo (brilliant red X3B), direct (direct yellow - 44), and reactive dyes (turquoise blue H5G) in textile wastewater. The degradation mechanisms of these dyes were studied using a high-resolution mass spectrometer (HRMS), and a step-by-step reaction pathway was proposed. The BR-X3B and DY-44 dyes undergo azo bond dissociation followed by functional group rearrangement, ring opening, and formation of open chain intermediates. On the other hand, TB-H5G underwent dissociation of porphyrin moieties, side chain cleavage, and aromatic ring cleavage, generating open-chain intermediates. The photo-SDBD showed a superior ability to degrade the dyes compared to SDBD over a pH range of 4-10 and a background salt concentration of 10,000 mg L-1. Salt presence did not significantly affect the photo-SDBD performance, irrespective of the dye and salt types used. The photo-SDBD showed a 2.4-6.5 times higher degradation rate and 1.4-2.9 times higher energy yield than SDBD. The hybrid system took only 42-84 min to mineralize dyes (>99%) depending upon the complexity of the molecule, whereas SDBD required double the time than photo-SDBD. The study proves that photo-SDBD is more energy-efficient and versatile than SDBD. Moreover, the hybrid system is less susceptible to wastewater characteristics such as pH and inorganic salts, making it a potential alternative to conventional plasma and other advanced oxidation processes for treating textile wastewater.
Collapse
Affiliation(s)
- Shaik Mahamad Allabakshi
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - P S N S R Srikar
- Department of Physics & CAMOST, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Suman Gomosta
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India
| | - Reetesh Kumar Gangwar
- Department of Physics & CAMOST, Indian Institute of Technology Tirupati, Yerpedu, 517619, India.
| | - Shihabudheen M Maliyekkal
- Department of Civil and Environmental Engineering, Indian Institute of Technology Tirupati, Yerpedu, 517619, India.
| |
Collapse
|
2
|
Elsayad RM, Sharshir SW, Khalil A, Basha AM. Recent advancements in wastewater treatment via anaerobic fermentation process: A systematic review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121724. [PMID: 38971071 DOI: 10.1016/j.jenvman.2024.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.
Collapse
Affiliation(s)
- Rahma M Elsayad
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt; Higher Institute of Engineering and Technology, Kafrelsheikh, KFS-HIET, Kafrelsheikh, 33516, Egypt
| | - Swellam W Sharshir
- Mechanical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ahmed Khalil
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ali M Basha
- Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
3
|
Wu R, Liu W, Bai R, Zheng D, Tian X, Lin W, Ke Q, Li L. Waste Biomass-Mediated Synthesis of TiO 2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity. Molecules 2024; 29:2090. [PMID: 38731581 PMCID: PMC11085262 DOI: 10.3390/molecules29092090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, TiO2/P, K-containing grapefruit peel biochar (TiO2/P, K-PC) composites were synthesized in situ biomimetically using grapefruit peel as the bio-template and carbon source and tetrabutyl titanate as the titanium source. This was achieved using the two-step rotary impregnation-calcination method. Adjusting the calcination temperature of the sample in an air atmosphere could regulate the mass ratio of TiO2 to carbon. The prepared samples were subjected to an analysis of their compositions, structures, morphologies, and properties. It demonstrated that the prepared samples were complexes of anatase TiO2 and P, K-containing carbon, with the presence of graphitic carbon. They possessed a unique morphological structure with abundant pores and a large surface area. The grapefruit peel powder played a crucial role in the induction and assembly of TiO2/P, K-PC composites. The sample PCT-400-550 had the best photocatalytic activity, with the degradation rate of RhB, MO, and MB dye solutions reaching more than 99% within 30 min, with satisfactory cyclic stability. The outstanding photocatalytic activity can be credited to its unique morphology and the efficient collaboration between TiO2 and P, K-containing biochar.
Collapse
Affiliation(s)
- Ruixiang Wu
- Guangdong Provincial Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China;
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Wenhua Liu
- Guangdong Provincial Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China;
| | - Renao Bai
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Delun Zheng
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Xiufang Tian
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Weikai Lin
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Qianwei Ke
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| | - Lejian Li
- College of Construction and Ecology, Shantou Polytechnic, Shantou 515078, China; (R.B.); (X.T.); (W.L.); (Q.K.); (L.L.)
| |
Collapse
|
4
|
Dhandapani P, Srinivasan V, Parthipan P, AlSalhi MS, Devanesan S, Narenkumar J, Rajamohan R, Ezhilselvi V, Rajasekar A. Development of an environmentally sustainable technique to minimize the sludge production in the textile effluent sector through an electrokinetic (EK) coupled with electrooxidation (EO) approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:81. [PMID: 38367190 DOI: 10.1007/s10653-023-01847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
This study presents an environmentally sustainable method for minimizing sludge production in the textile effluent sector through the combined application of electrokinetic (EK) and electrooxidation (EO) processes. AAS and XRF analyses reveal that utilizing acidic electrolytes in the EK method successfully eliminates heavy metals (Cu, Mn, Zn, and Cr) from sludge, demonstrating superior efficiency compared to alkaline conditions. In addition, the total removal efficiency of COD contents was calculated following the order of EK-3 (60%), EK-1 (51%) and EK-2 (34%). Notably, EK-3, leveraging pH gradient fluctuations induced by anolyte in the catholyte reservoir, outperforms other EK systems in removing COD from sludge. The EK process is complemented by the EO process, leading to further degradation of dye and other organic components through the electrochemical generation of hypochlorite (940 ppm). At an alkaline pH of 10.0, the color and COD removal were effectively achieved at 98 and 70% in EO treatment, compared to other mediums. In addition, GC-MS identified N-derivative residues at the end of the EO. This study demonstrates an integrated approach that effectively eliminates heavy metals and COD from textile sludge, combining EK with EO techniques.
Collapse
Affiliation(s)
- Perumal Dhandapani
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Venkatesan Srinivasan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Varathan Ezhilselvi
- Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K S Krishnan Marg, New Delhi, 110012, India
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India.
- Adjunct Faculty, Department of Prothodontics, Saveetha Dental Collge and Hospital, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
5
|
Pundir A, Thakur MS, Radha, Goel B, Prakash S, Kumari N, Sharma N, Parameswari E, Senapathy M, Kumar S, Dhumal S, Deshmukh SV, Lorenzo JM, Kumar M. Innovations in textile wastewater management: a review of zero liquid discharge technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12597-12616. [PMID: 38236573 DOI: 10.1007/s11356-024-31827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Zero liquid discharge (ZLD) technology emerges as a transformative solution for sustainable wastewater management in the textile industry, emphasizing water recycling and discharge minimization. This review comprehensively explores ZLD's pivotal role in reshaping wastewater management practices within the textile sector. With a primary focus on water recycling and minimized discharge, the review thoroughly examines the economic and environmental dimensions of ZLD. Additionally, it includes a comparative cost analysis against conventional wastewater treatment methods and offers a comprehensive outlook on the global ZLD market. Presently valued at US $0.71 billion, the market is anticipated to reach US $1.76 billion by 2026, reflecting a robust annual growth rate of 12.6%. Despite ZLD's efficiency in wastewater recovery, environmental challenges, such as heightened greenhouse gas emissions, increased carbon footprint, elevated energy consumption, and chemical usage, are discussed. Methodologies employed in this review involve an extensive analysis of existing literature, empirical data, and case studies on ZLD implementation in the textile industry worldwide. While acknowledging existing adoption barriers, the review underscores ZLD's potential to guide the textile industry toward a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Ashok Pundir
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Mohindra Singh Thakur
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Bhaskar Goel
- School of Core Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Niharika Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Ettiyagounder Parameswari
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram, 250110, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, India
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be) University, Yashwantrao Mohite Institute of Management, Karad, India
| | - Jose Manuel Lorenzo
- Centro Tecnológico de La Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia No 4, San Cibrao das Viñas, 32900, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| |
Collapse
|
6
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
7
|
Oyetade JA, Machunda RL, Hilonga A. Functional impacts of polyaniline in composite matrix of photocatalysts: an instrumental overview. RSC Adv 2023; 13:15467-15489. [PMID: 37223409 PMCID: PMC10201395 DOI: 10.1039/d3ra01243c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
The challenges associated with photocatalysts including their agglomeration, electron-hole recombination and limited optoelectronic reactivity to visible light during the photocatalysis of dye-laden effluent make it necessary to fabricate versatile polymeric composite photocatalysts, and in this case the incredibly reactive conducting polyaniline can be employed. The selection of polyaniline among the conducting polymers is based on its proficient functional impacts in composite blends and proficient synergism with other nanomaterials, especially semiconductor catalysts, resulting in a high photocatalytic performance for the degradation of dyes. However, the impacts of PANI in the composite matrix, which result in the desired photocatalytic activities, can only be assessed using multiple characterization techniques, involving both microscopic and spectroscopic assessment. The characterization results play a significant role in the detection of possible points of agglomeration, surface tunability and improved reactivity during the fabrication of composites, which are necessary to improve their performance in the photocatalysis of dyes. Accordingly, studies revealed the functional impacts of polyaniline in composites including morphological transformation, improved surface functionality, reduction in agglomeration and lowered bandgap potential employing different characterization techniques. In this review, we present the most proficient fabrication techniques based on the in situ approach to achieve improved functional and reactive features and efficiencies of 93, 95, 96, 98.6 and 99% for composites in dye photocatalysis.
Collapse
Affiliation(s)
- Joshua Akinropo Oyetade
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African of Institution of Sciences and Technology PO Box 447 Arusha Tanzania
| | - Revocatus Lazaro Machunda
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African of Institution of Sciences and Technology PO Box 447 Arusha Tanzania
| | - Askwar Hilonga
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African of Institution of Sciences and Technology PO Box 447 Arusha Tanzania
| |
Collapse
|
8
|
Mohammadpour A, Karami N, Zabihi R, Fazeliyan E, Abbasi A, Karimi S, Barbosa de Farias M, Adeodato Vieira MG, Shahsavani E, Mousavi Khaneghah A. Green synthesis, characterization, and application of Fe 3O 4 nanoparticles for methylene blue removal: RSM optimization, kinetic, isothermal studies, and molecular simulation. ENVIRONMENTAL RESEARCH 2023; 225:115507. [PMID: 36828253 DOI: 10.1016/j.envres.2023.115507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Methylene Blue (MB) is a cationic dye causing various health problems such as asthma, heartbeat, eye and skin irritation, nausea, and distress during prolonged exposure. In this regard, the green magnetite nanoparticle was synthesized using the extract of Prosopis farcta. The synthesized Fe3O4nanoparticle was characterized by X-ray powder diffraction (XRD), Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transforms Infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET). The corresponding parameters, including the primary concentration of MB (5-65 mg/L), the dose of synthesized nanoparticle (0.025-0.925 g/L), solution pH (3-11), and contact time (20-60 min), were considered. Also, central composite design (CCD), as one of the response surface methodologies (RSM), was used for the related modelling and optimization. The particle size of the adsorbent was between 5 and 70 nm, and the nanoparticle has 206.75 m2/g of a specific surface, 6.1 nm of average pore size, and 0.3188 cm3/g of the total pore volume. The optimal conditions for MB removal by the nanoparticle were found to follow an initial MB concentration of 20 mg/L, 0.7 g/L of the nanoparticle dose, pH = 9, and a contact time of 50 min. The pseudo-second-order (PSO) and Freundlich models were the best kinetic and isothermal models for MB removal by the synthesized nanoparticle. Molecular modelling was used to optimize the MB molecular configuration and compute HOMO-LUMO energies, quantum-chemical descriptors, and molecular electrostatic potential to evaluate the nature reactivity of the MB molecule.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Najmeh Karami
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zabihi
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ebrahim Fazeliyan
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, P.O. Box 8813733435, Shahrekord, Iran
| | - Alireza Abbasi
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Karimi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | | | - Ebrahim Shahsavani
- Research Center for Social Determinants of Health, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan; Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland.
| |
Collapse
|
9
|
Kopperi H, Hemalatha M, Ravi Kiran B, Santhosh J, Venkata Mohan S. Sustainable consideration for traditional textile handloom cluster/village in pollution abatement - A case study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121320. [PMID: 36805470 DOI: 10.1016/j.envpol.2023.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Decentralized handlooms are being traditionally practised throughout India. Siripuram village known for traditional Pochampally/Ikat work was considered as a case study for detailed investigation towards providing a sustainable solution. Nearly 65% of village population solely depend on weaving and dyeing works as primary occupation based on the household survey and generated wash water of 127 KLD on an average from the dyeing operations. Initially, a topographical survey (Aerial drone; PHANTOM 4 RTK UAV) was carried out to understand the drainage pattern, elevations, contours and interlinked with domestic and dyeing functions. The characteristics of combined wastewater and dye wash water were studied at lab scale using sequential batch (SBR) operation under aerobic (SBRAe) and aerobic-anoxic (SBRAex) microenvironments. SBRAex microenvironment showed effective organic and nutrients removal due to infused anoxic microenvironment. Treatment studies depicted 76.2% of organic fraction, 73.3% of phosphate, and 81.6% of nitrate removal. Based on the lab scale studies a closed-loop decentralized effluent treatment system was designed to ensure zero-liquid discharge (ZLD).
Collapse
Affiliation(s)
- Harishankar Kopperi
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India
| | - J Santhosh
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Oyetade JA, Machunda RL, Hilonga A. Investigation of functional performance of treatment systems for textile wastewater in selected textile industries in Tanzania. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:584-597. [PMID: 36789705 DOI: 10.2166/wst.2023.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Textile industrialization is an integral part of the economic growth in Tanzania. However, the corresponding wastewater from textile treatment processes consists of dyes and auxiliaries associated with acute toxicological impacts. This necessitates an investigation of the functional performance of the industrial treatment systems used before effluent discharge. The study primarily accesses the catalog of industrial dyes and the functionality of the treatment system at Arusha, Morogoro and Dar es Salaam vis-à-vis the effluent physicochemical properties. The analytical study reveals disperse (42%), vat (34%) and reactive (26%) as the most used industrial dyes. The physicochemical properties of the quantified wastewater reveal a significant amount of and phosphorus which was consequent to the high turbidity, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) apart from the color at the different sampling points. Although the treatability of the wastewater was 90% efficient using an activated carbon system (237.33 ± 0.67 mg/L). Similarly, the use of aerated constructed wetlands shows efficiency in the remediation of the recalcitrant having a value of 12.13 ± 0.89b mg/L (90%) and 13.22 ± 0.15a mg/L (94%). Thereafter, needful recommendations were suggested based on the physicochemical properties of the textile wastewater and to improve the functionality of the treatment systems in the respective industries.
Collapse
Affiliation(s)
- Joshua Akinropo Oyetade
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania ;
| | - Revocatus Lazaro Machunda
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania ;
| | - Askwar Hilonga
- School of Materials, Energy, Water and Environmental Science, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania ;
| |
Collapse
|
11
|
Manojkumar P, Pranav S, Premchand C, Lokeshkumar E, Rameshbabu N. Development of surface-modified galvanised steel as an immobilised photocatalyst for textile wastewater treatment. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
The Environmental Impacts of Fast Fashion on Water Quality: A Systematic Review. WATER 2022. [DOI: 10.3390/w14071073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fashion industry is the second most polluting industry, contributing 8% of all carbon emissions and 20% of all global wastewater, with an anticipated 50% increase in greenhouse gas emissions by 2030. To gain a better understanding of the state of the academic literature on the environmental impacts of the fast fashion industry, we systematically identified 65 publications from 1996 to November 2021 that were subjected to (i) bibliometric, (ii) text, and (iii) content analysis. We found that there is a growing research interest surrounding fast fashion and water quality, with 74% of the articles published in the last 5 years, and the majority of publications and citations are from China and European countries. We summarise the evaluation of production processes, such as carbon and water footprints, along with recycling practices aimed to increase the sustainability of the fashion industry. Circular economy, social environmental responsibility, and sustainability governance are key areas for future research in this growing field.
Collapse
|